CN101997031A - 输入/输出静电放电元件与级联输入/输出静电放电元件 - Google Patents

输入/输出静电放电元件与级联输入/输出静电放电元件 Download PDF

Info

Publication number
CN101997031A
CN101997031A CN2009101810058A CN200910181005A CN101997031A CN 101997031 A CN101997031 A CN 101997031A CN 2009101810058 A CN2009101810058 A CN 2009101810058A CN 200910181005 A CN200910181005 A CN 200910181005A CN 101997031 A CN101997031 A CN 101997031A
Authority
CN
China
Prior art keywords
lightly doped
doped drain
zone
electrostatic discharging
drain zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009101810058A
Other languages
English (en)
Inventor
李东兴
林奕成
曹卫立
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MediaTek Inc
Original Assignee
MediaTek Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MediaTek Inc filed Critical MediaTek Inc
Publication of CN101997031A publication Critical patent/CN101997031A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection
    • H01L27/0251Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices
    • H01L27/0266Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection for MOS devices using field effect transistors as protective elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • H01L29/1045Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface the doping structure being parallel to the channel length, e.g. DMOS like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41775Source or drain electrodes for field effect devices characterised by the proximity or the relative position of the source or drain electrode and the gate electrode, e.g. the source or drain electrode separated from the gate electrode by side-walls or spreading around or above the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明提供输入/输出静电放电元件与级联输入/输出静电放电元件,其中输入/输出静电放电元件,包括栅极电极,位于衬底之上;栅极介质层,位于所述栅极电极和所述衬底之间;一对侧壁隔离单元,分别位于所述栅极电极的两个相对的侧壁;第一LDD区域,位于一个所述侧壁隔离单元之下;源极区域,与所述第一LDD区域相邻;第二LDD区域,位于另一个所述侧壁隔离单元之下;以及漏极区域,与所述第二LDD区域相邻;其中所述第二LDD区域的掺杂浓度大于所述第一LDD区域的掺杂浓度。利用本发明能够减少ESD元件的结击穿电压并获得更好的ESD性能。

Description

输入/输出静电放电元件与级联输入/输出静电放电元件
技术领域
本发明有关于集成电路(integrated circuits,以下简称为IC),尤其有关于具有较低的结击穿电压(junction breakdown voltage)和较好的静电放电(electrostatic discharge,以下简称为ESD)防护性能的输入/输出(input/output,以下简称为I/O)ESD元件。
背景技术
IC芯片与芯片外(off-chip)的电子元件进行电通信以交换信息。IC芯片可利用与芯片外电子元件所用电压不同的电压。于是,IC芯片和芯片外电子元件之间的接口必须能够容纳电压差。此种接口包含混合电压I/O驱动器。
传统的ESD防护架构包括两个级联(casade)结构的N型金属氧化物半导体(Negative Metal Oxide Semiconductor,NMOS)晶体管,这两个NMOS晶体管合并为衬底(substrate)的相同有效区(active area)。例如,当在静电放电期间提供寄生横向NPN双极型晶体管(parasitic lateral NPN bipolartransistor)时,两个NMOS晶体管允许5V信号在正常运作期间降至3.3V。在ESD条件下,当底端NMOS晶体管的源极和顶端NMOS晶体管的漏极之间产生双极效应时,堆叠(stacked)晶体管运作于骤回(snapback)。
当此I/O驱动器已用于一些通用设计,如何平衡ESD防护性能和I/O性能则继续成为一种挑战。于是,期望提升级联MOS驱动器的性能和ESD元件的ESD防护性能。更具体地讲,需要从驱动器消除ESD的设计约束以达到最大的I/O性能。
发明内容
有鉴于此,本发明提供输入/输出静电放电元件与级联输入/输出静电放电元件。
依据本发明一个实施例提供一种输入/输出静电放电元件,包括:栅极电极,位于衬底之上;栅极介质层,位于所述栅极电极和所述衬底之间;对侧壁隔离单元,分别位于所述栅极电极的两个相对的侧壁;第一LDD区域,位于一个所述侧壁隔离单元之下;源极区域,与所述第一LDD区域相邻;第二LDD区域,位于另一个所述侧壁隔离单元之下;以及漏极区域,与所述第二LDD区域相邻;其中所述第二LDD区域的掺杂浓度大于所述第一LDD区域的掺杂浓度。
依据本发明另一个实施例提供一种级联输入/输出静电放电元件,包括:第一MOS晶体管,具有栅极电极、源极架构和漏极架构;以及第二MOS晶体管,通过共享所述第一MOS晶体管的所述源极架构与所述第一MOS晶体管串联;其中所述第一MOS晶体管的所述源极架构包括第一LDD区域,所述第一MOS晶体管的所述漏极架构包括第二LDD区域,且所述第二LDD区域的掺杂浓度大于所述第一LDD区域的掺杂浓度。
利用本发明能够减少ESD元件的结击穿电压并获得更好的ESD性能。
以下根据多个图式对本发明的较佳实施例进行详细描述,所属领域技术人员阅读后可明确了解本发明的目的。
附图说明
图1是根据本发明一个实施例的ESD元件的横断面示意图。
图2是根据本发明另一个实施例的级联I/O ESD元件的横断面示意图。
图3是根据本发明另一个实施例的ESD元件的横断面示意图。
图4是根据本发明另一个实施例的ESD元件的横断面示意图。
具体实施方式
在权利要求书及说明书当中使用了某些词汇来指称特定的元件。所属领域中的普通技术人员应可理解,硬件制造商可能会用不同的名词来称呼同一个元件。本发明的权利要求书及说明书并不以名称的差异来作为区分元件的方式,而是以元件在功能上的差异来作为区分的准则。在通篇说明书及后续的请求项当中所提及的“包含”为开放式的用语,故应解释成“包含但不限定于”。以外,“耦接”一词在此包含任何直接及间接的电气连接手段。因此,若文中描述第一装置耦接于第二装置,则代表该第一装置可直接电气连接于该第二装置,或通过其他装置或连接手段间接地电气连接至该第二装置。
图1是根据本发明一个实施例的ESD元件1的横断面示意图。如图1所示,于I/O P阱(well)12形成ESD元件1,且I/O P阱12设置于半导体衬底10(如P型硅衬底)上。根据本实施例,ESD元件1是NMOS晶体管且于I/O元件区域中制造。当然,本发明也适用于P型金属氧化物半导体(Positive Metal OxideSemiconductor,PMOS)晶体管。ESD元件1包括I/O P阱12区域上设置的栅极电极20。栅极电极20可为堆叠架构,包括导体和绝缘体,导体例如多晶硅层(polysilicon layer)、金属或金属硅化物(metal silicide);绝缘体例如用于封装导体的氮化硅(silicon nitride)。当然,栅极电极20可为通常用于I/O元件的任一适合的栅极架构。
可在栅极电极20和I/O P阱12之间设置栅极介质层22。栅极介质层22可由I/O元件的栅极介质层形成。栅极介质层22可与I/O元件同时形成且因此相较于核心(core)元件的厚度,栅极介质层22具有更厚的厚度。举例来说,基于65纳米(nm)技术节点,栅极介质层22有大约35~70埃(angstrom)的厚度,而核心元件(图中未示)具有10~25埃的厚度。侧壁隔离单元(sidewall spacer)24a和侧壁隔离单元24b可在栅极电极20的两个相对的侧壁上形成。侧壁隔离单元24a和24b可包括介电材料,例如氧化硅(silicon oxide)、氮化硅、氮氧化硅(siliconoxynitride)或其组合。在一个实施例中侧壁隔离单元24a和24b进一步包括衬垫(liner),比如氧化衬垫。
在栅极电极20的左侧,于I/O P阱12中设置源极架构30。源极架构30可包括第一N型轻掺杂漏极(N-type lightly doped drain,NLDD)区域14、N+源极区域15以及自对准多晶硅化物层(salicide layer)15a。其中,第一NLDD区域14位于侧壁隔离单元24a下方,N+源极区域15与第一NLDD区域14相邻,自对准多晶硅化物层15a位于N+源极区域15之上。第一NLDD区域14可以是I/O元件的轻掺杂漏极(Lightly Doped Drain,LDD)植入工艺所形成的I/O NLDD区域。
举例来说,根据一个实施例,第一NLDD区域14可通过植入N型掺杂物(dopant)形成,其中N型掺杂物例如一定量的磷(phosphorus)和砷(arsenic),比如2×1013~8×1013atoms/cm2,且第一NLDD区域14可有大约300~1,000埃的结深度。在一个实施例中,N+源极区域15可在侧壁隔离单元24a和24b形成之后形成。N+源极区域15可通过在I/O P阱12中植入N型掺杂物形成,N型掺杂物例如一定量(如1×1015~5×1015atoms/cm2)的砷。举例来说,根据本发明,N+源极区域15可有大约800~1,500埃的结深度。自对准多晶硅化物层15a可在与侧壁隔离单元24a的边缘相邻处形成且不超出第一NLDD区域14,其中自对准多晶硅化物层15a可以是钴(cobalt)自对准多晶硅化物或镍(nickel)自对准多晶硅化物。
在栅极电极20的右侧,于I/O P阱12设置漏极架构40,且漏极架构40与源极架构30相对。漏极架构40可包括第二NLDD区域16、P型袋状(pocket)区域17、N+漏极区域18和自对准多晶硅化物层18a。其中,第二NLDD区域16位于侧壁隔离单元24b下方,P型袋状区域17在第二NLDD区域16周围,N+漏极区域18与第二NLDD区域16相邻,自对准多晶硅化物层18a在N+漏极区域18之上。N+漏极区域18耦接I/O焊垫。第二NLDD区域16可以是核心元件的LDD植入工艺所形成的核心LDD区域。本实施例的一个特点就是ESD元件1具有非对称的LDD结构。第二NLDD区域16的掺杂浓度(doping concentration)大于第一NLDD区域14的掺杂浓度。为了具有非对称的LDD结构,本实施例中的ESD元件1在其漏极架构40不包括I/O NLDD或任何额外的ESD植入,而是将第二NLDD区域16与环型植入(halo implantation)合并,此处的环型植入例如P型袋状区域17。通过合并第二NLDD区域16和P型袋状区域17以及从漏极架构40中消除I/O NLDD,能够减少ESD元件1的结击穿电压并获得更好的ESD性能。
第二NLDD区域16可与核心元件的核心NLDD植入同时形成。根据一个实施例,第二NLDD区域16可通过植入N型掺杂物形成,其中N型掺杂物例如一定量(比如5×1014~3×1015atoms/cm2)的砷,且第二NLDD区域16可有大约200~900埃的结深度。P型袋状区域17可由核心元件工艺中执行的环型植入所形成。根据一个实施例,P型袋状区域17可通过植入P型掺杂物形成,其中P型掺杂物例如一定量(比如1×1013~9×1013atoms/cm2)的铟(In)、硼(B)或二氟化硼(BF2),且P型袋状区域17可有大约200~900埃的结深度。例如,自对准多晶硅化物层18a可以是钴自对准多晶硅化物或镍自对准多晶硅化物,自对准多晶硅化物层18a和侧壁隔离单元24b的边缘偏移d以防止泄漏(leakage)。然而,在另一个实施例中,自对准多晶硅化物层18a和侧壁隔离单元24b之间没有偏移。当然,本发明也可适用于PMOS晶体管,比如将NLDD区域14和N+源极区域15等分别替换为PLDD区域和P+源极区域等。
图2是根据本发明另一个实施例的级联I/O ESD元件2的横断面示意图。如图2所示,级联I/O ESD元件2包括级联结构的两个NMOS晶体管100和200,其中NMOS晶体管100具有与图1所描述的ESD元件1相似的架构。NMOS晶体管100可包括于I/O P阱12之上设置的栅极电极20。在栅极电极20和I/O P阱12之间设置栅极介质层22。栅极介质层22可由I/O元件的栅极介质层形成。侧壁隔离单元24a和侧壁隔离单元24b在栅极电极20的两个相对的侧壁形成。侧壁隔离单元24a和侧壁隔离单元24b可包括介电材料,例如氧化硅、氮化硅、氮氧化硅或其组合。在栅极电极20的左侧,在I/O P阱12中设置源极架构。源极架构可包括第一NLDD区域14、N+源极区域15和自对准多晶硅化物层15a。其中,第一NLDD区域14位于侧壁隔离单元24a下方,N+源极区域15与第一NLDD区域14相邻。第一NLDD区域14是由I/O元件的LDD植入工艺所形成的I/O NLDD区域。例如,根据一个实施例,第一NLDD区域14可通过植入N型掺杂物形成,其中N型掺杂物例如一定量(比如2×1013~8×1013atoms/cm2)的磷和砷,且第一NLDD区域14可有大约300~1,000埃的结深度。在一个实施例中,N+源极区域15可在侧壁隔离单元24a和24b形成之后形成。N+源极区域15可通过在I/O P阱12中植入N型掺杂物形成,N型掺杂物例如一定量(如1×1015~5×1015atoms/cm2)的砷。举例来说,根据本发明,N+源极区域15可有大约800~1,500埃的结深度。自对准多晶硅化物层15a可在与侧壁隔离单元24a的边缘相邻处形成且不超出第一NLDD区域14,其中自对准多晶硅化物层15a可以是钴自对准多晶硅化物或镍自对准多晶硅化物。
在栅极电极20的右侧,I/O P阱12所设置的漏极架构耦接于I/O焊垫。漏极架构可包括第二NLDD区域16、P型袋状区域17、N+漏极区域18和自对准多晶硅化物层18a。其中,第二NLDD区域16位于侧壁隔离单元24b下方,P型袋状区域17在第二NLDD区域16周围,N+漏极区域18与第二NLDD区域16相邻。第二NLDD区域16可以是由核心元件的LDD植入工艺所形成的核心LDD区域。NMOS晶体管100在其漏极架构中不包括I/O NLDD或任何额外的ESD植入。NMOS晶体管100具有非对称的LDD结构。第二NLDD区域16的掺杂浓度大于第一NLDD区域14的掺杂浓度。通过合并第二NLDD区域16和P型袋状区域17以及从漏极架构中消除I/O NLDD,能够减少ESD元件的结击穿电压并获得更好的ESD性能。
第二NLDD区域16可与核心元件的核心NLDD植入同时形成。根据一个实施例,第二NLDD区域16可通过植入N型掺杂物形成,其中N型掺杂物例如一定量(比如5×1014~3×1015atoms/cm2)的砷,且第二NLDD区域16可有大约200~900埃的结深度。P型袋状区域17可由核心元件工艺中执行的环型植入所形成。根据一个实施例,P型袋状区域17可通过植入P型掺杂物形成,其中P型掺杂物例如一定量(比如1×1013~9×1013atoms/cm2)的铟、硼或二氟化硼,且P型袋状区域17可有大约200~900埃的结深度。例如,自对准多晶硅化物层18a可以是钴自对准多晶硅化物或镍自对准多晶硅化物,自对准多晶硅化物层18a和侧壁隔离单元24b的边缘偏移d以防止泄漏。
NMOS晶体管200通过共享N+源极区域15和NMOS晶体管100串联,其中N+源极区域15也作为NMOS晶体管200的漏极。NMOS晶体管100是非对称NMOS晶体管架构,其源极一侧具有I/O NLDD,漏极一侧具有核心NLDD/袋状,不同于NMOS晶体管100,NMOS晶体管200是对称NMOS晶体管架构,其源极和漏极均具有I/O NLDD。如图2所示,NMOS晶体管200包括I/O P阱12上设置的栅极电极50,且栅极电极50和栅极电极20相邻。可以在栅极电极50和I/O P阱12之间设置栅极介质层52。栅极介质层52可以由I/O元件的栅极介质层形成。侧壁隔离单元54a和侧壁隔离单元54b可在栅极电极50的两个相对的侧壁处形成。侧壁隔离单元54a和54b可包含介电材料,例如氧化硅、氮化硅、氮氧化硅或其组合。在栅极电极50的左侧,I/O P阱12设置的源极与VSS或地相连。I/O NLDD 44a位于侧壁隔离单元54a下方,I/O NLDD 44b位于侧壁隔离单元54b下方,以便NMOS晶体管200具有对称的LDD结构。N+源极区域45(与I/O NLDD 44a合并)与N+源极区域15和18同时形成,其中I/O NLDD 44a和侧壁隔离单元54a相邻。自对准多晶硅化物层45a位于N+源极区域45之上。N+源极区域45可在侧壁隔离单元44a和44b形成之后形成。N+源极区域45可通过在I/O P阱12中植入N型掺杂物形成,N型掺杂物例如一定量(如1×1015~5×1015atoms/cm2)的砷。举例来说,根据本发明,N+源极区域45可有大约800~1,500埃的结深度。
当然,本发明也可适用于PMOS晶体管,比如将NLDD区域14和N+源极区域45等分别替换为PLDD区域和P+源极区域等。
图3是根据本发明另一实施例的ESD元件1a的横断面示意图。可知根据本发明的另一个实施例,图2的NMOS晶体管100可由ESD元件1a所取代。如图3所示,ESD元件1a具有与图1所描述的ESD元件1相似的架构,然而,漏极架构40a是不同的。在栅极电极20的右侧,在I/O P阱12中设置漏极架构40a,且漏极架构40a与源极架构30相对。漏极架构40a可包括第二NLDD区域16、P型袋状区域17、N+漏极区域18、ESD植入区域68和自对准多晶硅化物层18a。其中,第二NLDD区域16位于侧壁隔离单元24b下方,P型袋状区域17在第二NLDD区域16周围,ESD植入区域68位于N+漏极区域18之下,自对准多晶硅化物层18a位于N+漏极区域18之上。ESD元件1a也具有非对称的LDD结构。第二NLDD区域16的掺杂浓度大于第一NLDD区域14的掺杂浓度。通过合并第二NLDD区域16和P型袋状区域17以及从漏极架构40a中消除I/O NLDD,能够减少ESD元件的结击穿电压并获得更好的ESD性能。图1中ESD元件1和图3中ESD元件1a的区别之处在于图3中ESD元件1a在其漏极架构40a中并入额外的ESD植入区域68。根据一个实施例,ESD植入区域68为P型掺杂区域。当然,本发明也可适用于PMOS晶体管,比如,ESD植入区域68可由N型掺杂区域所取代。
图4是根据本发明另一个实施例的ESD元件1b的横断面示意图。可知根据本发明另一个实施例,图2中的NMOS晶体管100可由ESD元件1b取代。如图4所示,ESD元件1b可具有与图1所描述的ESD元件1相似的架构,然而,漏极架构40b是不同的。在栅极电极20的右侧,在I/O P阱12中设置漏极架构40b,且漏极架构40b与源极架构30相对。漏极架构40b可包括I/O NLDD区域14b、核心NLDD区域16a、P型袋状区域17、N+漏极区域18和自对准多晶硅化物层18a。其中,核心NLDD区域16a位于侧壁隔离单元24b下方,P型袋状区域17在核心NLDD区域16a周围,自对准多晶硅化物层18a位于N+漏极区域18之上。I/O NLDD区域14a和14b同时形成且因此大致具有相同的掺杂浓度。I/ONLDD区域14b可大致包围核心NLDD区域16a。ESD元件1b具有非对称的LDD结构。因此,本实施例中的第二NLDD区域包括核心元件的LDD植入工艺所形成的核心NLDD区域16a与I/O元件的LDD植入工艺所形成的I/O NLDD区域14b。核心NLDD区域16a的掺杂浓度大于第一NLDD区域14a的掺杂浓度。通过将核心NLDD区域16a和P型袋状区域17合并进漏极架构40b,能够减少ESD元件1b的结击穿电压并获得更好的ESD性能。当然,本发明也可适用于PMOS晶体管,比如将NLDD区域14a和N+源极区域15等分别替换为PLDD区域和P+源极区域等。
虽然本发明已就较佳实施例揭露如上,然其并非用以限定本发明。本发明所属技术领域中普通技术人员,在不脱离本发明的精神和范围内,当可作各种的变更和润饰。

Claims (22)

1.一种输入/输出静电放电元件,其特征在于,包括:
栅极电极,位于衬底之上;
栅极介质层,位于所述栅极电极和所述衬底之间;
一对侧壁隔离单元,分别位于所述栅极电极的两个相对的侧壁;
第一轻掺杂漏极区域,位于一个所述侧壁隔离单元之下;
源极区域,与所述第一轻掺杂漏极区域相邻;
第二轻掺杂漏极区域,位于另一个所述侧壁隔离单元之下;以及
漏极区域,与所述第二轻掺杂漏极区域相邻;
其中所述第二轻掺杂漏极区域的掺杂浓度大于所述第一轻掺杂漏极区域的掺杂浓度。
2.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述第一轻掺杂漏极区域是由输入/输出元件的轻掺杂漏极植入工艺所形成的输入/输出轻掺杂漏极区域,所述第二轻掺杂漏极区域是由核心元件的轻掺杂漏极植入工艺所形成的核心轻掺杂漏极区域。
3.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述第一轻掺杂漏极区域是由输入/输出元件的轻掺杂漏极植入工艺所形成的输入/输出轻掺杂漏极区域,以及所述第二轻掺杂漏极区域是核心轻掺杂漏极区域加上输入/输出轻掺杂漏极区域,其中所述核心轻掺杂漏极区域是由核心元件的轻掺杂漏极植入工艺所形成,以及所述输入/输出轻掺杂漏极区域是由输入/输出元件的轻掺杂漏极植入工艺所形成。
4.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述漏极区域耦接于输入/输出焊垫。
5.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述栅极介质层由输入/输出元件的栅极介质层所形成。
6.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述输入/输出静电放电元件进一步包括袋状区域,位于所述第二轻掺杂漏极区域周围。
7.如权利要求6所述的输入/输出静电放电元件,其特征在于,所述袋状区域是由核心元件工艺中执行的环型植入所形成。
8.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述第一轻掺杂漏极区域是输入/输出N型轻掺杂漏极区域,且所述第一轻掺杂漏极区域具有300~1,000埃的结深度。
9.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述第二轻掺杂漏极区域是核心N型轻掺杂漏极区域,且所述第二轻掺杂漏极区域具有200~900埃的结深度。
10.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述输入/输出静电放电元件进一步包括源极自对准多晶硅化物层,位于所述源极区域之上。
11.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述输入/输出静电放电元件进一步包括漏极自对准多晶硅化物层,位于所述漏极区域之上,且所述漏极自对准多晶硅化物层和所述侧壁隔离单元的边缘有偏移以防止泄漏。
12.如权利要求1所述的输入/输出静电放电元件,其特征在于,所述第一轻掺杂漏极区域、所述第二轻掺杂漏极区域、所述源极区域和所述漏极区域均位于输入/输出P阱中。
13.一种级联输入/输出静电放电元件,其特征在于,包括:
第一MOS晶体管,具有栅极电极、源极架构和漏极架构;以及
第二MOS晶体管,通过共享所述第一MOS晶体管的所述源极架构与所述第一MOS晶体管串联;
其中所述第一MOS晶体管的所述源极架构包括第一轻掺杂漏极区域,所述第一MOS晶体管的所述漏极架构包括第二轻掺杂漏极区域,且所述第二轻掺杂漏极区域的掺杂浓度大于所述第一轻掺杂漏极区域的掺杂浓度。
14.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述第一轻掺杂漏极区域是由输入/输出元件的轻掺杂漏极植入工艺所形成的输入/输出轻掺杂漏极区域,所述第二轻掺杂漏极区域是由核心元件的轻掺杂漏极植入工艺所形成的核心轻掺杂漏极区域。
15.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述第一轻掺杂漏极区域是由输入/输出元件的轻掺杂漏极植入工艺所形成的输入/输出轻掺杂漏极区域,所述第二轻掺杂漏极区域是核心轻掺杂漏极区域加上输入/输出轻掺杂漏极区域,其中所述核心轻掺杂漏极区域由核心元件的轻掺杂漏极植入工艺所形成,以及所述输入/输出轻掺杂漏极区域由输入/输出元件的轻掺杂漏极植入工艺所形成。
16.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述源极架构进一步包括源极区域,所述源极区域与所述第一轻掺杂漏极区域相邻。
17.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述漏极架构进一步包括漏极区域,所述漏极区域与所述第二轻掺杂漏极区域相邻。
18.如权利要求17所述的级联输入/输出静电放电元件,其特征在于,所述漏极区域耦接于输入/输出焊垫。
19.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,位于所述栅极电极之下的栅极介质层由输入/输出元件的栅极介质层所形成。
20.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述第一MOS晶体管和所述第二MOS晶体管均为NMOS晶体管。
21.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述漏极架构进一步包括袋状区域,位于所述第二轻掺杂漏极区域周围。
22.如权利要求13所述的级联输入/输出静电放电元件,其特征在于,所述源极架构也作为所述第二MOS晶体管的漏极。
CN2009101810058A 2009-08-16 2009-10-27 输入/输出静电放电元件与级联输入/输出静电放电元件 Pending CN101997031A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/541,967 2009-08-16
US12/541,967 US20110037121A1 (en) 2009-08-16 2009-08-16 Input/output electrostatic discharge device with reduced junction breakdown voltage

Publications (1)

Publication Number Publication Date
CN101997031A true CN101997031A (zh) 2011-03-30

Family

ID=43588088

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101810058A Pending CN101997031A (zh) 2009-08-16 2009-10-27 输入/输出静电放电元件与级联输入/输出静电放电元件

Country Status (3)

Country Link
US (1) US20110037121A1 (zh)
CN (1) CN101997031A (zh)
TW (1) TWI407544B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881724A (zh) * 2011-07-15 2013-01-16 中国科学院微电子研究所 多栅晶体管及其制造方法
CN111370405A (zh) * 2020-04-21 2020-07-03 伟芯科技(绍兴)有限公司 一种全压esd结构和实现方法

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2923759T3 (es) 2006-12-14 2022-09-30 Life Technologies Corp Aparato para medir analitos utilizando matrices de FET
US11339430B2 (en) 2007-07-10 2022-05-24 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8349167B2 (en) 2006-12-14 2013-01-08 Life Technologies Corporation Methods and apparatus for detecting molecular interactions using FET arrays
US8262900B2 (en) 2006-12-14 2012-09-11 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8470164B2 (en) 2008-06-25 2013-06-25 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale FET arrays
US8207894B2 (en) * 2008-09-11 2012-06-26 Google Inc. Multilayer compact antenna
US20100137143A1 (en) 2008-10-22 2010-06-03 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US20100301398A1 (en) 2009-05-29 2010-12-02 Ion Torrent Systems Incorporated Methods and apparatus for measuring analytes
US8776573B2 (en) 2009-05-29 2014-07-15 Life Technologies Corporation Methods and apparatus for measuring analytes
US20120261274A1 (en) 2009-05-29 2012-10-18 Life Technologies Corporation Methods and apparatus for measuring analytes
AU2011226767B1 (en) 2010-06-30 2011-11-10 Life Technologies Corporation Ion-sensing charge-accumulation circuits and methods
US20120001646A1 (en) 2010-06-30 2012-01-05 Life Technologies Corporation Methods and apparatus for testing isfet arrays
US8455927B2 (en) 2010-06-30 2013-06-04 Life Technologies Corporation One-transistor pixel array with cascoded column circuit
US11307166B2 (en) 2010-07-01 2022-04-19 Life Technologies Corporation Column ADC
US8653567B2 (en) 2010-07-03 2014-02-18 Life Technologies Corporation Chemically sensitive sensor with lightly doped drains
EP2617061B1 (en) 2010-09-15 2021-06-30 Life Technologies Corporation Methods and apparatus for measuring analytes
US8685324B2 (en) 2010-09-24 2014-04-01 Life Technologies Corporation Matched pair transistor circuits
US9970984B2 (en) 2011-12-01 2018-05-15 Life Technologies Corporation Method and apparatus for identifying defects in a chemical sensor array
US8821798B2 (en) 2012-01-19 2014-09-02 Life Technologies Corporation Titanium nitride as sensing layer for microwell structure
US8786331B2 (en) 2012-05-29 2014-07-22 Life Technologies Corporation System for reducing noise in a chemical sensor array
US9080968B2 (en) 2013-01-04 2015-07-14 Life Technologies Corporation Methods and systems for point of use removal of sacrificial material
US9841398B2 (en) 2013-01-08 2017-12-12 Life Technologies Corporation Methods for manufacturing well structures for low-noise chemical sensors
US8962366B2 (en) 2013-01-28 2015-02-24 Life Technologies Corporation Self-aligned well structures for low-noise chemical sensors
US8963216B2 (en) 2013-03-13 2015-02-24 Life Technologies Corporation Chemical sensor with sidewall spacer sensor surface
US8841217B1 (en) 2013-03-13 2014-09-23 Life Technologies Corporation Chemical sensor with protruded sensor surface
EP2972280B1 (en) 2013-03-15 2021-09-29 Life Technologies Corporation Chemical sensor with consistent sensor surface areas
US9116117B2 (en) 2013-03-15 2015-08-25 Life Technologies Corporation Chemical sensor with sidewall sensor surface
WO2014149779A1 (en) 2013-03-15 2014-09-25 Life Technologies Corporation Chemical device with thin conductive element
JP6581074B2 (ja) 2013-03-15 2019-09-25 ライフ テクノロジーズ コーポレーション 一貫性のあるセンサ表面積を有する化学センサ
US9835585B2 (en) 2013-03-15 2017-12-05 Life Technologies Corporation Chemical sensor with protruded sensor surface
US20140336063A1 (en) 2013-05-09 2014-11-13 Life Technologies Corporation Windowed Sequencing
US10458942B2 (en) 2013-06-10 2019-10-29 Life Technologies Corporation Chemical sensor array having multiple sensors per well
EP3234576B1 (en) 2014-12-18 2023-11-22 Life Technologies Corporation High data rate integrated circuit with transmitter configuration
WO2016100521A1 (en) 2014-12-18 2016-06-23 Life Technologies Corporation Methods and apparatus for measuring analytes using large scale fet arrays
US10077472B2 (en) 2014-12-18 2018-09-18 Life Technologies Corporation High data rate integrated circuit with power management

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5202576A (en) * 1990-08-29 1993-04-13 Texas Instruments Incorporated Asymmetrical non-volatile memory cell, arrays and methods for fabricating same
KR100260044B1 (ko) * 1997-11-25 2000-07-01 윤종용 고속/고성능 모스 트랜지스터 및 그 제조방법
US6514839B1 (en) * 2001-10-05 2003-02-04 Taiwan Semiconductor Manufacturing Company ESD implantation method in deep-submicron CMOS technology for high-voltage-tolerant applications with light-doping concentrations
KR100463203B1 (ko) * 2002-12-10 2004-12-23 삼성전자주식회사 활성 영역을 구비하는 반도체 소자
DE102004006484A1 (de) * 2004-02-10 2005-08-25 Infineon Technologies Ag Integrierte Schaltungsanordnungen mit ESD-festem Kondensator und Herstellungsverfahren
US7119405B2 (en) * 2005-02-11 2006-10-10 Lsi Logic Corporation Implantation method to improve ESD robustness of thick gate-oxide grounded-gate NMOSFET's in deep-submicron CMOS technologies
US7453127B2 (en) * 2006-02-13 2008-11-18 Taiwan Semiconductor Manufacturing Co., Ltd. Double-diffused-drain MOS device with floating non-insulator spacers
KR100724577B1 (ko) * 2006-07-28 2007-06-04 삼성전자주식회사 높은 출력저항을 갖는 반도체소자 및 그 형성방법
US8101479B2 (en) * 2009-03-27 2012-01-24 National Semiconductor Corporation Fabrication of asymmetric field-effect transistors using L-shaped spacers

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102881724A (zh) * 2011-07-15 2013-01-16 中国科学院微电子研究所 多栅晶体管及其制造方法
CN111370405A (zh) * 2020-04-21 2020-07-03 伟芯科技(绍兴)有限公司 一种全压esd结构和实现方法

Also Published As

Publication number Publication date
TW201108384A (en) 2011-03-01
TWI407544B (zh) 2013-09-01
US20110037121A1 (en) 2011-02-17

Similar Documents

Publication Publication Date Title
CN101997031A (zh) 输入/输出静电放电元件与级联输入/输出静电放电元件
US7217984B2 (en) Divided drain implant for improved CMOS ESD performance
US6690067B2 (en) ESD protection circuit sustaining high ESD stress
US20100213517A1 (en) High voltage semiconductor device
US7482218B1 (en) Low-capacitance input/output and electrostatic discharge circuit for protecting an integrated circuit from electrostatic discharge
US20120061761A1 (en) Semiconductor integrated circuit device and manufacturing method for semiconductor integrated circuit devices
US9748383B2 (en) Transistor
US7485925B2 (en) High voltage metal oxide semiconductor transistor and fabricating method thereof
US8288822B2 (en) ESD protection structures on SOI substrates
US7067887B2 (en) High voltage device and high voltage device for electrostatic discharge protection circuit
KR102361141B1 (ko) 정전기 방전 보호용 반도체 소자
KR20160110821A (ko) 레벨 쉬프트 회로 보호용 정전기 방전 보호 회로 및 소자
US20240047214A1 (en) Mask layout, semiconductor device and manufacturing method using the same
CN112951822A (zh) 半导体器件
US20140199818A1 (en) Method for fabricating an esd protection device
US8093630B2 (en) Semiconductor device and lateral diffused metal-oxide-semiconductor transistor
US20030075763A1 (en) Hybrid diodes with excellent ESD protection capacity
US20220376039A1 (en) Low leakage esd mosfet
US8283726B2 (en) System and method for I/O ESD protection with polysilicon regions fabricated by processes for making core transistors
US6882011B1 (en) ESD protection device having reduced trigger voltage
CN103367407A (zh) 不通电的伪栅极
US20130105899A1 (en) Input/output electrostatic discharge device with reduced junction breakdown voltage
US8319286B2 (en) System and method for input pin ESD protection with floating and/or biased polysilicon regions
US8686507B2 (en) System and method for I/O ESD protection with floating and/or biased polysilicon regions
US20230299072A1 (en) Esd protection circuit and semiconductor device

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110330