New! View global litigation for patent families

CN102011194A - Photovoltaic semiconductor nanocrystalline and preparation method and application thereof - Google Patents

Photovoltaic semiconductor nanocrystalline and preparation method and application thereof Download PDF

Info

Publication number
CN102011194A
CN102011194A CN 201010505806 CN201010505806A CN102011194A CN 102011194 A CN102011194 A CN 102011194A CN 201010505806 CN201010505806 CN 201010505806 CN 201010505806 A CN201010505806 A CN 201010505806A CN 102011194 A CN102011194 A CN 102011194A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
cu
width
ratio
band
method
Prior art date
Application number
CN 201010505806
Other languages
Chinese (zh)
Inventor
刘志宏
崔光磊
张中一
张小影
陈骁
Original Assignee
中国科学院青岛生物能源与过程研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Abstract

The invention relates to a Cu(In, Al) Se2 type photovoltaic semiconductor nanocrystalline and a preparation method and application thereof. The photovoltaic semiconductor nanocrystalline is obtained by using element sources of Cu, In, Al, S and Se to synthesize Cu(In, Al)Se2 nanoparticles in an organic solvent via a solvothermal method and purifying and refining. The method comprises the following steps of: (1) placing element sources of Cu, In and Al in the organic solvent to mix and reacting under protection of inert gases to obtain a solution A; (2) raising temperature of the solution A and adding one or two of element sources of S and Se to react; adjusting In/Al ratio or/and S/S2 ratio to adjust the band gap width and making the band gap width of material be matched with spectrum of sunlight; and (3) adding benzene to disperse and adding alcohol to deposit as so to obtain the target product. In the invention, by adjusting the In/Al ratio or/and the S/S2 ratio, shape and size of nanoparticles are controlled to adjust the band gap width so that the band gap width of the material is matched with the spectrum of sunlight better.

Description

一种光伏半导体纳米晶及制备法和应用 A photovoltaic semiconductor nanocrystals and the preparation method and application

技术领域 FIELD

[0001] 本发明涉及一种Cu(In,ADSe2类光伏半导体纳米晶,更具体地是涉及一种Cu(In, Al) S2> Cu(In, Al) Se2 或Cu(In,Al) (S,Se) 2 光伏半导体纳米晶。 [0001] The present invention relates to a Cu (In, ADSe2 based photovoltaic semiconductor nanocrystals, and more particularly, to a Cu (In, Al) S2> Cu (In, Al) Se2 or Cu (In, Al) (S , Se) 2 semiconductor nanocrystals PV.

[0002] 本发明还涉及制备上述光伏半导体纳米晶的方法。 [0002] The present invention further relates to a process for preparing such a photovoltaic semiconductor nanocrystals.

[0003] 本发明还涉及上述光伏半导体纳米晶的应用。 [0003] The present invention further relates to the above-described semiconductor nanocrystal photovoltaic applications.

背景技术 Background technique

[0004] 随着社会和科学技术的发展,光伏和光电转换器件成为当今世界的重大研究课题。 [0004] With the development of society and science and technology, photovoltaic and photoelectric conversion devices become an important research topic in today's world. 人们为了经济高效地利用太阳能,希望开发出相对廉价的太阳能电池。 It order to economically efficient use of solar energy, it is desirable to develop a relatively inexpensive solar cells.

[0005] 例如:染料敏化太阳能电池,其光-电转换机理为:具有高比表面积的纳米晶多孔薄膜可以吸附很多单层染料分子来吸收太阳光;吸附的单层染料激发产生电子以后快速地将电子注入到半导体的导带中,然后经过外电路传递至阴极,从而形成电流。 [0005] For example: dye-sensitized solar cell, the light - electric conversion mechanism is: Nanocrystalline porous film having a high specific surface area can absorb a lot of single dye molecules absorb sunlight; monolayer adsorbed dye excited electrons generated after flash injecting electrons into the conduction band of the semiconductor, and then transferred to the cathode through an external circuit, thereby forming a current. 瑞士科学家Michael Gratzel把大颗粒的TiO2晶体,替换成直径20nm的小颗粒海绵状Ti02, 外层包裹染料薄层,形成10微米厚的光学透明薄膜。 Swiss scientist Michael Gratzel the TiO2 crystals large particles, small particles with a diameter of replacing spongy of Titania and 20nm, dye thin outer wrap, form an optically transparent film 10 microns thick. 这类电池转换效率的世界纪录是11%。 Such cell conversion efficiency world record is 11%.

[0006] 但是,染料敏化太阳能电池一般采用价格昂贵的有机金属染料。 [0006] However, dye-sensitized solar cell generally uses expensive metal organic dyes. 例如,钌(Ru) 染料是一类高效的敏化染料(如:N3、N791、N945等)。 For example, ruthenium (Ru) is a class of highly efficient dye sensitizing dye (eg: N3, N791, N945, etc.). 钌属于稀有金属,价格昂贵, 染料的合成提纯方法复杂等是这类太阳能电池的缺点之一。 Ruthenium are rare, expensive, synthetic dyes and complex purification method is one of the disadvantages of such a solar cell.

[0007] 另外,Cu(In,Ga) (S,Se)2类太阳能电池采用Mo作为电极层,以Cu(In,Ga) (S,Se)2作为吸收层,以CdS或ZnS作为缓冲层,以ZnO作为窗口层。 [0007] Further, Cu (In, Ga) (S, Se) Class 2 solar cell using Mo as an electrode layer, to Cu (In, Ga) (S, Se) 2 as an absorbing layer to CdS or ZnS as the buffer layer , as a window layer of ZnO. 现在这类太阳能薄膜电池的能量转换效率已经达到19%。 Now such thin film solar cells have an energy conversion efficiency reached 19%. 美国Nanosolar公司开发了CIGS纳米油墨, 结合卷对卷技术,在2007年底推出了CIGS柔性电池。 US Nanosolar has developed CIGS nano-ink technology combined with roll to roll, at the end of 2007 launched a CIGS flexible cells. Nanosolar公司使用铝箔底衬并在铝箔上溅射Mo层,不但廉价,而且电导率高。 Nanosolar company and an aluminum foil backing sputtered Mo layer on the aluminum foil, is not only cheap, but high conductivity.

[0008] 但是,Cu(In,Ga) (S,Se)2类太阳能电池的吸收层Cu(In,Ga) (S,Se)2中的 [0008] However in, Cu (In, Ga) (S, Se) 2 type solar cell absorber layer Cu (In, Ga) (S, Se) 2

元素铟和镓都是稀有金属和稀散金属。 Elements are indium and gallium metals and rare metals. 镓在大自然中很分散,没有形成集中的镓矿,且提炼困难。 Gallium is dispersed in nature, it is not formed gallium ore concentrate, and extraction difficult. 铟在地壳中的分布量比较小,也很分散。 The distribution ratio of indium in the crust is small, it is dispersed. 其含量和银相当,而产量仅约为银的1%。 And an amount of silver equivalent to the yield of only about 1% of the silver.

[0009] Cu(In, Ga) (S, Se)2类太阳能电池的吸收层中掺入镓元素可以调节其带隙宽度,从而更好地和太阳光光谱匹配,同时还避免了材料中的相分离。 [0009] The absorbent layer Cu (In, Ga) (S, Se) 2 type solar cell incorporating gallium band gap width can be adjusted, and to better match the solar spectrum, while also avoiding material phases were separated. 因此,镓的掺入大大提高了这类电池的效率。 Thus, incorporation of gallium greatly improve the efficiency of such batteries. 而在CuInSe2半导体中掺入铝元素同样可以起到调整半导体带隙宽度和避免相分离的作用,这样就避免了使用价格昂贵的镓元素。 Be incorporated in aluminum CuInSe2 semiconductor element can also serve to adjust the band gap of the semiconductor and avoid phase separation effect, thus avoiding the use of expensive gallium. 对于Cu(In,Al) (S,Se)2材料,人们通过共蒸发沉积的方法已经制备出具性能较好的电池,Cu(In,Al) Se2电池的最高效率为16.9%。 For material 2 Cu (In, Al) (S, Se), it is deposited by co-evaporation method has better performance were prepared, a battery, Cu maximum efficiency (In, Al) Se2 cell was 16.9%.

[0010] 以上太阳能电池是最近几年发展比较迅速的新型电池。 [0010] or more solar cells are relatively rapid development in recent years a new type of battery. 除此之外,随着纳米科学的发展,人们相继合成了各种不同种类的半导体纳米颗粒和量子点,并将其应用于太阳能电池以及发光二极管等光电转换器件中。 In addition, with the development of nano-science, people have synthesized a variety of different types of semiconductor nanoparticles and quantum dots, and applied to a solar cell and a light emitting diode photoelectric conversion member. 如:CdS、CdSe、PbS> PbSe和InP等半导体纳米颗粒。 Such as: CdS, CdSe, PbS> PbSe or InP and the semiconductor nanoparticles. 量子点的光吸收作用来源于量子限域效应,由于紧密离子化效应,使得每吸收一个光子可以产生多个电子-空穴对,而且量子点具有较高的消光系数,这有利于减少暗电流和提高电池的光电效率。 The optical absorption of the quantum dots from the quantum confinement effect, due to the close ionization effect, such that each absorbed photon may generate a plurality of electron - hole pairs, and quantum dots have higher extinction coefficients, which helps to reduce the dark current and improve the efficiency of photovoltaic cells. 量子点敏化太阳能电池的理论预测效率高达44%,远远高于有机染料敏化太阳能电池的理论预测值。 Theoretical prediction efficiency quantum dot sensitized solar cell is 44%, much higher than the theoretically predicted value of the organic dye-sensitized solar cell. 另外,由于Cu(In,Ga) (S, Se)2类薄膜电池的高效率,合成CuInS2、CuInSe2> Cu(In, Ga)Se2等窄带隙量子点和纳米材料成为一个新的热点领域。 Further, due to the high efficiency Cu (In, Ga) (S, Se) 2 based thin film cell, synthetic CuInS2, CuInSe2> Cu (In, Ga) Se2 and other narrow bandgap quantum dot nano-materials become a new hot spot area. 如:BrianAXorgel等合成了具有黄铜矿晶型的CuInS2* CuInSe2 纳米颗粒(可参见:Brian A.Korgel.etc.Chem.Mater.2009,21,I962-I966 和Brian A.Korgel.etc.J.AM.CHEM.SOC.2009, 131, 3IiM-3I35)。 Such as: BrianAXorgel synthetic crystal having a chalcopyrite-type CuInS2 * CuInSe2 nanoparticles (see: Brian A.Korgel.etc.Chem.Mater.2009,21, I962-I966 and Brian A.Korgel.etc.J. AM.CHEM.SOC.2009, 131, 3IiM-3I35). Jennifer A.Hollingsworth 等合成了CuInSe2 纳米线(可参见:Jennifer A.Hollingsworth.etc.J.AM.CHEM.SOC.2009,131, 16177-16188)。 Jennifer A.Hollingsworth nanowires synthesized using CuInSe2 (see: Jennifer A.Hollingsworth.etc.J.AM.CHEM.SOC.2009,131, 16177-16188). Edward H.Sargent等通过掺入镓元素得到了Cu (In,Ga)Se2纳米粒子,发现掺入镓元素可以明显改变CuInSe2纳米颗粒的吸收光谱,使材料的带隙变宽至1.5eV左右(可参见:EdwardH.Sargent.etc.Chem.Mater.2008,20,6906-6910)。 Edward H.Sargent the like obtained by incorporating a gallium Cu (In, Ga) Se2 nanoparticles, gallium found that incorporation of CuInSe2 can significantly alter the absorption spectrum of the nano particles, wider band gap material to about 1.5 eV (available see also: EdwardH.Sargent.etc.Chem.Mater.2008,20,6906-6910). RakeshAgrawal 等将Cu(In,Ga)S2纳米粒子沉积成膜,然后对其进行硒化得到了Cu(In,Ga) (S, Se)2 薄膜,并用其构建了效率达5%左右的太阳能电池(可参见:Rakesh Agrawa.etc.Nano Lett. Vol.9, N0.8, 2009)。 RakeshAgrawal like Cu (In, Ga) S2 nanoparticles deposited in a film, and then subjected to a selenization obtained Cu (In, Ga) (S, Se) 2 thin film, and used to build up to about 5% of the efficiency of a solar cell (see:. Rakesh Agrawa.etc.Nano Lett Vol.9, N0.8, 2009).

发明内容 SUMMARY

[0011] 本发明的目的在于提供一种具有黄铜矿晶型的Cu(In,Al) Se2类光伏半导体纳米晶。 [0011] The object of the present invention is to provide a crystal having a chalcopyrite type Cu (In, Al) Se2 based photovoltaic semiconductor nanocrystals.

[0012] 本发明还涉及制备上述Cu(In,ADSe2类光伏半导体纳米晶的方法。 [0012] The present invention further relates to a process for preparing such Cu (In, ADSe2 based photovoltaic semiconductor nanocrystals.

[0013] 为实现上述目的,本发明提供的Cu(In,Al) Se2类光伏半导体纳米晶,是通过溶剂热法将Cu、In、Al、S和Se的元素源在有机溶剂中合成Cu(In,Al) Se2类纳米颗粒, 再进行提纯精制而得到;该方法为: [0013] To achieve the above object, Cu (In, Al) Se2 based photovoltaic semiconductor nanocrystals of the present invention provides, by solvothermal method Cu, In, Al, S, and element source Se synthesized in an organic solvent Cu ( In, Al) Se2 based nanoparticles, and then purified to obtain purified; the method:

[0014] l)Cu、In、Al元素源置于有机溶剂中混合,于惰性气体保护下反应,得到溶液A; [0014] l) Cu, In, Al element source placed in an organic solvent are mixed in the reaction under an inert atmosphere to obtain a solution A;

[0015] 2)溶液A升温,加入S元素源和Se元素源中的一种或两种进行反应;调整In/ Al比或/和S/Se比调节其带隙宽度,使材料的带隙宽度与太阳光的光谱匹配; [0015] 2) A heated solution, one or two added elements in the source S and Se in the reaction element source; adjust In / Al ratio and / or S / Se ratio adjusting its band gap, the band gap of the material the width of the spectral matching of sunlight;

[0016] 3)加入苯分散后再加入醇沉淀,得到目标产物Cu(In,Al) S2> Cu(In, Al) Se2或Cu(In,Al) (S,Se)2光伏半导体纳米晶。 [0016] 3) Add dispersion of benzene was added and then precipitated with ethanol, to give the desired product Cu (In, Al) S2> Cu (In, Al) Se2 or Cu (In, Al) (S, Se) 2 semiconductor nanocrystals PV.

[0017] 本发明提供的制备上述Cu(In,Al) Se2类光伏半导体纳米晶的方法,采用溶剂热法,将Cu、In、Al、S和Se的元素源在有机溶剂中合成Cu(In,Al) Se2类纳米颗粒,再进行提纯精制;其主要步骤为: [0017] The preparation of the above Cu (In, Al) Se2 based photovoltaic semiconductor nanocrystals of the present invention provides methods, using the solvothermal method, Cu, In, Al, S, and element source Se synthesized in an organic solvent Cu (In , Al) Se2 nanoparticles class, then refined purification; main steps:

[0018] l)Cu、In、Al元素源置于有机溶剂中混合,80-140摄氏度于惰性气体保护下反应,得到溶液A ; [0018] l) Cu, In, Al element source placed in an organic solvent mixture, 80-140 ° C in the reaction under an inert atmosphere to obtain a solution A;

[0019] 2)溶液A升温至200-250摄氏度,加入S元素源和Se元素源中的一种或两种进行反应;调整In/Al比或/和S/Se比调节其带隙宽度,使材料的带隙宽度与太阳光的光谱匹配; [0019] 2) A solution was warmed to 200-250 ° C, was added one or two elements in the source S and Se in the reaction element source; adjust In / Al ratio and / or S / Se ratio adjusting band gap width, band gap width of the spectrum of sunlight matching material;

[0020] 3)加入苯分散后,再加入醇沉淀,得到Cu(In,Al) S2 > Cu (In, Al) Se2或Cu(In,Al) (S,Se)2光伏半导体纳米晶。 [0020] 3) After addition of benzene dispersed, the alcohol precipitation, to give Cu (In, Al) S2> Cu (In, Al) Se2 or Cu (In, Al) (S, Se) 2 semiconductor nanocrystals PV. [0021] 所述的制备方法中,步骤1中Cu、In、Al元素源置于有机溶剂中混合时加入表面活性剂,得到的Cu(In,Al) S2> Cu(In,Al) Se2或Cu(In,Al) (S,Se)2光伏半导体纳米晶为线状或微球状。 The method of preparation according to [0021], the step of Cu, In, Al element source 1 is placed in an organic solvent, adding a surfactant when mixed to obtain a Cu (In, Al) S2> Cu (In, Al) Se2, or Cu (In, Al) (S, Se) 2 semiconductor nanocrystals photovoltaic a linear or microspheres.

[0022] 所述的制备方法中,步骤2还可以包括如下步骤: [0022] The preparation method, step 2 may further comprise the steps of:

[0023] A)硫元素源和硒元素源中的一种或两种先与有机溶剂混和,惰性气体保护下100-120摄氏度反应,并在10分钟内升温到220-250摄氏度保温,使硫元素源和硒元素源中的一种或两种溶解,得到溶液B; [0023] A) a sulfur source and the selenium source element in one or both of the organic solvent mixed with an inert gas at 100 to 120 degrees Celsius to protect the reaction, and incubation was raised to 220-250 ° C over 10 minutes, sulfur element source and a source of selenium or both dissolved to obtain a solution B;

[0024] B)搅拌下,将溶液A加入溶液B,缓慢降温到100摄氏度,然后继续升温到180-300摄氏度保温。 [0024] B) under stirring, solution A was added solution B, slowly cooled to 100 degrees Celsius, and then continue to heat to 180-300 ° C heat.

[0025] 所述的制备方法中,铜(Cu)元素源选自以下铜盐中的一种或几种:氯化亚铜、 氯化铜、碘化亚铜、碘化铜、醋酸亚铜、醋酸铜、乙酰丙酮化铜;铟(In)元素源选自以下铟盐中的一种或几种:氯化铟、乙酰丙酮化铟、醋酸铟、碘化铟;铝(Al)元素源选自以下铝盐中的一种或几种:氯化铝、碘化铝、醋酸铝、乙酰丙酮化铝;硒(Se)源选用以下的一种或几种:硒的三正辛基膦溶液、硒的三正辛基氧膦溶液、硒的十八烯胺溶液、 硒脲;硫(S)源选用以下的一种或几种:硫溶解于十八烯胺,硫溶解于三正辛基膦、硫溶解于三正辛基氧膦、硫脲、硫醇。 The method of preparation according to [0025], a copper (Cu) copper element source selected from one or more of: cuprous chloride, cupric chloride, copper iodide, copper iodide, copper acetate , copper acetate, copper acetylacetonate; indium (in) element source selected from one or more of the following indium salt: indium chloride, indium acetylacetonate, indium acetate, indium iodide; aluminum (Al) element source aluminum salt selected from one or more of: aluminum chloride, aluminum iodide, aluminum acetate, aluminum acetylacetonate; selenium (Se) source is selected one or more of the following: selenium TOPO tri-n-octyl phosphine oxide solution was, selenium, selenium octadecene amine solution, selenourea; sulfur (S) source is selected one or more of the following: sulfur dissolved in octadecenyl amine, tri sulfur dissolved in octyl phosphine, tri-n-octyl is dissolved in sulfur phosphine oxide, thioureas, thiols.

[0026] 所述的制备方法中,有机溶剂为十八烯胺、邻二氯苯或无水胼;醇为无水甲醇或无水乙醇。 The method of preparation according to [0026], the organic solvent is octadecene amines, o-dichlorobenzene or anhydrous corpus; anhydrous alcohol is methanol or ethanol.

[0027] 所述的制备方法中,表面活性剂为十二醇、吡啶、聚乙二醇、十六烷基三甲基溴化铵、十二烷基磺酸钠或壬基酚聚氧乙烯醚。 The method of preparation according to [0027], the surfactant is dodecyl alcohol, pyridine, polyethylene glycols, cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, or polyoxyethylene nonylphenyl ether.

[0028] 所述的制备方法中,步骤3得到的Cu(In,Al) S2> Cu(In, Al) Se2或Cu(In,Al) Preparation of [0028] the method, step 3 Cu (In, Al) S2> Cu (In, Al) Se2 or Cu (In, Al)

(S,Se)2光伏半导体纳米线或颗粒用苯、甲苯或/和氯仿溶剂分散的方法反复提纯。 (S, Se) 2 semiconductor nanowire photovoltaic particle or repeatedly purified by benzene, or toluene / chloroform solvent and dispersing methods.

[0029] 本发明提供的Cu(In,ADSe2类光伏半导体纳米晶可以应用在太阳能电池中。 [0029] Cu (In the present invention, provided, ADSe2 based photovoltaic semiconductor nanocrystals can be used in solar cells.

[0030] 本发明提供的Cu(In,Al) Se2类光伏半导体纳米晶可以应用在近红外光激光中。 [0030] Cu (In, Al) Se2 based the present invention provides a photovoltaic semiconductor nanocrystals can be used in the near infrared laser.

[0031] 本发明的优点在于: [0031] The advantage of the present invention:

[0032] 1)采用溶剂热法合成了一类新型窄带隙半导体纳米颗粒。 [0032] 1) Synthesis of the solvothermal method using a new class of narrow band gap semiconductor nanoparticles. 该类纳米颗粒在光电材料领域具有潜在用途,如可用于包括光伏电池、光化学催化剂、量子点激光器、量子点发光二极管等光电转换器件。 Such nanoparticles have potential use in the field of photovoltaic material, such as a photovoltaic cell that can be used include, photochemical catalyst, a quantum dot lasers, quantum dot light emitting diode, a photoelectric conversion device.

[0033] 2)合成方法采用化学溶剂热法,和溅射及共蒸发沉积法合成该类材料相比不需要昂贵的设备和苛刻的合成条件。 [0033] 2) Synthesis of chemical solvothermal method, and sputtering and co-evaporation method does not require expensive equipment compared to synthetic and synthetic harsh conditions such materials. 比用球磨机等机械粉碎制备纳米颗粒的方法设备费用低,方法简单。 A ball mill or the like mechanical pulverization equipment cost is lower than the nanoparticle preparation method is simple. 合成的纳米颗粒晶型完整缺陷较少,从而减少了光生激子的复合几率。 Form nanoparticles less complete synthesis defects, thereby reducing the recombination of photogenerated excitons.

[0034] 3)通过改变原料配比与合成条件,可调整该纳米材料的带隙宽度。 [0034] 3) by varying the ratio of starting material and the synthesis conditions of the nano-adjusted band gap material. 从而可控地制备出不同带隙宽度及尺寸形状的纳米颗粒(或量子点)。 Thereby controllably prepared with different shape and size of the nip width nanoparticles (or quantum dots).

附图说明 BRIEF DESCRIPTION

[0035] 图1是按照实施例一的工艺在不同温度下合成的Cu(In,Al) (S,36)2类量子点放大30000倍的透射电镜电镜照片。 [0035] FIG. 1 is a process according to Synthesis Example at different temperatures of the Cu (In, Al) (S, 36) based quantum dot 2 30,000 times enlarged electron micrograph of TEM.

[0036] 图2是本发明Cu(In,Al) Se2量子点分散在甲苯中的吸收光谱。 [0036] FIG. 2 is a Cu (In, Al) Se2 according to the present invention, the quantum dots dispersed in toluene absorption spectrum.

[0037] 图3是本发明Cu(In,Al) Se2量子点分散在甲苯中的荧光光谱。 [0037] FIG. 3 is a Cu (In, Al) Se2 according to the present invention, the quantum dots dispersed in toluene in the fluorescence spectrum. [0038] 图4是本发明Cu(In,Al) Se2量子点的XRD谱图。 [0038] FIG. 4 is a Cu XRD spectrum of the present invention (In, Al) Se2 quantum dots. 具体实施方式 detailed description

[0039] 本发明的制备方法,其主要是采用溶剂热法,将Cu、In、Al、S、Se等元素源在有机溶剂中(如十八烯胺、邻二氯苯、无水胼等)合成Cu(In,Al) (S,36)2类纳米颗粒,再进行提纯精制。 [0039] The production method of the present invention, which is mainly solvothermal method, Cu, In, Al, S, Se and other elements of the source in an organic solvent (e.g., octadecene amines, o-dichlorobenzene, and the like over anhydrous corpus ) synthesis of Cu (In, Al) (S, 36) based nanoparticles, then refined purification.

[0040] 本发明的制备方法可以通过调In/Al和S/Se比或掺入其他元素(如Cd)或通过控制纳米颗粒的形状和尺寸来调节其带隙宽度,以使材料的带隙宽度更好地与太阳光的光谱匹配。 [0040] The method of the present invention can be prepared by adjusting the In / Al and S / Se ratio or incorporated into other elements (e.g., Cd) or a band gap width is adjusted by controlling the shape and size of the nanoparticles, so that the band gap of the material to better match the width of the spectrum of sunlight.

[0041] 元素源的前驱体可选择如:氯化亚铜、醋酸铜、乙酰丙酮化铜等铜盐及其络合物中的一种或几种作为铜源;氯化铟、乙酰丙酮化铟、醋酸铟等铟盐及其络合物中的一种或几种作为铟源;氯化铝、醋酸铝、乙酰丙酮化铝等铝盐及其络合物中的一种或几种作为铝源。 Precursor [0041] The element sources selectable: cuprous copper chloride, copper acetate, copper acetylacetonate and the like of one or more complex as the copper source; indium chloride, acetylacetonate , indium acetate, indium salts and complexes of one or more of the indium source; aluminum chloride, aluminum acetate, aluminum salts such as aluminum acetylacetonate and complexes of one or several as aluminum source. 将硒或硫溶于十八烯胺(或邻二氯苯、无水胼等)作为硒源或硫源。 The dissolved selenium or sulfur octadecenyl amine (or o-dichlorobenzene, anhydrous corpus etc.) as a source of selenium or sulfur source. 提纯的方法例如:用醇(如无水甲醇、无水乙醇)析出纳米颗粒,用苯、甲苯、氯仿等溶剂分散的方法反复提纯几次。 The method of purification, for example: precipitated nanoparticles with an alcohol (e.g., anhydrous methanol, anhydrous ethanol), with benzene, toluene, chloroform or the like solvent dispersion of purified repeated several times.

[0042] 本发明掺入铝元素可以明显改变CuInSe2的吸收光谱和带隙。 [0042] The present invention may be incorporated into the aluminum element significantly alter the absorption spectrum of CuInSe2 and the band gap. 通过调整In/Al和S/Se比或掺入其他元素来调节其带隙宽度,通过控制纳米颗粒的形状和尺寸来进一步调节其带隙宽度,以使其带隙宽度更好地与太阳光的光谱匹配。 By adjusting the In / Al and S / Se ratio or incorporated into other elements to adjust the band gap width, be further adjusted by controlling the band gap width of the shape and size of the nanoparticles, the band gap so as to better sunlight spectral matching. 具体方法可在前驱体摩尔数大致满足2XCu = 2X(In+Al) = (Se+S)的前提下,通过改变铝和铟前驱体的比例可以得到不同In/Al的纳米粒子,通过改变硫和硒前驱体的比例可以得到不同S/Se的纳米粒子。 Specific methods can be substantially meet the number of precursor molar 2XCu = premise 2X (In + Al) = (Se + S) can be obtained nanoparticles are different In / Al by changing the ratio of aluminum and indium precursor, by varying sulfur and selenium precursors can be different ratio S / Se nanoparticles. 如果再加入1〜10%的适当的表面活性剂调控得到其他各种形貌的纳米材料,如纳米线、纳米微球等等。 If the addition of suitable surfactants regulation 1~10% of a range of other morphologies nanomaterials, such as nanowires, nanospheres and the like. 选用的表面活性剂可以是十二醇、吡啶、聚乙二醇、十六烷基三甲基溴化铵、十二烷基磺酸钠、壬基酚聚氧乙烯醚等等。 Optional surfactant may be lauryl alcohol, pyridine, polyethylene glycols, cetyl trimethyl ammonium bromide, sodium dodecyl sulfate, polyoxyethylene nonyl phenol ether and the like. 用这种方法代替了传统溅射法和共蒸发沉积法合成Cu(In,ADSe2,不需要高昂的反应设备和苛刻的制备条件,合成的纳米粒子单分散性好,因此具有重要意义。 In this way instead of the conventional sputtering method, and the synthesis of Cu (In, ADSe2, does not require expensive reaction apparatus harsh preparation conditions and co-evaporation method, the synthesis of monodisperse nanoparticles good, so important.

[0043] 本发明通过调整In/Al和S/Se比调节其带隙宽度,并通过控制纳米颗粒的形状和尺寸来进一步调节其带隙宽度,以使其带隙宽度更好地与太阳光的光谱匹配。 [0043] The present invention, by adjusting the In / Al and S / Se ratio adjusting its band gap, and be further adjusted by controlling the band gap width of the shape and size of the nanoparticles, the band gap so as to better sunlight spectral matching.

[0044] 本发明的技术特征是: [0044] The features of the invention are:

[0045] 1、通过化学方法合成了Cu(In,Al) (S,Se)2类纳米颗粒。 [0045] 1, class 2 nanoparticles synthesized Cu (In, Al) (S, Se) by chemical methods. 合成方法是采用Cu、In、Al、S、Se等元素源,在有机溶剂中(如十八烯胺、邻二氯苯、无水胼等)合成,再进行提纯精制。 The method of synthesis is the use of Cu, In, Al, S, Se source and other elements, in an organic solvent (e.g., octadecene amines, o-dichlorobenzene, etc. anhydrous corpus) synthesis, purification and then purified. 元素的前驱体可选择如:氯化亚铜、醋酸铜、乙酰丙酮化铜等铜盐及其络合物中的一种或几种作为铜源;氯化铟、乙酰丙酮化铟、醋酸铟等铟盐及其络合物中的一种或几种作为铟源;氯化铝、醋酸铝、乙酰丙酮化铝等铝盐及其络合物中的一种或几种作为铝源。 Alternatively the precursor elements such as: cuprous chloride, copper acetate, copper salts such as copper acetylacetonate and complexes of one or more of a copper source; indium chloride, indium acetylacetonate, indium acetate and other one or more indium salts and complexes as an indium source; aluminum chloride, aluminum acetate, aluminum salts such as aluminum acetylacetonate and complexes of one or more of an aluminum source. 将硒或硫溶于十八烯胺(或邻二氯苯、无水胼等)作为硒源或硫源。 The dissolved selenium or sulfur octadecenyl amine (or o-dichlorobenzene, anhydrous corpus etc.) as a source of selenium or sulfur source. 提纯的方法例如:用醇(如无水甲醇、无水乙醇)析出纳米颗粒,用苯、甲苯、氯仿等溶剂分散的方法反复提纯几次。 The method of purification, for example: precipitated nanoparticles with an alcohol (e.g., anhydrous methanol, anhydrous ethanol), with benzene, toluene, chloroform or the like solvent dispersion of purified repeated several times.

[0046] 2、可以通过调In/Al和S/Se比或掺入其他元素(如Cd)或通过控制纳米颗粒的形状和尺寸来调节其带隙宽度,以使材料的带隙宽度更好地与太阳光的光谱匹配。 [0046] 2 can be adjusted by the In / Al and S / Se ratio or incorporated into other elements (e.g., Cd) or a band gap width is adjusted by controlling the shape and size of the nanoparticles, so that the band gap width of the material better matched to the spectrum of sunlight.

[0047] 下面结合实例对本发明的技术方案作进一步说明。 [0047] The following examples in conjunction with the technical solution of the present invention will be further described. [0048] 实施例一: [0048] Example a:

[0049] 0.2mmol乙酰丙酮化铜,0.14mmol乙酰丙酮化铟,0.06mmol乙酰丙酮化铝, 5mL9-十八烯胺混合,80摄氏度真空搅拌lh,混合物完全溶解得到溶液A。 [0049] 0.2mmol copper acetylacetonate, indium acetylacetonate, 0.14 mmol, 0.06 mmol aluminum acetylacetonate, 5mL9- octadecene amine blend, LH was stirred 80 C under vacuum, the mixture was completely dissolved to give a solution A. 8mL9_十八烯胺和0.4mmol硒粉混和,氮气保护下120摄氏度搅拌30min,得到溶液B。 Under 8mL9_ octadecenyl amine and mixing 0.4mmol selenium, nitrogen 120 ° C was stirred for 30min, to give solution B.

[0050] 溶液B在10分钟内升温到250摄氏度,保温1小时,溶液B由无色变为橙色, 最终变为红褐色。 [0050] Solution B was warmed over 10 minutes to 250 degrees C, for 1 hour, the solution B from colorless to orange and eventually to red-brown. 待Se完全溶解,将5mL溶液A用注射器注入溶液B,同时要求剧烈搅拌。 Se to be completely dissolved, 5mL of solution A solution B is injected with a syringe while vigorously stirring requirements. 溶液立即变为深黑色。 Solution immediately turned dark. 缓慢降温,15min降温到100摄氏度,然后继续升温到250 摄氏度保温1小时。 Slow cooling, cooling to 100 ° C 15min, and then continue to heat up to 250 ° C for 1 hour. 降至室温,加入5ml无水甲醇,混合物离心3000rpm lmin。 Cooled to room temperature, 5ml of anhydrous methanol was added, the mixture was centrifuged at 3000rpm lmin.

[0051] 沉淀分散在IOmL无水甲苯中,加入5mL无水甲醇离心沉淀。 [0051] IOmL precipitate was dispersed in anhydrous toluene, was added 5mL of anhydrous methanol precipitation centrifugation. 加入8ml甲苯分散,3000rpm离心,得到高纯Cu(In,Al) Se2的纳米颗粒的分散液。 8ml of toluene dispersion, 3000 rpm for centrifugation, to obtain a dispersion of nanoparticles of high purity Cu (In, Al) Se2 of.

[0052](如果将以上实例中的反应温度由250摄氏度改变为180〜300摄氏度的任意温度或延长及缩短反应时间,可得到不同粒径大小的纳米粒子。) [0052] (if the reaction temperature in the above example is changed by 250 degrees at any temperature of 180~300 ° C and the reaction time is shortened or extended, to obtain nanoparticles of different particle sizes.)

[0053] 实施例二: [0053] Example II:

[0054] 0.2mmol 氯化亚铜(99.99 % ),0.16mmol 氯化铟(99.99 % ),0.04mmol 醋酸铝(99.99%)加入到5毫升的十八烯胺中,混合均勻,80摄氏度抽真空lh,得到完全溶解的溶液A。 [0054] 0.2mmol cuprous chloride (99.99%), 0.16 mmol of indium chloride (99.99%), 0.04 mmol aluminum acetate (99.99%) was added to 5 ml of octadecene amines, mixed, vacuum 80 ° C lh, to obtain complete dissolution of solution A. 0.4mmol硫(99.98% )和8ml十八烯胺混合物真空除气lh,110摄氏度冲氮气保护30分钟得到溶液B。 0.4mmol Sulfur (99.98%) and a mixture of 8ml octadecenyl amine vacuum degassing lh, 110 ° C with nitrogen for 30 minutes to obtain solution B. Protection

[0055] 溶液B加热到250摄氏度恒温1小时,使之完全溶解。 [0055] Solution B was heated to 250 ° C temperature for 1 hour to completely dissolve. 用注射器注入溶液A, 并缓慢降温到100摄氏度,然后继续升温到250摄氏度保温1小时。 Injection with a syringe a solution A, and slowly cooled to 100 degrees Celsius, and then continue to heat up to 250 ° C for 1 hour. 降至室温,加入5ml 无水甲醇,混合物3000rpm离心lmin。 Cooled to room temperature, 5ml of anhydrous methanol was added, the mixture was centrifuged at 3000rpm lmin.

[0056] 沉淀分散在IOmL无水甲苯中,再加入5mL无水甲醇,离心沉淀。 [0056] IOmL precipitate was dispersed in anhydrous toluene, was added 5mL anhydrous methanol, centrifugation. 加入8ml甲苯分散,3000rpm离心得到Cu(In,Al) S2的纳米颗粒分散液。 8ml of toluene dispersion, 3000rpm centrifuged to obtain Cu (In, Al) S2 nanoparticle dispersion.

[0057] 以上方法将元素源S改为同时引入硫源和硒源得到Cu(In,Al) (S,Se)2纳米晶体。 [0057] The method of the source S to elemental sulfur source while introducing a source of selenium and give Cu (In, Al) (S, Se) 2 nanocrystals.

[0058] 实施例三: [0058] Example III:

[0059] 12mL9-十八烯胺,1.5mmol氯化亚铜,1.OOmmol氯化铟,0.5mmol醋酸铝加入 [0059] 12mL9- octadecenyl amine, 1.5mmol cuprous chloride, 1.OOmmol indium chloride, 0.5mmol aluminum acetate was added

到100毫升的三口烧瓶中混合,升温到130摄氏度,氩气保护下反应30min。 Three-necked flask to mix 100 ml, heated to 130 ° C, under argon and the reaction 30min. 升温到225 摄氏度,用注射器注入3mL硫(9-十八烯胺溶解3mmol硫),保温30min。 Heated to 225 degrees Celsius, the injection syringe with 3mL sulfur (9-octadecenyl amine was dissolved sulfur 3mmol), incubated 30min. 冷却至60摄氏度,加入IOmL无水甲苯分散,再加入5mL无水乙醇使之沉淀。 Cooled to 60 ° C, was added anhydrous toluene IOmL dispersion, was added 5mL of anhydrous ethanol precipitated. IOOOOrpm离心10分钟。 IOOOOrpm rpm for 10 minutes. 反复用甲苯溶解/乙醇沉淀几次,得到高纯度的Cu(In,ADS2纳米颗粒。 Repeated dissolution / precipitation several times with ethanol and toluene, to obtain a high-purity Cu (In, ADS2 nanoparticles.

[0060] 实施例四: [0060] Example IV:

[0061] 12mL9-十八烯胺,1.5mmol氯化亚铜,1.4mmol氯化铟,O.lmmol醋酸铝,O.lg [0061] 12mL9- octadecenyl amine, 1.5mmol cuprous chloride, 1.4mmol indium chloride, O.lmmol aluminum acetate, O.lg

十二醇加入到100毫升的三口烧瓶中混合,升温到130摄氏度,氩气保护下反应30min。 Dodecanol was added to a 100 ml three-necked flask were mixed and heated to 130 ° C, under argon and the reaction 30min. 升温到225摄氏度,用注射器注入3mLTOP-Se (0.4mmol硒溶于3mL三正辛基膦),保温90min。 Heated to 225 degrees C, using a syringe injection 3mLTOP-Se (0.4mmol selenium dissolved in 3mL TOPO), incubated 90min. 冷却至60摄氏度,加入IOmL无水甲苯分散,再加入5mL无水乙醇使之沉淀。 Cooled to 60 ° C, was added anhydrous toluene IOmL dispersion, was added 5mL of anhydrous ethanol precipitated. IOOOOrpm离心10分钟。 IOOOOrpm rpm for 10 minutes. 反复用甲苯溶解/乙醇沉淀几次,得到高纯度的Cu(In,Al) Se2 纳米线。 Repeated dissolution / precipitation several times with ethanol and toluene, to obtain a high-purity Cu (In, Al) Se2 nanowires.

Claims (10)

  1. 1. 一种Cu(In,ADSe2类光伏半导体纳米晶,通过溶剂热法将Cu、In、Al、S和Se的元素源在有机溶剂中合成CU(In,ADSe2类纳米颗粒,再进行提纯精制而得到;该方法为:1)Cu、In、Al元素源置于有机溶剂中混合,于惰性气体保护下反应,得到溶液A ;2)溶液A升温,加入S元素源和Se元素源中的一种或两种进行反应;调整In/Al比或/和S/Se比调节其带隙宽度,使材料的带隙宽度与太阳光的光谱匹配;3)加入苯分散后再加入醇沉淀,得到目标产物Cu(In,Al) S2> Cu(In, Al) Se2或Cu(In,Al) (S,Se)2光伏半导体纳米晶。 A Cu (In, ADSe2 based photovoltaic semiconductor nanocrystals by solvothermal method Cu, In, Al, S, and Se element source Synthesis CU (In, ADSe2 based nanoparticles in an organic solvent, and then purified by purified is obtained; the method is: 1) an organic solvent mixed Cu, in, Al element source is placed, in the reaction under an inert atmosphere to obtain a solution a; 2) a solution warmed added element source S and Se in the source reacting one or two; adjust in / Al ratio and / or S / Se ratio adjusting its band gap, so that the spectral matching band gap material sunlight; 3) and then adding the dispersion was added benzyl alcohol precipitation, to give the desired product Cu (In, Al) S2> Cu (In, Al) Se2 or Cu (In, Al) (S, Se) 2 semiconductor nanocrystals PV.
  2. 2.—种制备权利要求1所述Cu (In,Al) Se2类光伏半导体纳米晶的方法,采用溶剂热法,将Cu、In、Al、S和Se的元素源在有机溶剂中合成Cu(In,Al) Se2类纳米颗粒,再进行提纯精制;其主要步骤为:1)Cu、In、Al元素源置于有机溶剂中混合,80-140摄氏度于惰性气体保护下反应, 得到溶液A;2)溶液A升温至200-250摄氏度,加入S元素源和Se元素源中的一种或两种进行反应;调整In/Al比或/和S/Se比调节其带隙宽度,使材料的带隙宽度与太阳光的光谱匹配;3)加入苯分散后,再加入醇沉淀,得到Cu(In,Al) S2 > Cu (In,八1)3&或01(111, Al) (S,Se)2光伏半导体纳米晶。 1 Cu 2.- Preparation of the kind as claimed in claim (In, Al) Se2 based photovoltaic semiconductor nanocrystal, solvothermal method, Cu, In, Al, S, and Se element source in an organic solvent Synthesis of Cu ( in, Al) Se2 nanoparticles class, then refined purification; main steps: 1) mixing an organic solvent Cu, in, Al element source is placed, 80-140 ° C in the reaction under an inert atmosphere to obtain a solution A; 2) a solution was warmed to 200-250 ° C, was added one or two elements in the source S and Se in the reaction element source; adjust in / Al ratio and / or S / Se ratio adjusting its band gap, so that the material spectral matching band gap and sunlight; 3) after adding benzene dispersed, the alcohol precipitation, to give Cu (in, Al) S2> Cu (in, eight 1) 3 & or 01 (111, Al) (S, Se ) 2 photovoltaic semiconductor nanocrystals.
  3. 3.根据权利要求2所述的制备方法,其中,步骤1中,Cu、In、Al元素源置于有机溶剂中混合时加入表面活性剂,得到的Cu(In,Al) S2> Cu(In,Al) Se2或Cu(In,Al) (S,Se)2光伏半导体纳米晶为线状或微球状。 The production method according to claim 2, wherein, in step 1, Cu, In, Al element source placed in an organic solvent, adding a surfactant when mixed to obtain a Cu (In, Al) S2> Cu (In , Al) Se2 or Cu (In, Al) (S, Se) 2 semiconductor nanocrystals photovoltaic a linear or microspheres.
  4. 4.根据权利要求2所述的制备方法,其中,步骤2包括如下步骤:A)硫元素源和硒元素源中的一种或两种先与有机溶剂混和,惰性气体保护下100-120摄氏度反应,并在10分钟内升温到220-250摄氏度保温,使硫元素源和硒元素源中的一种或两种溶解,得到溶液B;B)搅拌下,将溶液A加入溶液B,缓慢降温到100摄氏度,然后继续升温到180-300 摄氏度保温。 4. The production method according to claim 2, wherein step 2 comprises the following steps: A) a source of sulfur and selenium source to one or both mixed with an organic solvent, inert gas at 100 to 120 ° C the reaction, in 10 minutes and warmed to 220-250 ° C incubation, so that one or two sulfur source and the selenium source was dissolved to obtain a solution B; at B) with stirring, solution a was added solution B, slow cooling to 100 ° C, and then continue to heat to 180-300 ° C heat.
  5. 5.根据权利要求2所述的制备方法,其中,Cu元素源选自以下铜盐中的一种或几种:氯化亚铜、氯化铜、碘化亚铜、碘化铜、醋酸亚铜、醋酸铜、乙酰丙酮化铜;In元素源选自以下铟盐中的一种或几种:氯化铟、乙酰丙酮化铟、醋酸铟、碘化铟;Al元素源选自以下铝盐中的一种或几种:氯化铝、碘化铝、醋酸铝、乙酰丙酮化招;硒源选用以下的一种或几种:硒的三正辛基膦溶液、硒的三正辛基氧膦溶液、硒的十八烯胺溶液、硒脲;硫源选用以下的一种或几种:硫溶解于十八烯胺,硫溶解于三正辛基膦、硫溶解于三正辛基氧膦、硫脲、硫醇。 The production method according to claim 2, wherein, Cu element source selected from one or more of the following copper salts: copper chloride, copper chloride, copper iodide, copper iodide, acetate, ethylene copper, copper acetate, copper acetylacetonate; the in element source selected from one or more of the following indium salt: indium chloride, indium acetylacetonate, indium acetate, indium iodide; of Al element source selected from aluminum salts of one or more of: aluminum chloride, aluminum iodide, aluminum acetate, acetylacetonate strokes; selenium source selected one or more of the following: tri-n-octyl phosphine solution selenium, selenium tri-n-octyl phosphinyl solution, octadecenyl amine solution selenium, selenium urea; sulfur source selected one or more of the following: sulfur dissolved in octadecenyl amine, TOPO was dissolved in sulfur, the sulfur is dissolved in tri-n-octyl phosphinyl, thioureas, thiols.
  6. 6.根据权利要求2所述的制备方法,其中,有机溶剂为十八烯胺、三正辛基膦、三正辛基氧膦、邻二氯苯或无水胼;醇为无水甲醇、无水丁醇、无水丙醇或无水乙醇。 6. The production method according to claim 2, wherein the organic solvent is octadecene amine, tri-n-octyl phosphine, tri-n-octyl phosphine oxide, o-dichlorobenzene or anhydrous corpus; alcohol is anhydrous methanol, anhydrous alcohol, anhydrous ethanol or propanol.
  7. 7.根据权利要求2所述的制备方法,其中,表面活性剂为十二醇、吡啶、聚乙二醇、 十六烷基三甲基溴化铵、十二烷基磺酸钠或壬基酚聚氧乙烯醚。 7. The production method according to claim 2, wherein the surfactant is dodecyl alcohol, pyridine, polyethylene glycols, cetyl trimethyl ammonium bromide, sodium dodecyl sulfate or nonyl phenol polyoxyethylene ether.
  8. 8.根据权利要求2所述的制备方法,其中,步骤3得到的Cu(In,A1)S2、Cu (In, Al) Se2或Cu(In,Al) (S,Se) 2光伏半导体纳米线或颗粒用苯、甲苯或/和氯仿溶剂分散的方法反复提纯。 8. The production method according to claim 2, wherein step 3 Cu (In, A1) S2, Cu (In, Al) Se2 or Cu (In, Al) (S, Se) 2 semiconductor nanowires PV or particles repeatedly purified by benzene, or toluene / chloroform solvent and dispersing methods.
  9. 9.权利要求1所述的Cu(In,Al)Se2类光伏半导体纳米晶在太阳能电池中的应用。 Application of Cu (In, Al) Se2 based photovoltaic 9. The semiconductor nanocrystals of claim 1 in a solar cell.
  10. 10.权利要求1所述的Cu (In, Al) Se2类光伏半导体纳米晶在近红外光激光中的应用。 Application of Cu (In, Al) Se2 based photovoltaic semiconductor nanocrystals 10. The process according to claim 1 in the near-infrared light laser.
CN 201010505806 2010-10-11 2010-10-11 Photovoltaic semiconductor nanocrystalline and preparation method and application thereof CN102011194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010505806 CN102011194A (en) 2010-10-11 2010-10-11 Photovoltaic semiconductor nanocrystalline and preparation method and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010505806 CN102011194A (en) 2010-10-11 2010-10-11 Photovoltaic semiconductor nanocrystalline and preparation method and application thereof

Publications (1)

Publication Number Publication Date
CN102011194A true true CN102011194A (en) 2011-04-13

Family

ID=43841514

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010505806 CN102011194A (en) 2010-10-11 2010-10-11 Photovoltaic semiconductor nanocrystalline and preparation method and application thereof

Country Status (1)

Country Link
CN (1) CN102011194A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360962A (en) * 2011-09-30 2012-02-22 中国科学院等离子体物理研究所 Preparation method of quantum dot sensitized solar cell
CN102543477A (en) * 2012-02-29 2012-07-04 中国科学院等离子体物理研究所 Preparation method for metal sulfide catalytic electrode and application thereof
CN103325886A (en) * 2013-06-09 2013-09-25 深圳市亚太兴实业有限公司 Preparation method of CIAS membrane with energy band gradient distribution
CN103337555A (en) * 2013-06-09 2013-10-02 中南大学 Method for preparing copper indium selenium sulfur powder or thin film used in thin-film solar cell
CN104624336A (en) * 2015-01-22 2015-05-20 江苏启弘新材料科技有限公司 Simple preparation method for metal oxide semiconductor quantum dot

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940604A (en) * 1987-09-04 1990-07-10 Matsushita Electric Industrial Co., Ltd. Method for production of copper indium diselenide
US6307148B1 (en) * 1999-03-29 2001-10-23 Shinko Electric Industries Co., Ltd. Compound semiconductor solar cell and production method thereof
CN1851934A (en) * 2006-05-26 2006-10-25 华东师范大学 Copper-idium-selenium CuInSe solar cell and preparing method thereof
CN201069776Y (en) * 2007-06-13 2008-06-04 上海银翊龙投资管理咨询有限公司;邹远达 Thin film solar battery
CN101397647A (en) * 2008-11-03 2009-04-01 清华大学 Cu-In-Ga-Se or Cu-In-Al-Se solar cell absorption layer target material and preparation method thereof
CN101728461A (en) * 2009-11-06 2010-06-09 清华大学;张家港保税区华冠光电技术有限公司 Method for preparing absorbing layer of thin film solar cell

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4940604A (en) * 1987-09-04 1990-07-10 Matsushita Electric Industrial Co., Ltd. Method for production of copper indium diselenide
US6307148B1 (en) * 1999-03-29 2001-10-23 Shinko Electric Industries Co., Ltd. Compound semiconductor solar cell and production method thereof
CN1851934A (en) * 2006-05-26 2006-10-25 华东师范大学 Copper-idium-selenium CuInSe solar cell and preparing method thereof
CN201069776Y (en) * 2007-06-13 2008-06-04 上海银翊龙投资管理咨询有限公司;邹远达 Thin film solar battery
CN101397647A (en) * 2008-11-03 2009-04-01 清华大学 Cu-In-Ga-Se or Cu-In-Al-Se solar cell absorption layer target material and preparation method thereof
CN101728461A (en) * 2009-11-06 2010-06-09 清华大学;张家港保税区华冠光电技术有限公司 Method for preparing absorbing layer of thin film solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《材料导报》 20100228 蔡文等 水热及溶剂热制备形貌可控CuInS2光伏材料的研究进展 11-16 1-10 第24卷, 第2期 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102360962A (en) * 2011-09-30 2012-02-22 中国科学院等离子体物理研究所 Preparation method of quantum dot sensitized solar cell
CN102543477A (en) * 2012-02-29 2012-07-04 中国科学院等离子体物理研究所 Preparation method for metal sulfide catalytic electrode and application thereof
CN103325886A (en) * 2013-06-09 2013-09-25 深圳市亚太兴实业有限公司 Preparation method of CIAS membrane with energy band gradient distribution
CN103337555A (en) * 2013-06-09 2013-10-02 中南大学 Method for preparing copper indium selenium sulfur powder or thin film used in thin-film solar cell
CN103337555B (en) * 2013-06-09 2016-08-10 中南大学 Preparation of selenium powder or a thin film solar cell for copper indium sulfur
CN104624336A (en) * 2015-01-22 2015-05-20 江苏启弘新材料科技有限公司 Simple preparation method for metal oxide semiconductor quantum dot

Similar Documents

Publication Publication Date Title
Wu et al. Synthesis and photovoltaic application of copper (I) sulfide nanocrystals
Oh et al. Comparison of various sol–gel derived metal oxide layers for inverted organic solar cells
Yu et al. Nanomaterials and nanostructures for efficient light absorption and photovoltaics
Zhao et al. Development of plasmonic semiconductor nanomaterials with copper chalcogenides for a future with sustainable energy materials
Grätzel Dye-sensitized solid-state heterojunction solar cells
Nairn et al. Preparation of ultrafine chalcopyrite nanoparticles via the photochemical decomposition of molecular single-source precursors
Shen et al. Rational tuning the optical properties of metal sulfide nanocrystals and their applications
Yu et al. Highly efficient CdTe/CdS quantum dot sensitized solar cells fabricated by a one-step linker assisted chemical bath deposition
Tian et al. Low‐Cost Fully Transparent Ultraviolet Photodetectors Based on Electrospun ZnO‐SnO2 Heterojunction Nanofibers
Aldakov et al. Ternary and quaternary metal chalcogenide nanocrystals: synthesis, properties and applications
Peng et al. Low‐dimensional nanostructure ultraviolet photodetectors
Castro et al. Nanocrystalline chalcopyrite materials (CuInS2 and CuInSe2) via low-temperature pyrolysis of molecular single-source precursors
Zhong et al. A facile route to synthesize chalcopyrite CuInSe2 nanocrystals in non-coordinating solvent
Pawar et al. Preparation of transparent and conducting boron-doped ZnO electrode for its application in dye-sensitized solar cells
Li et al. Synthesis by a solvothermal route and characterization of CuInSe2 nanowhiskers and nanoparticles
US20080190483A1 (en) Composition and method of preparing nanoscale thin film photovoltaic materials
WO2007098378A1 (en) Nanoparticle sensitized nanostructured solar cells
Wang et al. Wurtzite Cu 2 ZnSnSe 4 nanocrystals for high-performance organic–inorganic hybrid photodetectors
Kouhnavard et al. A review of semiconductor materials as sensitizers for quantum dot-sensitized solar cells
CN101471394A (en) Method for preparing optical absorption layer of copper indium gallium sulphur selenium film solar battery
CN101696002A (en) Graphene and semiconductor nano particle compound system and synthesizing method thereof
JP2008192542A (en) Manufacturing method of chalcopyrite nanoparticle and photoelectric conversion element
Liu et al. Solution‐Phase Synthesis and Characterization of Single‐Crystalline SnSe Nanowires
CN101913600A (en) Method for preparing graphene/semiconductor quantum dot composite material
US20100243020A1 (en) Hybrid structures for solar energy capture

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C12 Rejection of an application for a patent