CN1851934A - Copper-idium-selenium CuInSe solar cell and preparing method thereof - Google Patents

Copper-idium-selenium CuInSe solar cell and preparing method thereof Download PDF

Info

Publication number
CN1851934A
CN1851934A CN 200610026915 CN200610026915A CN1851934A CN 1851934 A CN1851934 A CN 1851934A CN 200610026915 CN200610026915 CN 200610026915 CN 200610026915 A CN200610026915 A CN 200610026915A CN 1851934 A CN1851934 A CN 1851934A
Authority
CN
Grant status
Application
Patent type
Prior art keywords
cuinse2
copper indium
type
layer
solar cell
Prior art date
Application number
CN 200610026915
Other languages
Chinese (zh)
Other versions
CN100449793C (en )
Inventor
黄素梅
孙卓
黄士勇
朱红兵
李晓冬
陈奕卫
Original Assignee
华东师范大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

This invention discloses a CuInSe2 solar energy battery and its preparation method, in which, said battery is composed of a lower electrode, a P type CuInSe2 absorption layer, a transition layer CdS, a N-type ZnO layer and an upper electrode, the preparation method includes: applying a low frequency vibration vertical Bridgman method or a low vibration pot falling method to prepare type P CuInSe2 monocrystal chips, applying a water-bath method CBD to manufacture a transition layer CdS on one side of the monocrystal chip, utilizing the RF magnetic control spatter to ZnO target doped by Al2O3 on the CdS to prepare type-N ZnO layer, utilizing magnetic control spatter or electronic beam evaporation to deposit Al or Ag film by masks as the upper electrode and deposit the lower electrode at the other side of the monocrystal chip, which applies Cu/Mo alloy to replace Mo to fasten the link between the back electrode and the CuInSe2 absorption layer to improve the preparation technology of CuInSe2.

Description

一种铜铟硒CuInSe2太阳能电池及其制备方法 A copper indium selenide solar cell and a method for preparing CuInSe2

技术领域 FIELD

本发明涉及一种化合物半导体单晶太阳能电池及其制备方法,尤其是一种以铜铟硒CuInSe2为吸收层的太阳能电池的结构以及制备方法,属于光电材料新能源技术领域。 The present invention relates to a compound semiconductor single crystal solar cell and its preparation method, in particular a copper indium diselenide CuInSe2 solar cell absorber layer structure and preparation method, are new energy technology photoelectric materials.

背景技术 Background technique

当今世界,随着科学技术的进步、经济的发展和人口的增加,人类对能源的需求量越来越大,然而石油、天然气和煤炭等重要资源毕竟是有限的,大多数国家已感到矿物燃料的存储量正在日益减少,甚至面临枯竭的危险,而化石类燃料消耗,会对环境造成根本性的影响和破坏。 Nowadays, with the development of scientific and technological progress and increasing economic population, human demand for energy is growing, however the oil, gas and coal and other important resources is limited after all, most countries have felt fossil fuels the storage capacity is declining, even in the face of the danger of depletion, and fossil fuel consumption, and damage caused by a fundamental impact on the environment. 我国科学家根据不同气候模式就能源消耗对气候的影响作出预测:气候变化将使中国未来农业面临突出问题,估计到2030年,种植业产量因全球变暖会减少5%-10%左右。 Chinese scientists made according to different climate models on the impact of energy consumption on climate prediction: Climate change will highlight issues facing the future of Chinese agriculture, it is estimated that by 2030, crop yields due to global warming would be reduced by about 5% -10%.

太阳能电池的开发利用则是能同时解决上述能源与环境两个问题的最佳选择,在太阳能光电池电转换材料中占有重要位置的是硅材料和化合物半导体,在光伏技术发展的新高潮中,由于I-III-VI2族化合物半导体CuInSe2(CIS)材料具有优良的光电吸收与转换效率(在实验室中CIS薄膜太阳能电池的光电转换效率可达19.2%),具有承受标准配比(I,III和VI族成分的比例)变化的能力,具有可改变合金成分所带来的设计上的灵活性,而且其性能长期稳定,抗辐射能力强,制备的电池不存在光致衰退,最近几年引起了人们的广泛关注与研究,被一致认为是硅材料的最佳替代者及下一代空间电源的候选者。 Utilization of the solar cell is the best choice to solve the above-described energy and environmental problems, while two, occupies an important position in the solar cell conversion material is silicon and the compound semiconductor material, in photovoltaic technology new upsurge, since I-III-VI2 compound semiconductor of CuInSe2 (CIS) material having excellent absorption and photoelectric conversion efficiency (in the laboratory CIS thin film solar cell conversion efficiency of up to 19.2%), subjected to a standard having a ratio of (I, III, and component ratio of group VI) capacity changes, the flexibility may be changed alloy composition caused by design, performance and long-term stability, strong radiation resistance, absence of cells produced light-induced degradation, in recent years caused the attention and research people, was unanimously considered the best alternative to silicon material and space power the next generation of candidates. 目前,对CIS太阳能电池的研究大都局限于CuInSe2薄膜电池的研究,局限于完善CIS薄膜,以及整个电池的制备工艺,以期提高转换效率,降低成本;人们主要采用多元共蒸发法成膜工艺制作CuInSe2薄膜太阳能电池,即第二代太阳能电池。 Currently, research on a CIS solar cell research mostly limited CuInSe2 thin film battery, a thin film CIS confined to improvement, as well as the whole cell preparation, in order to improve the conversion efficiency and reduce costs; people mainly by multiple film-formation method making coevaporated CuInSe2 thin film solar cell, a second-generation solar cell. 虽然可制备出高转换效率的CIS电池,但元素的化学配比很难靠蒸发来精确控制,因而电池的良品率不高,产业化的实现比较困难;同样在采用蒸发法时,原料的利用率低,对于贵金属来说浪费大,不利于降低成本。 Although a high conversion efficiency can be made of CIS cells, but the stoichiometry is difficult to precisely control the element by evaporation, and thus the battery is not high yield, industrialization is difficult to achieve; Likewise, when using the evaporation method, the use of raw materials low, for a large waste of precious metals, is not conducive to reduce costs.

发明内容 SUMMARY

本发明所要解决的技术问题是提供一种能有效提高铜铟硒CuInSe2太阳能电池发光效率,改善贵金属材料利用率,提高制作工艺环保性的铜铟硒CuInSe2太阳能电池及其制备方法,其发明目的可以通过以下技术方案得以实施。 The present invention solves the technical problem is to provide a copper indium selenide can effectively improve light emission efficiency CuInSe2 solar cells, improved utilization of noble metal materials, copper indium selenide solar cell and a method for preparing CuInSe2 production process to improve environmental protection, and an object of the invention can be implemented by the following technical solutions.

一种铜铟硒CuInSe2太阳能电池,依次由下电极、P型铜铟硒CuInSe2吸收层、过渡层CdS、N型ZnO层和上电极组成。 A copper indium diselenide CuInSe2 solar cell, in turn lower electrode, P-type copper indium diselenide CuInSe2 absorption layer, the buffer layer CdS, N-type layer and an upper electrode composed of ZnO.

所述P型铜铟硒CuInSe2吸收层为CuInSe2单晶片,其厚度为0.2~3mm。 The P-type copper indium selenide CuInSe2 absorption layer is CuInSe2 single wafer, a thickness of 0.2 ~ 3mm.

所述下电极采用Cu/Mo(铜/钼)合金。 The lower electrode using Cu / Mo (Cu / Mo) alloy.

所述过渡层CdS膜厚为40nm~60nm。 The CdS buffer layer thickness of 40nm ~ 60nm.

本发明所述的铜铟硒CuInSe2太阳能电池制作工艺方法包括如下步骤:首先制作P型铜铟硒CuInSe2单晶片,包括如下步骤:将一定量的高纯铜(99.999%)、铟(99.999%)和硒(99.999%)颗粒除去表面氧化层后按摩尔比为Cu∶In∶Se=1∶1∶2进行充分混匀,装入洗净的厚壁石英管(坩埚),该石英管一端已封口,对石英管抽真空至10-6~10-7Torr,将石英管另一端亦封口后置于氧化铝引下管中并固定,放到下降炉中适当位置,升温、保温、接种、下降生长。 Copper indium selenide according to the present invention CuInSe2 solar cell fabrication process comprising the steps of: making first P-type copper indium selenide CuInSe2 single wafer, comprising the steps of: a high amount of copper (99.999%), indium (99.999%) and selenium (99.999%) particles were surface oxide layer is removed in a molar ratio Cu:In:Se = 1:1:2 sufficiently mixed, the thick-walled quartz tube loaded washing (crucible), one end of the quartz tube has sealing of the quartz tube was evacuated to 10-6 ~ 10-7Torr, the other end of the quartz tube is also sealed after placed in an alumina tube and fixed at the lead, into the lowered position in the furnace, heating, holding, seeding, decreased growth. 具体步骤:将置于下降炉的两端封口的石英管缓慢升温到300℃~350℃,让Se和In发生放热反应,此放热反应完成后,炉子的温度升到950℃~1150℃,在此温度上保持至少24hrs~45hrs,并通过有可调振动控制器控制下降装置使熔体作上下低频振动,使得熔体各成分均匀及CuInSe化合合成过程全面彻底。 Specific steps of: placing both ends of the furnace decrease sealed quartz tube was slowly raised to 300 ℃ ~ 350 ℃, In and Se so that an exothermic reaction, after completion of exothermic reaction, the temperature of the furnace was raised to 950 ℃ ~ 1150 ℃ , maintained at this temperature at least 24hrs ~ 45hrs, and the vibration controller controls adjustable by lowering means for vertically low-frequency vibration of the melt, so that a homogeneous melt of the components and the synthesis of the compounds CuInSe complete. 然后,石英管(坩埚)以5mm/h~10mm/h速率通过温度梯度为70℃/cm~10℃/cm的梯度区到达垂直布里奇曼的低温区,低温区的温度设置在700℃~500℃。 Then, the quartz tube (crucible) is / h rate of 5mm / h ~ 10mm by a temperature gradient of 70 ℃ / cm ~ 10 ℃ / cm reaches the low-temperature region of the gradient region Vertical Bridgman, the temperature of the low temperature zone is provided at 700 ℃ ~ 500 ℃. 最后,炉子的温度以30℃/h~40℃/h的冷却速率降温至常温。 Finally, the furnace temperature was lowered to normal temperature / h at a cooling rate of 30 ℃ / h ~ 40 ℃. 将石英管(坩埚)从炉子里取出,打开石英管拿出P-型CuInSe2结晶块,将P-型CuInSe2结晶块机械或激光法切片(0.2mm~3mm厚)并双面抛光。 The quartz tube (crucible) was removed from the oven, the quartz tube opens out P- type CuInSe2 ingot, the P- type CuInSe2 ingot slice mechanical or laser methods (0.2mm ~ 3mm thick) and double-side polishing.

然后采用水浴法CBD制作过渡层CdS,包括如下步骤:P-型CuInSe2片在350℃和氮气气氛下退火2~3h,经去油污,去离子水漂洗和超声振荡等步骤清洗,放入水浴池,用CBD法制备CdS多晶薄膜,成膜溶液成分摩尔比为CdCl2∶硫脲[(NH2)2CS]∶NH4Cl∶NH4OH=2∶20∶20∶200;溶液温度80℃左右,pH值9~10,经6~9min沉积,成膜为黄色均匀薄膜,膜厚为40nm~60nm。 CBD method using a water bath and then making transition CdS, comprising the steps of: P- type CuInSe2 2 ~ 3h sheet annealing at 350 deg.] C under a nitrogen atmosphere, the degreasing step and rinsed with deionized water ultrasonic cleaning oscillation, into the water bath with polycrystalline CdS film, the film-forming composition solution to a molar ratio of Preparation Method CBD CdCl2: thiourea [(NH2) 2CS] :NH4Cl:NH4OH = 2:20:20:200; solution temperature of about 80 ℃, pH value 9 ~ 10, 6 ~ 9min after deposition, as a yellow uniform film deposition, a film thickness of 40nm ~ 60nm.

在过渡层CdS上利用RF磁控溅射Al2O3(2~2.5%)掺杂的ZnO靶制备N型ZnO层,然后用磁控溅射或电子束蒸发通过掩模沉积铝Al或银Ag膜作为上电极,最后在P-型CuInSe2单晶片的另一面通过用磁控溅射或电子束蒸发沉积下电极Cu/Mo(铜/钼)。 Al2O3 using RF magnetron sputtering on the buffer layer CdS (2 ~ 2.5%) ZnO target doped N-type ZnO layer was prepared, and then evaporated magnetron sputtering or electron beam deposition through a mask or aluminum (Al) film is used as silver (Ag) the upper electrode, and finally by magnetron sputtering or electron beam on the other side of the P- type CuInSe2 single wafer by depositing an electrode evaporated Cu / Mo (Cu / Mo).

采用以上技术方案的高效率铜铟硒CuInSe2太阳能电池的本发明,是以垂直布里奇曼法或坩埚下降法制备高质量的单晶P型铜铟硒CuInSe2为光吸收层,并以Cu/Mo(铜/钼)作为下电极,Cu-Mo合金或与铜铟硒CuInSe2单晶面的粘附着性好,及很好的电导率,有效地改善了铜铟硒CuInSe2的制作工艺,提高了贵金属铜、铟、硒材料的利用率及铜铟硒太阳能电池的光转换效率,并提高了制作工艺的环保性和电池的成品率。 With the above aspect of the present invention, a copper indium diselenide CuInSe2 solar cell of high efficiency in a vertical Bridgman method or the Bridgman Method of preparation of high quality copper indium selenide single crystal P-type CuInSe2 light absorption layer, and to Cu / Mo (Cu / Mo) as a lower electrode, Cu-Mo alloy and the copper indium diselenide CuInSe2 or a single crystal surface with good adhesion and good electrical conductivity, effectively improved copper indium diselenide CuInSe2 production process, to improve the noble metals copper, indium, selenium material utilization and copper indium selenide solar light conversion efficiency, and improving the yield of production process and environmental cell.

附图说明 BRIEF DESCRIPTION

下面结合附图对本发明的具体实施方式作一详细说明。 Drawings of embodiments of the present invention will be described in detail below in conjunction with a.

图1为本发明所述铜铟硒CuInSe2太阳能电池的结构示意图;图2为制备P型铜铟硒CuInSe2单晶片的坩埚下降法示意图。 1 a schematic view of the structure of a copper indium diselenide CuInSe2 solar cell of the present invention; FIG. 2 is a schematic process crucible P-type copper indium selenide prepared CuInSe2 single wafer decreases.

图中:1、下电极 2、P型铜铟硒CuInSe2吸收层 3、过渡层CdS4、N型ZnO层 5、上电极具体实施方式如图1所示,本发明所述的高效率铜铟硒CuInSe2太阳能电池,由下电极1、P型铜铟硒CuInSe2片2、过渡层CdS 3、N型ZnO层4和上电极5组成。 In FIG: 1, the lower electrode 2, P-type copper indium diselenide CuInSe2 absorption layer 3, a transition layer CdS4, N-type ZnO layer 5, the upper electrode DETAILED DESCRIPTION As shown in FIG. 1, the high efficiency copper indium selenide to the present invention CuInSe2 solar cell, the lower electrode 1, P-type copper indium diselenide CuInSe2 substrate 2, buffer layer CdS 3, N-type ZnO layer 4 and the upper electrode 5 is composed. P型铜铟硒CuInSe2吸收层为CuInSe2单晶片,下电极采用Cu/Mo(铜/钼)合金。 P-type copper indium selenide CuInSe2 absorption layer is CuInSe2 single wafer, lower electrode using Cu / Mo (Cu / Mo) alloy.

为制备上述高效率铜铟硒CuInSe2太阳能电池,本发明的制备方法,包括以下步骤:将一定量的高纯铜(99.999%)、铟(99.999%)和硒(99.999%)颗粒除去表面氧化层后按摩尔比为Cu∶In∶Se=1∶1∶2进行充分混匀,装入洗净的厚壁石英管(坩埚),该石英管一端已封口。 For the preparation of the above-described high efficiency copper indium selenide CuInSe2 solar cell production method of the present invention, comprising the steps of: a high amount of copper (99.999%), indium (99.999%) and selenium (99.999%) removal of the surface oxide layer of the particles the molar ratio of Cu:In:Se = 1:1:2 sufficiently mixed, the thick-walled quartz tube loaded washing (crucible), one end of the quartz tube is sealed. 对石英管抽真空至10-6,将石英管另一端亦封口后置于氧化铝引下管中并固定,放到下降炉中适当位置,缓慢升温到300℃~350℃,让Se和In发生放热反应,此放热反应完成后,炉子的温度升到1100℃,在此温度上保持24hrs,并通过有可调振动控制器控制下降装置使熔体作上下低频振动,使得熔体各成分均匀及CuInSe化合合成过程全面彻底。 Quartz tube was evacuated to 10-6, the other end of the quartz tube is also placed in an alumina sealing guide tube and fixed, lowered into position in the furnace was slowly raised to 300 ℃ ~ 350 ℃, so Se and In exothermic reaction, after completion of exothermic reaction, the temperature of the furnace was raised to 1100 ℃, kept on this temperature for 24hrs, and the vibration controller controls adjustable by lowering means for vertically low-frequency vibration of the melt, so that each melt compound of uniform composition and CuInSe complete synthesis. 然后,石英管(坩埚)以速率5mm/h通过温度梯度为70℃/cm梯度区到达垂直布里奇曼的低温区,低温区的温度设置在700℃。 Then, the quartz tube (crucible) at a rate of 5mm / h by a temperature gradient of 70 ℃ / cm gradient region reaches the low-temperature region of the vertical Bridgman, the temperature of the low temperature zone is provided at 700 ℃. 最后,炉子的温度以30℃/h的冷却速率降温至常温。 Finally, the furnace temperature was lowered to normal temperature / h at a cooling rate of 30 ℃. 将石英管(坩埚)从炉子里取出,打开石英管拿出P-型CuInSe2结晶块。 The quartz tube (crucible) was removed from the oven, the quartz tube opens out P- type CuInSe2 ingot. 将P-型CuInSe2结晶块机械切片(1mm厚)并抛光。 The P- type CuInSe2 ingot slicing machine (1mm thick) and polished.

然后采用水浴法制作过渡层CdS,包括如下步骤:P-型CuInSe2片在350℃和氮气气氛下退火2h,经去油污,去离子水漂洗和超声振荡等步骤清洗,放入水浴池,用CBD法制备CdS多晶薄膜,成膜溶液成分摩尔比为CdCl2∶硫脲[(NH2)2CS]∶NH4Cl∶NH4OH=2∶20∶20∶200,溶液温度为80℃,pH值9,经8min沉积,成膜为黄色均匀薄膜,膜厚为50nm。 Then water bath method making transition CdS, comprising the steps of: P- type CuInSe2 sheet at 350 deg.] C and annealing nitrogen atmosphere 2h, after degreasing, and the step of rinsing with deionized water ultrasonic cleaning oscillation, into the water bath, with CBD Preparation of CdS polycrystalline thin films, the film forming solution composition a molar ratio of thiourea CdCl2: [(NH2) 2CS] :NH4Cl:NH4OH = 2:20:20:200, a solution temperature of 80 ℃, pH value of 9, was deposited 8min , as a yellow uniform film deposition, a film thickness of 50nm.

在过渡层CdS上利用RF磁控溅射Al2O3(2%)掺杂的ZnO靶制备N型ZnO层,然后用磁控溅射或电子束蒸发通过掩模沉积铝Al或银Ag膜作为上电极,最后在P-型CuInSe2片的另一面通过掩模用磁控溅射或电子束蒸发沉积下电极Cu/Mo(铜/钼)。 Al2O3 using RF magnetron sputtering on the buffer layer CdS (2%) ZnO target doped with N-type ZnO layer was prepared, and then evaporated magnetron sputtering or electron beam deposition through a mask film silver (Ag) or aluminum (Al) as an upper electrode Finally, the other surface of the P- type CuInSe2 the mask sheet by magnetron sputtering or electron beam evaporation deposition of the electrode Cu / Mo (Cu / Mo).

由于本高效率铜铟硒CuInSe2太阳能电池的发明,是以垂直布里奇曼法或坩埚下降法制备高质量的单晶P型铜铟硒CuInSe2为光吸收层,并以Cu/Mo(铜/钼)为下电极,此Cu-Mo合金与铜铟硒CuInSe2单晶面的粘附着性好,有效地改善了铜铟硒CuInSe2的制作工艺,提高了贵金属铜、铟、硒材料的利用率及铜铟硒太阳能电池的光转换效率,并提高了制作工艺的环保性和电池的成品率。 As the high efficiency copper indium selenide CuInSe2 solar cell of the present invention, in a vertical Bridgman method or the Bridgman Method of preparation of high-quality single crystal P-type copper indium selenide CuInSe2 light absorption layer, and at Cu / Mo (Cu / molybdenum) as the lower electrode, the Cu-Mo alloy and the adhesion surface of the single crystal indium diselenide CuInSe2 with good copper, effectively improved the production process of the copper indium diselenide CuInSe2, improved noble metal copper, indium, selenium material utilization and copper indium selenide solar light conversion efficiency, and improving the yield of production process and environmental cell. 因此,本发明具有结构简单、工艺简单、光的转换效率高、无污染、稳定性能好等优点。 Accordingly, the present invention has a simple structure, simple process, high light conversion efficiency, clean, good stable performance.

Claims (6)

  1. 1.一种铜铟硒CuInSe2太阳能电池,其特征在于:所述电池由下电极、P型铜铟硒CuInSe2吸收层、过渡层CdS、N型ZnO层和上电极组成。 1. A copper indium diselenide CuInSe2 solar cell, wherein: said cell lower electrode, P type copper indium diselenide CuInSe2 absorption layer, the buffer layer CdS, N-type layer and an upper electrode composed of ZnO.
  2. 2.按照权利要求1所述的铜铟硒CuInSe2太阳能电池,其特征在于:所述P型铜铟硒CuInSe2吸收层为CuInSe2单晶片,其厚度为0.2~3mm。 2. The copper indium selenide as claimed in claim CuInSe2 solar cell of claim 1, wherein: said P-type copper indium selenide CuInSe2 absorption layer is CuInSe2 single wafer, a thickness of 0.2 ~ 3mm.
  3. 3.按照权利要求1所述的铜铟硒CuInSe2太阳能电池,其特征在于:所述下电极采用Cu/Mo(铜/钼)合金。 3. The copper indium selenide as claimed in claim CuInSe2 solar cell of claim 1, wherein: the lower electrode using Cu / Mo (Cu / Mo) alloy.
  4. 4.按照权利要求1所述的铜铟硒CuInSe2太阳能电池,其特征在于:所述过渡层CdS膜厚为40nm~60nm。 4. The copper indium selenide as claimed in claim 1 CuInSe2 solar cell of claim, wherein: a thickness of the CdS buffer layer 40nm ~ 60nm.
  5. 5.一种权利要求1所述的铜铟硒CuInSe2太阳能电池的制备方法,其特征在于:包括以下步骤:①、采用低频振动垂直布里奇曼法或低频振动坩埚下降法制备P型铜铟硒CuInSe2单晶片:将一定量的高纯铜、铟和硒颗粒除去表面氧化层后按摩尔比为Cu∶In∶Se=1∶1∶2进行充分混匀,装入洗净的厚壁石英管/坩埚,该石英管一端已封口,将石英管抽真空至10-5-10-6Torr后,将石英管另一端亦封口,然后置于氧化铝引下管中并固定,置于下降炉中适当位置,升温、保温、接种、下降生长;②、采用水浴法CBD在P型铜铟硒CuInSe2单晶片一面制作过渡层CdS;③、在过渡层CdS上利用RF磁控溅射Al2O3(2~2.5%)掺杂的ZnO靶制备N型ZnO层;④、用磁控溅射或电子束蒸发通过掩模沉积铝Al或银Ag膜作为上电极;⑤、在P型铜铟硒CuInSe2单晶片的另一面通过掩模用磁控溅射或电子束蒸发沉积下电 Preparing copper indium selenide A method as claimed in claim 1 CuInSe2 solar cell, characterized by: comprising the steps of: ①, low frequency vibration VBM or low frequency vibration Bridgman Preparation of P-type copper indium selenium CuInSe2 single wafer: a quantity of pure copper, indium and selenium particles were surface oxide layer is removed in a molar ratio Cu:In:Se = 1:1:2 sufficiently mixed, loaded washed thick quartz tube / crucible, the quartz tube is sealed at one end, the quartz tube was evacuated to a rear 10-5-10-6Torr, the other end of the quartz tube is also sealed, then placed in an alumina tube and fixed to the lead, is placed drop furnace in place, the heating, holding, seeding, growth decreased; ②, using water bath CBD side of the P-type CdS buffer layer made of copper indium diselenide CuInSe2 single wafer; ③, using the RF magnetron sputtering Al2O3 (2 on the buffer layer CdS to 2.5%) ZnO target doped N-type ZnO layer was prepared; ④, evaporated magnetron sputtering or electron beam deposition through a mask film silver (Ag) or aluminum (Al) as an upper electrode; ⑤, P-type copper indium diselenide CuInSe2 single in another wafer surface through a mask by magnetron sputtering or electron beam power under evaporation deposition .
  6. 6.按照权利要求5所述的一种铜铟硒CuInSe2太阳能电池的制备方法,其特征在于:在步骤①P型铜铟硒CuInSe2吸收层的制备中,所述下降炉高温区温度为950℃~1150℃,梯度区的温度梯度为70℃/cm~10℃/cm,坩埚下降速率为5mm/h~10mm/h,低温区的温度为700℃~500℃。 6. A method of preparing a copper indium diselenide CuInSe2 solar cell of claim 5 according to claim, wherein: in the step of preparing copper indium diselenide CuInSe2 ①P absorbing layer, the furnace hot zone temperature is lowered 950 ℃ ~ 1150 ℃, a temperature gradient is a gradient zone 70 ℃ / cm ~ 10 ℃ / cm, Bridgman rate of 5mm / h ~ 10mm / h, the temperature of the low temperature region of 700 ℃ ~ 500 ℃.
CN 200610026915 2006-05-26 2006-05-26 Copper-idium-selenium CuInSe solar cell and preparing method thereof CN100449793C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200610026915 CN100449793C (en) 2006-05-26 2006-05-26 Copper-idium-selenium CuInSe solar cell and preparing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200610026915 CN100449793C (en) 2006-05-26 2006-05-26 Copper-idium-selenium CuInSe solar cell and preparing method thereof

Publications (2)

Publication Number Publication Date
CN1851934A true true CN1851934A (en) 2006-10-25
CN100449793C CN100449793C (en) 2009-01-07

Family

ID=37133407

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200610026915 CN100449793C (en) 2006-05-26 2006-05-26 Copper-idium-selenium CuInSe solar cell and preparing method thereof

Country Status (1)

Country Link
CN (1) CN100449793C (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466305C (en) 2007-11-22 2009-03-04 北京科技大学 Method for producing copper-indium-selenium thin-film solar cell wealthy-indium optical absorption layer
CN101452969B (en) 2008-12-29 2010-06-02 上海太阳能电池研究与发展中心 Copper zincium tin sulfur compound semiconductor thin-film solar cell and manufacturing method
CN102011194A (en) * 2010-10-11 2011-04-13 中国科学院青岛生物能源与过程研究所 Photovoltaic semiconductor nanocrystalline and preparation method and application thereof
CN101719419B (en) 2009-11-13 2011-08-24 北京大学 Back electrode in dye-sensitized battery structure and preparation method thereof
CN101645466B (en) 2009-07-09 2011-11-30 深圳丹邦投资集团有限公司 CdS buffer layer and a thin-film solar cell production method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4612411A (en) 1985-06-04 1986-09-16 Atlantic Richfield Company Thin film solar cell with ZnO window layer
US5474939A (en) 1992-12-30 1995-12-12 Siemens Solar Industries International Method of making thin film heterojunction solar cell
CN101521249B (en) 2002-09-30 2012-05-23 米亚索尔公司 Manufacturing apparatus and method for large-scale production of thin-film solar cells
CN1312780C (en) 2003-12-17 2007-04-25 华南理工大学 Method for preparing thin-film solar cell

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100466305C (en) 2007-11-22 2009-03-04 北京科技大学 Method for producing copper-indium-selenium thin-film solar cell wealthy-indium optical absorption layer
CN101452969B (en) 2008-12-29 2010-06-02 上海太阳能电池研究与发展中心 Copper zincium tin sulfur compound semiconductor thin-film solar cell and manufacturing method
CN101645466B (en) 2009-07-09 2011-11-30 深圳丹邦投资集团有限公司 CdS buffer layer and a thin-film solar cell production method
CN101719419B (en) 2009-11-13 2011-08-24 北京大学 Back electrode in dye-sensitized battery structure and preparation method thereof
CN102011194A (en) * 2010-10-11 2011-04-13 中国科学院青岛生物能源与过程研究所 Photovoltaic semiconductor nanocrystalline and preparation method and application thereof

Also Published As

Publication number Publication date Type
CN100449793C (en) 2009-01-07 grant

Similar Documents

Publication Publication Date Title
Katagiri et al. Development of CZTS-based thin film solar cells
Suryawanshi et al. CZTS based thin film solar cells: a status review
Surek Crystal growth and materials research in photovoltaics: progress and challenges
Wang Progress in thin film solar cells based on
Wu High-efficiency polycrystalline CdTe thin-film solar cells
US20070004078A1 (en) Method for the preparation of group ib-iiia-via quaternary or higher alloy semiconductor films
US7319190B2 (en) Thermal process for creation of an in-situ junction layer in CIGS
US20060219288A1 (en) Process and photovoltaic device using an akali-containing layer
US7297868B2 (en) Preparation of CIGS-based solar cells using a buffered electrodeposition bath
US6429369B1 (en) Thin-film solar cells on the basis of IB-IIIA-VIA compound semiconductors and method for manufacturing same
Saji et al. Progress in electrodeposited absorber layer for CuIn (1− x) GaxSe2 (CIGS) solar cells
Li et al. Fabrication of Cu (In, Ga) Se2 thin films solar cell by selenization process with Se vapor
Powalla et al. Highly efficient CIS solar cells and modules made by the co-evaporation process
Tao Inorganic photovoltaic solar cells: silicon and beyond
US7560641B2 (en) Thin film solar cell configuration and fabrication method
CN101452969A (en) Copper zincium tin sulfur compound semiconductor thin-film solar cell and manufacturing method
CN101471394A (en) Method for preparing optical absorption layer of copper indium gallium sulphur selenium film solar battery
CN101740660A (en) Copper indium gallium selenium (CIGS) solar cell, film of absorbing layer thereof, method and equipment for preparing film
CN101692357A (en) Method for preparing pile face doped zinc oxide transparent conductive film
US20090035882A1 (en) Method and apparatus for affecting surface composition of cigs absorbers formed by two-stage process
Momose et al. Cu2ZnSnS4 thin film solar cells utilizing sulfurization of metallic precursor prepared by simultaneous sputtering of metal targets
Bhattacharya et al. Electrodeposition of In‐Se, Cu‐Se, and Cu‐In‐Se Thin Films
CN101299446A (en) Selenide forerunner thin film and method for producing film cell through rapid selenium vulcanizing thermal treatment
JP2006196771A (en) Chalcopyrite thin film solar cell and manufacturing method thereof
CN101609860A (en) Preparation method of CdTe film solar cell

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted
C17 Cessation of patent right