CN102004307B - 使用同心双锥面镜实现全内反射荧光显微的系统与方法 - Google Patents

使用同心双锥面镜实现全内反射荧光显微的系统与方法 Download PDF

Info

Publication number
CN102004307B
CN102004307B CN2010105132827A CN201010513282A CN102004307B CN 102004307 B CN102004307 B CN 102004307B CN 2010105132827 A CN2010105132827 A CN 2010105132827A CN 201010513282 A CN201010513282 A CN 201010513282A CN 102004307 B CN102004307 B CN 102004307B
Authority
CN
China
Prior art keywords
internal reflection
total internal
micro
lens
catoptron
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010105132827A
Other languages
English (en)
Other versions
CN102004307A (zh
Inventor
雷铭
姚保利
严绍辉
叶彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
XiAn Institute of Optics and Precision Mechanics of CAS
Original Assignee
XiAn Institute of Optics and Precision Mechanics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by XiAn Institute of Optics and Precision Mechanics of CAS filed Critical XiAn Institute of Optics and Precision Mechanics of CAS
Priority to CN2010105132827A priority Critical patent/CN102004307B/zh
Publication of CN102004307A publication Critical patent/CN102004307A/zh
Application granted granted Critical
Publication of CN102004307B publication Critical patent/CN102004307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Microscoopes, Condenser (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明涉及使用同心双锥面镜实现全内反射荧光显微的系统与方法,包括平行光发生装置以及依次设置在光路上的环形光束产生装置、荧光激发装置以及成像装置,平行光发生装置产生平行光,环形光束产生装置设置在平行光的光路上;环形光束产生装置包括与平行光入射方向成45度放置的中空反射镜、与平行光同轴设置的凹面锥镜、设置在凹面锥镜中心的凸面锥镜;本发明解决了现有的物镜型全内反射荧光显微方法透过率低的问题,具有光能利用率高接近100%的优点,并且可以方便地实现全内反射荧光显微与普通宽场荧光显微的切换。本发明完全可对单个细胞,甚至单个细胞器进行成像,满足大多数活体生物实验的要求。

Description

使用同心双锥面镜实现全内反射荧光显微的系统与方法
技术领域
本发明涉及一种使用同心双锥面镜实现全内反射荧光显微的系统及方法,可广泛适用于生物学、医学,生物物理以及材料化学等领域的研究。
背景技术
荧光探针是指在吸收特定波长的光后,可以把吸收光转换为不同波长的光发射出来的一类物质的统称。使用不同的荧光探针可以标记样品内部不同的位置,从而可以用来探测样品的微观结构,还可以实时观察荧光标记的基因及细胞在活体动物体内的活动及反应。荧光显微技术已经成为化学和生物样品成像的有力工具。
困扰荧光显微技术的一个主要问题是样品离焦部分的荧光信号带来的背景干扰。如何消除背景噪声,提高显微图像的信噪比和分辨率是荧光显微技术领域的研究热点。激光共聚焦荧光显微术和全内反射荧光显微术是目前最常用的两种技术方案。
激光共聚焦荧光显微利用高度聚焦的激光束对样品逐点扫描成像,荧光信号经过探测针孔滤波后被光电倍增管探测收集,通过计算机软件可以重新组合生成一个三维图像。激光共聚焦荧光显微具有三维成像能力而且还具有很好的空间分辨率,但是由于它采用点扫描成像方式,所以它的成像速度并不快而且也容易对样品产生光损伤。
全内反射(又称全反射)是指当光线从光密介质进入到光疏介质,入射角大于临界角时,因为没有折射而都是反射,故称之为全内反射。从几何光学的角度来看,当发生全反射时,光线会在玻璃界面上完全反射而不进入液体溶液中。实际上,由于波动效应,有一部分光的能量会穿过界面渗透到溶液中,这部分光场就是所谓的衰逝波。衰逝波平行于界面传播,垂直于界面强度指数衰减。衰逝场强度Ez可表示为:
E z = E 0 e - z / d p .
其中
Figure BDA0000028922830000021
定义为衰逝场的穿透深度。
E0是界面处的电场强度,λ是真空中的光波长,n1是光密媒质的折射率,n2是光疏媒质的折射率。
衰逝场的穿透深度非常小,通常只有200nm左右。
细胞内的很多重要的生命活动过程均存在于细胞表面。全内反射荧光显微利用全内反射产生的衰逝波激发样品,激发区域被限定在样品表面的一薄层范围内(200nm),不受到来自样品内深层区域信号的干扰,因此具有极高的信噪比和对比度,近年来已被生物物理学家们广泛应用于单分子的荧光成像中。另外,全内反射荧光显微成像法不再采用扫描成像而使用CCD相机,在一个时间点获得一幅完整的二维图像,大大提高了成像速度,减少了样品光损伤,从而成为研究细胞表面科学如生物化学动力学、单分子动力学的最有前途的光学成像技术。
全内反射荧光显微成像根据其成像系统的不同可分为棱镜型和物镜型两种。棱镜型系统在实现上比较简单,也不容易受到入射光信号的干扰,激光经棱镜耦合照射在样品与载玻片的界面处(棱镜与载玻片之间配以折射率匹配的浸没油),精确调整入射角使发生全反射,荧光信号由样品的另一面进入显微物镜并被CCD探测。棱镜型系统的缺点是样品的位置受到棱镜的限制,并且激发出的荧光要通过整个样品才能被探测到,降低了成像的对比度。
物镜型系统中样品的放置则非常方便,显微镜的物镜既作为收集样品荧光信号的接收器,同时又作为发生全内反射的光学器件。且可与多种其它技术相结合,例如激光微加工,光镊技术等,因此展现出更加诱人的应用前景。由于细胞的典型折射率约为1.35,根据snell定律,要想实现全内反射,显微物镜的数值孔径NA必须大于1.35,因此当我们使用为NA=1.4的物镜时,只有很小的一部分物镜孔径范围(1.4-1.35=0.05)可以被利用。在实验中,为了保证均匀的照明,激光束通常被调制成为很细的光环进入显微物镜后瞳。如图1所示,通常使用一个圆形挡光板挡住平行光束的中间部分,显然,挡光板挡住了大部分照明光,所以整个系统的透过率很低(小于5%),导致照明亮度不够。
针对现有物镜型全内反射荧光显微技术透过率低的缺点,本发明提出一种使用同心双锥面镜实现全内反射荧光显微的技术与装置。该装置具有光能利用率高(接近100%)的优点,并且可以方便的实现全内反射荧光显微与普通宽场荧光显微的切换。
发明内容
为了解决现有的物镜型全内反射荧光显微方法透过率低的问题,本发明提供一种使用同心双锥面镜实现全内反射荧光显微的系统及方法。
本发明的技术解决方案为:
一种使用同心双锥面镜实现全内反射荧光显微的系统,包括平行光发生装置以及依次设置在光路上的环形光束产生装置、荧光激发装置以及成像装置,
所述平行光发生装置产生平行光,所述环形光束产生装置设置在平行光的光路上:
所述荧光激发装置包括设置在环形光束产生装置光路上的双色镜11、设置在双色镜11反射光路上的显微物镜12以及设置在显微物镜上方的载物台13;
所述成像装置包括第二反射镜15、依次设置在第二反射镜15反射光路上的筒镜16、滤光片17以及CCD相机18;所述第二反射镜15设置在载物台13的正下方;
其特殊之处在于:所述环形光束产生装置包括与平行光入射方向成45度放置的中空反射镜6、与平行光同轴设置的凹面锥镜7、设置在凹面锥镜中心的凸面锥镜8;所述凸面锥镜8的轴线正对中空反射镜6的中心;
所述双色镜11设置在中空反射镜6的环形光束的反射光路上并与反射光方向成45度角。
上述环形光束产生装置还包括望远镜系统,所述望远镜系统包括设置在中空反射镜6和双色镜11之间的第二透镜9和第三透镜10。
上述平行光发生装置包括激光器1、光纤耦合器2、多模光纤3、第一透镜4、以及设置在第一透镜4后的第一反射镜5,所述中空反射镜6设置在第一反射镜5的反射光路上。
一种使用同心双锥面镜实现全内反射荧光显微的方法,其特殊之处在于:包括以下步骤:
1】产生平行光束;
2】产生环形光束:
将平行光穿过45度设置的中空反射镜6,垂直入射到凸面锥镜8上,再被凸面锥镜8反射到凸面锥镜8外圆周侧的凹面锥镜7上,再被凹面锥镜7反射至中空反射镜6,再被中空反射镜6反射形成环形光束;
3】环形光束经荧光激发装置后对样品进行荧光激发;
4】将激发出的荧光信号成像。
上述步骤3】还包括全内反射荧光显微与宽场荧光显微的切换:
使凸面锥镜8沿着凹面锥镜7的轴线方向往返移动,调节环形光束在载物台与被测样品界面处的汇聚角,当环形光束在载物台与被测样品界面处的汇聚角小于临界角时为宽场荧光显微;当环形光束在载物台与被测样品界面处的汇聚角大于等于临界角时,则为全内反射荧光显微。
上述步骤2】还包括环形光束发散角的调节:
环形光束经过由第二透镜9和第三透镜10组成的望远镜系统后入射双色镜。
上述步骤4】还包括图像清晰度的调节:
调节CCD相机18的增益系数、CCD制冷温度以及曝光时间,得到清晰的显微图像。
上述步骤3】的具体步骤如下:环形光束经过双色镜入射显微物镜,通过显微物镜汇聚至载物台,通过在载物台和被测样品的界面处产生的衰逝波照射被测样品;在衰逝波的激发下被测样品发出荧光信号经显微物镜收集后,再穿过双色镜11入射至第二反射镜15。
上述步骤4】的具体步骤如下:
入射至第二反射镜15的荧光信号经过筒镜16和滤光片17进入CCD相机18成像。
本发明具有的优点:
1、本发明使用同心双锥面镜产生环形光束并用于全内反射荧光显微,与普通的全内反射荧光显微技术相比,本发明光能几乎为零浪费,光能利用率高(接近100%),因而适用于微型的低功率半导体激光器作为照明光源,便于全内反射荧光显微系统的集成。
2、本发明通过沿轴向移动凸面锥镜与凹面锥镜内的相对位置,改变平行光环光场的占空比,也就是改变环形光束在载物台与被测样品界面处的汇聚角,从而可以方便地实现全内反射荧光显微与宽场荧光显微的切换。全内反射荧光显微只能观察到界面处非常薄的一层样品发出的荧光,信噪比非常高;而宽场显微虽然信噪比较低,但是它可以深入到样品内部观察,比较方便。通常在进行全内反射荧光显微实验的同时,都需要进行同一位置宽场显微图像的对比。如图4和图5所示。
3、本发明所使用的激光功率密度很低,对生物组织的破坏以及激光漂白效应非常小。首先,与点扫描的激光共聚焦技术相比,全内反射荧光显微是一种宽场显微技术,宽场显微技术本身就具有弱的光漂白以及光损伤效应;另外,本发明使用同心双锥面镜产生环形光束,透过率接近100%,因此可以使用低功率的激光器,进一步减小了光损伤的可能性。
附图说明
图1是现有的使用挡光板产生环形光束的结构示意图;
图2是本发明使用同心双锥面镜产生环形光束示意图;
图3是本发明使用同心双锥面镜实现全内反射荧光显微的系统光路图;
图4是直径1μm荧光小球的宽场荧光显微与全内反射荧光显微的成像实验结果比较,其中a为宽场荧光显微图像,b为全内反射荧光显微图像;
图5是铃兰切片的宽场荧光显微与全内反射荧光显微的成像实验结果比较,其中a为宽场荧光显微图像,b为全内反射荧光显微图像;
附图标记为:1-激光器,2-光纤耦合器,3-多模光纤,4-第一透镜,5-第一反射镜,6-中空反射镜,7-凹面锥镜,8-凸面锥镜,9-第二透镜,10-第三透镜3,11-双色镜,12-显微物镜,13-载物台,14-样品,15-第二反射镜,16-筒镜,17-滤光片,18-CCD相机。
具体实施方式
如图2所示,本发明使用两个顶角90度的锥面反射镜(一个凸面镜8,一个凹面镜7)同心放置,凹面锥镜7中心有孔,凸面锥镜8可在凹面锥镜7中心孔内轴向移动。平行光束穿过一个与入射光方向成45度放置的中空反射镜7后,正入射凸面锥镜8,光线经凸面锥8反射90度后,再由凹面锥7反射90度,最后再经由中空反射镜6反射90度后,可以产生一个平行的环形光束。移动凸面锥镜8与凹面锥镜7的相对位置可以改变环形光束的占空比。与图1的使用圆型挡光板产生空心光环的方法相比,本发明的技术方案显然具有非常高的光能利用率,而且可以很容易的改变光环的占空比。
使用同心双锥面镜实现全内反射荧光显微的系统光路如图3所示。激光器1发出的光束通过光纤耦合器2耦合进入多模光纤3。再通过多模光纤3去除空间相干性后,由第一透镜4准直为平行光束。调节第一反射镜5使平行光束穿过中空反射镜6后正入射凸面锥8,光线经凸面锥镜8反射90度后,再由凹面锥镜7反射90度,最后再经由中空反射镜6反射90度后,可以产生一个平行的环形光束。移动凸面锥镜8与凹面锥镜7的相对位置可以改变环形光束的占空比。第二透镜9和第三透镜10组成的望远镜系统用来调整光环光场的发散角,从而可以调整作用在样品上衰逝场的面积。环形光束由双色镜11反射进入显微物镜12,由显微物镜12汇聚在载玻片的界面处产生衰逝波。微调载物台13使得样品14位于衰逝场中。衰逝波激发出的荧光信号经显微物镜12收集后,再穿过双色镜11,经第二反射镜15改变方向,最后经过筒镜16和滤光片17进入CCD相机18。控制CCD相机18的增益系数、CCD制冷温度以及曝光时间,从而得到清晰的全内反射荧光显微图像。平移凸面锥镜8改变凸面锥镜8与凹面锥镜7内的相对位置,可以改变平行光环光场的占空比,当环形光束在载玻片与溶液界面处的汇聚角小于临界角时,全反射条件将被破坏,一部分折射光线将会进入溶液及样品内部,从而可以实现全内反射荧光显微与宽场荧光显微的切换。
实施例1:图4是本发明装置对直径1μm荧光小球进行宽场荧光显微与全内反射荧光显微的成像实验比较。标尺10μm,实验中显微物镜为63X,NA=1.4显微物镜,激光器选用倍频YAG激光器,波长532nm。实验时调节凸面锥镜8在凹面锥镜7内的相对位置,可以实现全内反射荧光显微与宽场荧光显微的切换。图4(a)是宽场荧光显微图像,可以看到离焦位置的荧光小球带来的背景噪声。图4(b)是全内反射荧光显微图像,只能看到焦平面处的荧光小球,而且对比度很高。
实施例2:图5是本发明装置对铃兰切片进行宽场荧光显微与全内反射荧光显微的成像实验比较。标尺10μm,实验中显微物镜为100X,NA=1.45显微物镜,激光器选用倍频YAG激光器,波长532nm。实验时调节凸面锥镜8在凹面锥镜7内的相对位置,可以实现全内反射荧光显微与宽场荧光显微的切换。图4(a)是宽场荧光显微图像,可以看到离焦位置的样品自发荧光。图4(b)是全内反射荧光显微图像,只能看到界面处的荧光信号,图像对比度很高。

Claims (9)

1.一种使用同心双锥面镜实现全内反射荧光显微的系统,包括平行光发生装置以及依次设置在光路上的环形光束产生装置、荧光激发装置以及成像装置,
所述平行光发生装置产生平行光,所述环形光束产生装置设置在平行光的光路上;
所述荧光激发装置包括设置在环形光束产生装置光路上的双色镜(11)、设置在双色镜(11)反射光路上的显微物镜(12)以及设置在显微物镜上方的载物台(13);
所述成像装置包括第二反射镜(15)、依次设置在第二反射镜(15)反射光路上的筒镜(16)、滤光片(17)以及CCD相机(18);所述第二反射镜(15)设置在载物台(13)的正下方;
其特征在于:所述环形光束产生装置包括与平行光入射方向成45度放置的中空反射镜(6)、与平行光同轴设置的凹面锥镜(7)、设置在凹面锥镜中心的凸面锥镜(8);所述凸面锥镜8的轴线正对中空反射镜(6)的中心;
所述双色镜(11)设置在中空反射镜(6)的环形光束的反射光路上并与反射光方向成45度角,
使凸面锥镜(8)沿着凹面锥镜(7)的轴线方向往返移动,调节环形光束在载物台与被测样品界面处的汇聚角,当环形光束在载物台与被测样品界面处的汇聚角小于临界角时为宽场荧光显微;当环形光束在载物台与被测样品界面处的汇聚角大于等于临界角时,则为全内反射荧光显微。
2.根据权利要求1所述的使用同心双锥面镜实现全内反射荧光显微的系统,其特征在于:所述环形光束产生装置还包括望远镜系统,所述望远镜系统包括设置在中空反射镜(6)和双色镜(11)之间的第二透镜(9)和第三透镜(10)。
3.根据权利要求1或2所述的使用同心双锥面镜实现全内反射荧光显微的系统,其特征在于:所述平行光发生装置包括激光器(1)、光纤耦合器(2)、多模光纤(3)、第一透镜(4)、以及设置在第一透镜(4)后的第一反射镜(5),所述中空反射镜(6)设置在第一反射镜(5)的反射光路上。
4.一种使用同心双锥面镜实现全内反射荧光显微的方法,其特征在于:包括以下步骤:
1】产生平行光束;
2】产生环形光束:
将平行光穿过45度设置的中空反射镜(6),垂直入射到凸面锥镜(8)上,再被凸面锥镜(8)反射到凸面锥镜(8)外圆周侧的凹面锥镜(7)上,再被凹面锥镜7反射至中空反射镜(6),再被中空反射镜(6)反射形成环形光束;
3】环形光束经荧光激发装置后对样品进行荧光激发;
使凸面锥镜(8)沿着凹面锥镜(7)的轴线方向往返移动,调节环形光束在载物台与被测样品界面处的汇聚角,当环形光束在载物台与被测样品界面处的汇聚角小于临界角时为宽场荧光显微;当环形光束在载物台与被测样品界面处的汇聚角大于等于临界角时,则为全内反射荧光显微;
4】将激发出的荧光信号成像。
5.根据权利要求4所述的使用同心双锥面镜实现全内反射荧光显微的方法,其特征在于:
所述步骤3】还包括全内反射荧光显微与宽场荧光显微的切换。
6.根据权利要求4或5所述的使用同心双锥面镜实现全内反射荧光显微的方法,其特征在于:所述步骤2】还包括环形光束发散角的调节:
环形光束经过由第二透镜(9)和第三透镜(10)组成的望远镜系统后入射双色镜。
7.根据权利要求6所述的使用同心双锥面镜实现全内反射荧光显微的方法,其特征在于:所述步骤4】还包括图像清晰度的调节:
调节CCD相机(18)的增益系数、CCD制冷温度以及曝光时间,得到清晰的显微图像。
8.根据权利要求7所述的使用同心双锥面镜实现全内反射荧光显微的方法,其特征在于:所述步骤3】的具体步骤如下:环形光束经过双色镜入射显微物镜,通过显微物镜汇聚至载物台,通过在载物台和被测样品的界面处产生的衰逝波照射被测样品;在衰逝波的激发下被测样品发出荧光信号经显微物镜收集后,再穿过双色镜(11)入射至第二反射镜(15)。
9.根据权利要求8所述的使用同心双锥面镜实现全内反射荧光显微的方法,其特征在于:所述步骤4】的具体步骤如下:
入射至第二反射镜(15)的荧光信号经过筒镜(16)和滤光片(17)进入CCD相机(18)成像。
CN2010105132827A 2010-10-20 2010-10-20 使用同心双锥面镜实现全内反射荧光显微的系统与方法 Expired - Fee Related CN102004307B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010105132827A CN102004307B (zh) 2010-10-20 2010-10-20 使用同心双锥面镜实现全内反射荧光显微的系统与方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010105132827A CN102004307B (zh) 2010-10-20 2010-10-20 使用同心双锥面镜实现全内反射荧光显微的系统与方法

Publications (2)

Publication Number Publication Date
CN102004307A CN102004307A (zh) 2011-04-06
CN102004307B true CN102004307B (zh) 2012-06-27

Family

ID=43811808

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010105132827A Expired - Fee Related CN102004307B (zh) 2010-10-20 2010-10-20 使用同心双锥面镜实现全内反射荧光显微的系统与方法

Country Status (1)

Country Link
CN (1) CN102004307B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023739A (zh) * 2016-11-30 2019-07-16 韩国标准科学研究院 基于梯形入射结构棱镜入射型硅的液浸微通道测量装置及测量方法
DE102022107721A1 (de) 2022-03-31 2023-10-05 Jenoptik Optical Systems Gmbh Beleuchtung für ein Mikroskop, Mikroskop mit Dunkelfeldbeleuchtung, Verwendung zur Blutuntersuchung und Verfahren zum Beleuchten einer Probe

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102518959A (zh) * 2011-11-18 2012-06-27 厦门大学 光学环形照明装置
CN102540446B (zh) * 2011-12-28 2014-03-26 中国科学院西安光学精密机械研究所 一种基于数字微镜器件的高速结构照明光学显微系统及方法
CN105204151A (zh) * 2014-06-17 2015-12-30 谢赟燕 一种照明装置和方法
CN105319694A (zh) * 2014-07-29 2016-02-10 谢赟燕 一种共聚焦光学扫描仪
CN105149774B (zh) * 2015-07-22 2017-03-08 北京工业大学 一种用于激光‑等离子弧同轴复合焊的光束整形方法
CN105043948B (zh) * 2015-08-26 2017-09-22 清华大学 单个纳米颗粒粒径的测量系统及测量方法
JP2018529125A (ja) 2015-09-02 2018-10-04 インスコピックス, インコーポレイテッド カラー撮像のためのシステムおよび方法
JP2018533768A (ja) * 2015-11-05 2018-11-15 インスコピックス, インコーポレイテッド 光遺伝学撮像のためのシステムおよび方法
JP6642705B2 (ja) * 2016-05-19 2020-02-12 株式会社ニコン 顕微鏡
DE102016116405A1 (de) * 2016-09-02 2018-03-08 Carl Zeiss Spectroscopy Gmbh Messlichtquelle und Messanordnung zum Erfassen eines Reflexionsspektrums
CN106841136B (zh) * 2017-01-10 2019-06-18 浙江大学 一种对超薄细胞的高精度轴向定位与成像方法与装置
CN107356566B (zh) * 2017-03-30 2019-07-30 浙江大学 宽场三维超高分辨定位和成像方法与装置
CN108519653A (zh) * 2018-04-03 2018-09-11 中国工程物理研究院激光聚变研究中心 一种基于环形镜的红外光聚焦装置
CN108535877A (zh) * 2018-04-23 2018-09-14 长春理工大学 一种圆筒形光束转换为发散形圆锥光束装置
CN110793946A (zh) * 2018-08-01 2020-02-14 华中科技大学 一种真菌样本显微成像及智能识别系统及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202459A (ja) * 2000-12-28 2002-07-19 Yoshihiro Ota 暗視野落射顕微鏡
CN101216601A (zh) * 2007-12-29 2008-07-09 中国科学院西安光学精密机械研究所 使用锥镜实现暗场显微及荧光显微的方法及装置
CN101387759A (zh) * 2008-10-23 2009-03-18 高秀敏 一种光束偏振态调节整形系统
CN101403823A (zh) * 2008-10-28 2009-04-08 杭州电子科技大学 一种矢量圆环形光束整形装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202102170U (zh) * 2010-10-20 2012-01-04 中国科学院西安光学精密机械研究所 使用同心双锥面镜实现全内反射荧光显微的系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002202459A (ja) * 2000-12-28 2002-07-19 Yoshihiro Ota 暗視野落射顕微鏡
CN101216601A (zh) * 2007-12-29 2008-07-09 中国科学院西安光学精密机械研究所 使用锥镜实现暗场显微及荧光显微的方法及装置
CN101387759A (zh) * 2008-10-23 2009-03-18 高秀敏 一种光束偏振态调节整形系统
CN101403823A (zh) * 2008-10-28 2009-04-08 杭州电子科技大学 一种矢量圆环形光束整形装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110023739A (zh) * 2016-11-30 2019-07-16 韩国标准科学研究院 基于梯形入射结构棱镜入射型硅的液浸微通道测量装置及测量方法
CN110023739B (zh) * 2016-11-30 2022-06-28 韩国标准科学研究院 基于梯形入射结构棱镜入射型硅的液浸微通道测量装置及测量方法
DE102022107721A1 (de) 2022-03-31 2023-10-05 Jenoptik Optical Systems Gmbh Beleuchtung für ein Mikroskop, Mikroskop mit Dunkelfeldbeleuchtung, Verwendung zur Blutuntersuchung und Verfahren zum Beleuchten einer Probe

Also Published As

Publication number Publication date
CN102004307A (zh) 2011-04-06

Similar Documents

Publication Publication Date Title
CN102004307B (zh) 使用同心双锥面镜实现全内反射荧光显微的系统与方法
CN202102170U (zh) 使用同心双锥面镜实现全内反射荧光显微的系统
US10712547B2 (en) Microscope, focusing unit, fluid holding unit, and optical unit
JP3233779U (ja) 連続損失光を用いた二光子誘導放出抑制複合顕微鏡
CN102841083B (zh) 一种激光扫描位相显微成像方法及系统
US11435322B2 (en) Objective optical system and photoacoustic imaging device
TW201142352A (en) Fluorescence micro imaging system
CN108072970A (zh) 光镊光片显微成像装置和方法
CN103940796A (zh) 新型多角度多模式快速切换环状光学照明显微成像系统
KR101766064B1 (ko) 내부 전반사 형광 현미경
CN104677830A (zh) 分光瞳共焦-光声显微成像装置与方法
US20140218794A1 (en) Confocal Fluorescence Microscope
CN103954598A (zh) 一种基于倏逝波照明的轴向高精度定位方法及装置
CN115291381A (zh) 一种大视场高分辨率显微镜及其显微成像方法
CN104614349B (zh) 反射式分光瞳共焦‑光声显微成像装置与方法
CN102818795A (zh) 生物荧光显微检测仪器
CN108982455B (zh) 一种多焦点光切片荧光显微成像方法和装置
CN110579869A (zh) 一种幅值调制径向偏振照明共焦显微成像方法及装置
CN107941777B (zh) 一种抗漂白单分子定位三维超分辨显微系统
CN101446406B (zh) 一种光纤倏逝场照明器
US20220326502A1 (en) Apparatuses, systems and methods for solid immersion meniscus lenses
WO2021089010A1 (zh) 基于共振振镜进行焦点调制的光学显微装置及方法
CN210243498U (zh) 倾斜式层状光激发显微成像装置及层状光激发照明器
RU222926U1 (ru) Оптоакустический зонд на основе линзы аксикона для оптоакустической микроскопии оптического разрешения
KR102677920B1 (ko) 현미경 시스템

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20121020