CN101986545B - 基于dsp和cpld的逆变器驱动装置 - Google Patents

基于dsp和cpld的逆变器驱动装置 Download PDF

Info

Publication number
CN101986545B
CN101986545B CN 201010170820 CN201010170820A CN101986545B CN 101986545 B CN101986545 B CN 101986545B CN 201010170820 CN201010170820 CN 201010170820 CN 201010170820 A CN201010170820 A CN 201010170820A CN 101986545 B CN101986545 B CN 101986545B
Authority
CN
China
Prior art keywords
circuit
current
signal
road
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010170820
Other languages
English (en)
Other versions
CN101986545A (zh
Inventor
孙运全
孙玉坤
尹强
茅靖峰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN 201010170820 priority Critical patent/CN101986545B/zh
Publication of CN101986545A publication Critical patent/CN101986545A/zh
Application granted granted Critical
Publication of CN101986545B publication Critical patent/CN101986545B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inverter Devices (AREA)

Abstract

基于DSP和CPLD的逆变器驱动装置,包括嵌入式微处理器DSP和CPLD驱动电路,一路A相电压过零检测电路,一路CAN通信电路,三路霍尔电压传感器电路,三路霍尔电流传感器电路,三路D/A转换电路,DSP电路发送三路数字指令电流信号,由D/A装换电路转换为三路相差120°且与补偿电流同频的模拟指令电流信号;三路补偿电流调理电路,将三路霍尔电流传感器电路检测到的三相补偿电流调理为适当的补偿电流信号;三路电流跟踪电路,将三路模拟指令电流信号与三相补偿电流调理电路产生的电流就行比较,得到三路电流跟踪比较信号;三路矢量电压调理电路,将三路霍尔电压传感器电路检测到的相电压调理为矢量电压所在区域的信号。

Description

基于DSP和CPLD的逆变器驱动装置
技术领域
本发明涉及多电平逆变器驱动装置,具体涉及一种用嵌入式微处理器DSP作为控制电路,用复杂可编程逻辑器件CPLD(Complex Programmable Logic Device)作为驱动电路,即基于CPLD技术,利用电流偏差矢量(电流偏差变化率矢量)空间分布来给出最佳的电压矢量切换,使电流偏差控制在滞环宽度以内,来实现逆变电路驱动信号。本装置可以用于无功补偿、有源滤波、开关电源、电机转速控制、逆变器、超声波发生器、充电器等领域。
背景技术
近年来,以逆变电路为核心的变频技术不断提高,变频技术应用的增多,在节约能源、提高产品质量和发展生产等方面起到了重要作用。逆变电路必须由驱动信号进行控制,随着工艺复杂性提高,往往要求驱动信号的控制精度要高且实时性要强,并且要降低控制器软件复杂程度。
NPC三电平逆变器的控制方法主要有正弦载波PWM(SPWM)和空间电压矢量PWM(SVPWM)。SVPWM以其直流电压利用率高,易于数字化实现而得到广泛的应用。
目前,科研工作者对NPC三电平逆变器的SVPWM算法提出了很多实现方案。但大多采用单个DSP来完成整个控制算法,使得DSP的程序复杂和混乱,同时由于三电平逆变器需要12路PWM信号,而DSP的两个事件管理器不能做到完全同步,导致同相的功率器件不能完全同步触发,对逆变器的性能造成严重影响,并且受DSP的PWM信号数目的限制,不能扩展到更多电平的逆变器控制。
利用微处理器(DSP)的电压空间矢量脉宽调制(SVPWM)功能虽然可以实现逆变电路驱动信号的输出,但是微处理器的软件复杂度较大,系统响应的快速性低,通常都会影响到输出的逆变电路驱动信号,而且也不能够保证控制精度与实时性。
因此本发明提出一种基于DSP和复杂可编程逻辑器件CPLD(ComplicatedProgrammed Logic Device)逆变器的驱动装置,该平台采用DSP完成SVPWM算法中的主要数据处理和外部控制功能,利用CPLD实现滞环电流控制的SVPWM逆变器驱动波形的发生。
发明内容
为了解决上述技术问题,本发明提出一种基于DSP和CPLD的逆变器驱动装置,用CPLD技术实现了基于滞环电流控制的SVPWM。所需驱动信号的电流跟踪比较信号和指定电压矢量等参数由CPLD提供。将电流跟踪电路和三相电压调理电路产生的信号通过接口发送到CPLD中,经CPLD进行滞环电流控制的SVPWM的逻辑运算,产生逆变电路的驱动控制信号。
基于DSP和CPLD的逆变器驱动装置,包括嵌入式微处理器DSP和CPLD驱动电路,所述逆变器驱动装置还包括:
一路A相电压过零检测电路,用于检测电网基波过零信号;
一路CAN通信电路,接收上位机的指令,包括指令电流;
三路霍尔电压传感器电路,用于检测三相电路的相电压;
三路霍尔电流传感器电路,用于检测三相电路补偿电流,即三相逆变器输出电流;
三路D/A转换电路,DSP将接受到的指令电流,通过瞬时无功理论算法,发送三路数字指令电流信号,由D/A装换电路转换为三路相差120°且与补偿电流同频的模拟指令电流信号;
三路补偿电流调理电路,将三路霍尔电流传感器电路检测到的三相补偿电流(三相功率变换器输出电流)调理为适当的补偿电流信号;
三路电流跟踪电路,将三路模拟指令电流信号与三相补偿电流(三相功率变换器输出电流)调理电路产生的电流就行比较,得到三路电流跟踪比较信号;
三路矢量电压调理电路,将三路霍尔电压传感器电路检测到的相电压调理为矢量电压所在区域的信号;
所述CPLD驱动电路包括滞缓延时电路、Δic区域判定的逻辑、
Figure GSA00000116028200021
区域判定的逻辑电路和空间矢量选择器;
霍尔电压传感器检测到的三相系统电压经a相电压过零检测电路,得到的电网基波过零信号与上位机通信电路发出的信息经DSP电路进行处理,发出数字指令电流信号,再经过D/A转换电路得到三路相差120°且与补偿电流(功率变换器的输出电流)同频的模拟指令电流信号,模拟指令电流信号输入电流跟踪电路;霍尔电流传感器检测到的由电力电子器件组成的单三相功率变换器中输出的三相电流,该电流作为补偿电流经补偿电流调理电路输入信号,再经电流跟踪电路与模拟指令电流信号进行比较,比较结果进入滞环延时电路得到逻辑变量,逻辑变量进入Δic区域判定的逻辑电路;三相系统电压经矢量电压调理电路得到的矢量
Figure GSA00000116028200031
进入区域判定的逻辑电路;Δic区域判定的逻辑电路和
Figure GSA00000116028200033
区域判定的逻辑电路两个区域判定的逻辑输出共同进入空间矢量选择器,得到滞环SVPWM电流控制的开关函数逻辑变量,输出跟踪驱动控制信号,即六路开关管PWM信号。
作为本发明的进一步改进,所述逆变器驱动装置还包括调理比较电路,该电路将三路霍尔电流传感器电路检测的三相补偿电流(三相功率变换器输出电流)进行调理比较得到过流信号;
所述CPLD内还是有三组保护与封锁电路,把3组方波信号转换成已插入死区的6个互补的驱动控制信号;同时引入过流信号,当逆变主电路发生过流时,产生脉冲封锁信号,关断6个互补的驱动控制信号,从而实现主电路的保护;
所述空间矢量选择器的输出信号与调理比较电路输出的过流信号以及保护控制信号共同进入保护与封锁电路,得到输出跟踪驱动控制信号,即六路开关管PWM信号;当逆变主电路发生过流时,产生脉冲封锁信号,关断6个互补的驱动控制信号,从而实现主电路的保护。
本发明中嵌入式微处理器DSP的控制电路以及CPLD的逻辑运算是整个系统的核心,实现对逆变控制电路的驱动控制。
本发明公开了一种逆变器驱动电路,可以满足生产设备不断提高的的复杂度要求,又可以快速、灵活、准确地控制逆变电路的驱动控制信号输出跟踪驱动控制信号。为了达到驱动逆变桥的目的,电路具有六路互补输出功能,并且加入了必要的死区插入及封锁脉冲等保护电路。
附图说明
图1是本发明的总体结构框图。
图2是本发明的a相电压过零检测电路。
图3a是本发明的微处理器最小系统接口图。
图3b是本发明的微处理器最小系统CPU图。
图4是本发明的CAN通信电路。
图5是本发明的D/A转换电路。
图6是本发明的补偿电流(功率变换器输出电流)调理电路。
图7是本发明的电流跟踪电路。
图8是本发明的矢量电压调理电路。
图9是本发明的补偿电流(功率变换器输出电流)调理比较电路。
图10是本发明的单桥臂滞环延时电路。
图11是本发明的Δic区域判定的逻辑电路。
图12是本发明的
Figure GSA00000116028200041
区域判定的逻辑电路。
图13是本发明的SVPWM矢量选择器电路。
图14是本发明的三相桥逆变器PWM驱动信号分配及保护电路。
图15是本发明的滞环电流跟踪型SVPWM发生电路的时序逻辑仿真。
具体实施方式
下面结合附图和实施例做进一步说明。
如图1所示,基于DSP和CPLD的逆变器驱动装置,包括微处理器DSP3和CPLD驱动电路10,逆变器驱动装置中还包括:
一路A相电压过零检测电路2,用于检测电网基波过零信号;
一路CAN通信电路4,接收上位机的指令,包括指令电流;
三路霍尔电压传感器电路,用于检测三相电路的相电压;
三路霍尔电流传感器电路,用于检测三相电路补偿电流,即三相逆变器输出电流;
三路D/A转换电路5,DSP 3将接受到的指令电流,通过瞬时无功理论算法,发送三路数字指令电流信号,由D/A装换电路5转换为三路相差120°且与补偿电流同频的模拟指令电流信号;
三路补偿电流调理电路6,将三路霍尔电流传感器电路检测到的三相补偿电流(三相功率变换器输出电流)调理为适当的补偿电流信号;
三路电流跟踪电路7,将三路模拟指令电流信号与三相补偿电流(三相功率变换器输出电流)调理电路产生的电流就行比较,得到三路电流跟踪比较信号;
三路矢量电压调理电路8,将三路霍尔电压传感器电路检测到的相电压调理为矢量电压所在区域的信号;
CPLD驱动电路10包括滞缓延时电路101、Δic区域判定的逻辑电路102、
Figure GSA00000116028200042
区域判定的逻辑电路103、空间矢量选择器104和保护和封锁电路105;
调理比较电路9,将三路霍尔电流传感器电路检测的三相补偿电流(三相功率变换器输出电流)进行调理比较得到过流信号;
霍尔电压传感器检测到的三相系统电压经a相电压过零检测电路2,得到的电网基波过零信号与上位机通信4发出的信息经微处理器DSP 3(采用TMS320F2812)进行处理,发出数字指令电流信号,再经过D/A5转换电路AD78415得到三路相差120°且与补偿电流(功率变换器输出电流)同频的模拟指令电流信号;霍尔电流传感器检测到的由电力电子器件组成的单三相功率变换器中输出的三相电流,该电流作为补偿电流经补偿电流调理电路6输入信号,再与模拟指令电流信号经电流跟踪电路7输出进行比较,比较结果进入滞环延时101得到的逻辑变量,结果进入Δic区域判定的逻辑102。三相系统电压经矢量电压调理电路8得到矢量
Figure GSA00000116028200051
结果进入区域判定的逻辑103。两个区域判定的逻辑输出共同进入空间矢量选择器104,得到滞环SVPWM电流控制的开关函数逻辑变量,再与补偿电流经补偿电流调理比较电路9形成的过流信号,共同进入保护与封锁电路105,得到迅速、灵活、准确的输出跟踪驱动控制信号,即六路开关管PWM信号。
图2是本发明的a相电压过零检测电路。输入端为经过霍尔电压传感器变送后的网侧相电压信号LEM_ua,它通过I/V变换、电压跟随、低通滤波(抑制网侧电压畸变的影响)、过零比较,得到输出幅值为3.3V的电网基波过零信号CRSZAIN,进入微处理器DSP(TMS320F2812)电路CAP口,形成捕捉信号。
图3a是本发明的微处理器最小系统接口电路。该电路由嵌入式微处理器最小系统、复位电路和通信接口电路组成。如图3b,嵌入式微处理器最小系统采用TI公司的DSP(TMS320F2812)作为中央CPU,该处理器是TI最新推出的32位新型DSP,该单片机片内资源丰富、功能特别强大。片内512个RAM字节,程序和重要的数据可以存放在片内的32K字节的FLASH中,PTA、PTB、PTC、PTD和PTE的所有管脚均可以定义为输入或输出口,通过复用方式,PTB口可以定义为A/D接口,PTE口可以定义为SCI方式,同时通过锁相环技术使总线时钟速率高达8M,最小指令周期128ns。这些形成整个系统的控制和测量中心。
图4是本发明的CAN通信电路。图中3.3V系列的CAN收发器SN65HVD230D是驱动CAN控制器和物理总线间的接口,提供对总线的差动发送和接收功能,电阻R12,R13和R14作为CAN终端和传输线路的匹配电阻。为了进一步提高系统的抗干扰能力,在CAN控制器引脚CANTX,CANRX和收发器之间采用高速光耦6N137构成隔离以实现总线上各节点的电气隔离。这部分电路增加了节点的复杂性,但它却提高了节点的稳定性和安全性。
图5是本发明的D/A转换电路。AD7841采用双缓冲数据锁存方式(地址线A3控制锁存脚LDAC),5V的数据接口电压(兼容DSP的3.3V电平),由±15V双转换电源供电,参考电压范围为±5V,输出电压范围为±10V。F2812的片选信号XZCS0AND1控制AD7841的片选信号CS,将其映射在F2812的Zone0外部地址空间区,地址线A0~A2作为8个数据通道的地址选择,则AD7841数据通道的地址范围为:0x00 2000~0x00 2007。电压型8通道的同步/异步输出满足:VOUT=2×(VREF(-)+[VREF(+)-VREF(-)]×D)-VDUTGND,典型转换时间约31μs。显然,该芯片可以满足系统计算精度和响应速度的要求。
图6是本发明的三路补偿电流(功率变换器输出电流)调理电路中的一路。输入端为经过霍尔电流传感器变送后的网侧相电流信号LEM_iLa,它通过电压跟随、低通滤波、电压提升(形成单极性电压)、比例变换、3V限幅钳位电路后,输出为IA_AD,即LEM_ica。
图7为本发明的三路电流跟踪电路的一路。桥臂补偿电流的反馈量经补偿电流调理电路6,其输出信号LEM_ica和指令电流由D/A转换电路AD78415形成的模拟信号DSPDAIA(双极性)经过标度变换后,进行双极性比较,再通过吸收、整形和分压电路,输出幅值为3.3V的电流跟踪比较信号IDIVA,进入滞环延时101。
图8是本发明三路矢量电压调理电路中的一路。输入端为经过霍尔电压传感器变送后的网侧相电压信号LEM_ua,它通过电压跟随、低通滤波、比例变换后,得到OC_ca,同理可以得到OC_cb和OC_cc两个信号,将它们两两通过LEM339进行比较,得到矢量
Figure GSA00000116028200061
的所在区域,即信号XAB、XBC、XCA三个信号,其关系如下。
X ab = sgn ( u ca * - u cb * ) X bc = sgn ( u cb * - u cc * ) X ca = sgn ( u cc * - u ca * ) , sgn ( x ) = 1 , x > 0 0 , x < 0
图9是本发明三路补偿电流(功率变换器输出电流)调理比较电路中的一路。IA_AD经过精密整流电路得到OCA,同样还有OCB和OCC两个信号,再与一个基准电压一起进入U2,即在LM339AM(14)中进行比较,得到输出信号IAGL、IBGL、ICGL的高低电平,即为过流信号。
图10为本发明的单桥臂(a相)数字滞环延时电路。CLK为计数时钟,IDIVA为a相电流跟踪比较信号,通过自复位计数器和单稳触发电路输出所需的滞环延时比较信号dlaya,进而得到逻辑变量Ba、Bb、Bc。
Δic区域判据
  Δica   +   +   -   -   -   +
  Δicb   -   +   +   +   -   -
  Δicc   -   -   -   +   +   +
  Δic区域   ①   ②   ③   ④   ⑤   ⑥
图11为本发明的Δic区域判定的逻辑电路。得到ZI1-ZI6,其关系为: Z i ( 1 ) = B a B &OverBar; b B &OverBar; c ; Z i ( 2 ) = B a B b B &OverBar; c ; Z i ( 3 ) = B &OverBar; a B b B &OverBar; c ; Z i ( 4 ) = B &OverBar; a B b B c ; Z i ( 5 ) = B &OverBar; a B &OverBar; b B c ; Z i ( 6 ) = B a B &OverBar; b B c .
图12为本发明的
Figure GSA00000116028200077
区域判定的逻辑电路。得到ZU1-ZU6,其关系为:
Z u ( 1 ) = X ab X bc X &OverBar; ca ; Z u ( 2 ) = X &OverBar; ab X bc X &OverBar; ca ; Z u ( 3 ) = X &OverBar; ab X bc X ca ; Z u ( 4 ) = X &OverBar; ab X &OverBar; bc X ca ;
Z u ( 5 ) = X ab X &OverBar; bc X ca ; Z u ( 6 ) = X ab X &OverBar; bc X &OverBar; ca .
图13为本发明的SVPWM矢量选择器电路。它是策略的核心部件,根据Δic
Figure GSA000001160282000714
的区域判定逻辑,给出一组合适的空间电压矢量控制信号uk,得到滞环SVPWM电流控制的开关函数逻辑变量关系,如下:
sa=Zu(1)[Zi(1)+Zi(2)+Zi(3)+Zi(6)]+Zu(2)[Zi(1)+Zi(2)]
+Zu(5)[Zi(1)+Zi(6)]+Zu(6)[Zi(1)+Zi(2)+Zi(5)+Zi(6)]
sb=Zu(1)[Zi(2)+Zi(3)]+Zu(2)[Zi(1)+Zi(2)+Zi(3)+Zi(4)]
+Zu(3)[Zi(2)+Zi(3)+Zi(4)+Zi(5)]+Zu(4)[Zi(3)+Zi(4)]
sc=Zu(3)[Zi(4)+Zi(5)]+Zu(4)[Zi(3)+Zi(4)+Zi(5)+Zi(6)]
+Zu(5)[Zi(1)+Zi(4)+Zi(5)+Zi(6)]+Zu(6)[Zi(5)+Zi(6)]得到6路SVPWM开关信号sa、sa1、sb、sb1、sc、sc1。
图14为本发明的三相桥逆变器PWM驱动信号的分配及保护电路。电流跟踪信号经过数字延时电路101,得到的逻辑变量经Δic区域判定的逻辑102与矢量所在的区域,经
Figure GSA000001160282000716
区域判定的逻辑103共同进入空间矢量选择器104,得到滞环SVPWM电流控制的开关函数逻辑变量,再与过流信号,保护信号共同进入保护与封锁电路105,形成6路SVPWM开关信号ODIVA/B/C。
图15所示为针对跟踪型SVPWM发生电路的时序逻辑仿真,输入信号BA、BB、BC为电流滞环比较信号,输入信号XAB、XBC、XCA为指令电压矢量的区域判别信号;输出信号SA、SA1、SB、SB1、SC、SC1分别为电流跟踪型SVPWM控制策略输出的a、b、c桥臂开关量(上下桥臂互补)。图中,输入信号FRST为系统封锁信号(低电平有效),易见,当FRST=0时,SA=SA1=SB=SB1=SC=SC1=0,代表三相逆变桥6个开关管不导通,逆变器处于浮空态;否则,当FRST=1时,6个开关管的控制信号才能被传送输出。

Claims (5)

1.基于DSP和CPLD的逆变器驱动装置,包括嵌入式微处理器DSP(3)和CPLD驱动电路(10),其特征是,所述逆变器驱动装置中还包括:
一路A相电压过零检测电路(2),用于检测电网基波过零信号;
一路CAN通信电路(4),接收上位机的指令,包括指令电流;
三路霍尔电压传感器电路,用于检测三相电路的相电压;
三路霍尔电流传感器电路,用于检测三相电路补偿电流,即三相逆变器输出电流;
三路D/A转换电路(5),嵌入式微处理器DSP(3)将接受到的指令电流,通过瞬时无功理论算法,发送三路数字指令电流信号,由D/A转换电路(5)转换为三路相差120°且与补偿电流同频的模拟指令电流信号;
三路补偿电流调理电路(6),将三路霍尔电流传感器电路检测到的三相补偿电流调理为适当的补偿电流信号;
三路电流跟踪电路(7),将三路模拟指令电流信号与三相补偿电流调理电路产生的电流就行比较,得到三路电流跟踪比较信号;
三路矢量电压调理电路(8),将三路霍尔电压传感器电路检测到的相电压调理为矢量电压所在区域的信号;
CPLD驱动电路(10)包括滞缓延时电路(101)、Δic区域判定的逻辑电路(102)、uc *区域判定的逻辑电路(103)、空间矢量选择器(104)和保护和封锁电路(105);
霍尔电压传感器检测到的三相系统电压经A相电压过零检测电路(2),得到电网基波过零信号与上位机通信(4)发出的信息内容,经嵌入式微处理器DSP (3)发送数字指令电流信号,再经过D/A转换电路(5)得到三路相差120°且与补偿电流同频的模拟指令电流信号,模拟指令电流信号输入电流跟踪电路(7);霍尔电流传感器检测到的由电力电子器件组成的单三相功率变换器中输出的三相电流,该电流作为补偿电流经补偿电流调理电路(6)输入信号,再与模拟指令电流信号经电流跟踪电路(7)进行比较后输出,比较结果进入滞环延时(101)得到的逻辑变量,结果进入Δic区域判定的逻辑电路(102);三相系统电 压经矢量电压调理电路(8)得到矢量uc *,结果进入uc *区域判定的逻辑电路(103);Δic区域判定的逻辑电路(102)和uc *区域判定的逻辑电路(103)两个区域判定的逻辑输出共同进入空间矢量选择器(104),得到六路开关管PWM信号。
2.根据权利要求1所述的基于DSP和CPLD的逆变器驱动装置,其特征在于,所述CPLD驱动电路(10)采用EPM7128SLC。
3.根据权利要求1所述的基于DSP和CPLD的逆变器驱动装置,其特征在于,所述嵌入式微处理器DSP(3)采用TMS320F2812。
4.根据权利要求1所述的基于DSP和CPLD的逆变器驱动装置,其特征在于,所述逆变器还包括调理比较电路(9),该电路将三路霍尔电流传感器电路检测的三相补偿电流进行调理比较得到过流信号;
所述CPLD内还是有三组保护与封锁电路,把3组方波信号转换成已插入死区的6个互补的驱动控制信号;同时引入过流信号,当逆变主电路发生过流时,产生脉冲封锁信号,关断6个互补的驱动控制信号,从而实现主电路的保护;
所述空间矢量选择器(104)得到的滞环SVPWM电流控制的开关函数逻辑变量,再与过流信号、保护信号共同进入保护与封锁电路(105),形成6路SVPWM开关信号。
5.根据权利要求1所述的基于DSP和CPLD的逆变器驱动装置,其特征在于,所述三路补偿电流调理电路中,每一路的输入端为经过霍尔电流传感器变送后的三相补偿电流信号,它通过电压跟随、低通滤波、电压提升、比例变换、3V限幅钳位电路后输出。 
CN 201010170820 2010-05-13 2010-05-13 基于dsp和cpld的逆变器驱动装置 Expired - Fee Related CN101986545B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010170820 CN101986545B (zh) 2010-05-13 2010-05-13 基于dsp和cpld的逆变器驱动装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010170820 CN101986545B (zh) 2010-05-13 2010-05-13 基于dsp和cpld的逆变器驱动装置

Publications (2)

Publication Number Publication Date
CN101986545A CN101986545A (zh) 2011-03-16
CN101986545B true CN101986545B (zh) 2013-04-17

Family

ID=43710861

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010170820 Expired - Fee Related CN101986545B (zh) 2010-05-13 2010-05-13 基于dsp和cpld的逆变器驱动装置

Country Status (1)

Country Link
CN (1) CN101986545B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102545256B (zh) * 2011-12-30 2014-07-16 阳光电源股份有限公司 一种并网电流的控制装置
CN102628919A (zh) * 2012-04-25 2012-08-08 上海交通大学 变压器套管绝缘状态在线监测系统
CN103529284B (zh) * 2012-07-06 2016-07-13 核工业西南物理研究院 一种基于cpld具备主从式多机通信功能的过流检测器
CN102931668A (zh) * 2012-11-09 2013-02-13 无锡市锡容电力电器有限公司 一种无功补偿装置
CN103248291B (zh) * 2013-05-30 2015-09-09 北京航空航天大学 一种高速无刷直流电动机无位置传感器控制系统
CN106411169A (zh) * 2015-07-30 2017-02-15 苏州大禾能源技术有限公司 一种基于数模转换的高频逆变电路
CN105720797A (zh) * 2016-05-03 2016-06-29 北京森源东标电气有限公司 一种高压级联四象限变频器单元控制器
CN106452100A (zh) * 2016-10-27 2017-02-22 江苏建筑职业技术学院 基于dsp控制的三电平光伏并网逆变器装置及其工作方法
CN106802609A (zh) * 2017-03-28 2017-06-06 河北工业大学 基于pc/104总线与cpld产生svpwm的装置及方法
CN109350223A (zh) * 2018-10-26 2019-02-19 南开大学 一种基于dsp+cpld架构的高压电脉冲肿瘤治疗仪控制器
CN115628843B (zh) * 2022-11-10 2024-05-14 直川科技(上海)有限公司 压力变送器

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877951A (zh) * 2005-06-09 2006-12-13 王健 具有statcom功能的光伏并网装置的双dsp控制电路
CN101188386A (zh) * 2007-11-26 2008-05-28 天津理工大学 基于dsp及cpld的pwm整流系统

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070294441A1 (en) * 2006-06-14 2007-12-20 Collins Felix A H Usb keystroke monitoring apparatus and method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1877951A (zh) * 2005-06-09 2006-12-13 王健 具有statcom功能的光伏并网装置的双dsp控制电路
CN101188386A (zh) * 2007-11-26 2008-05-28 天津理工大学 基于dsp及cpld的pwm整流系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
曹伟.基于DSP-CPLD的三电平SVPWM发生器设计.《中国电工技术学会电力电子学会第十一届学术年会》.2009, *

Also Published As

Publication number Publication date
CN101986545A (zh) 2011-03-16

Similar Documents

Publication Publication Date Title
CN101986545B (zh) 基于dsp和cpld的逆变器驱动装置
CN105071405B (zh) 带不对称非线性负载的微电网系统及功率均衡控制方法
CN201846091U (zh) 全数字控制三相太阳能光伏并网逆变器
CN103746585B (zh) 基于混合调制的多电平逆变器中点电压平衡控制方法
CN207200595U (zh) 基于dsp与fpga的三电平pwm整流器一体化控制平台
CN103063945B (zh) 一种柔性直流输电子模块试验装置及其试验方法
CN109687747A (zh) 基于零序电压注入的t型三电平逆变器中点电位平衡与容错控制方法
CN102880750B (zh) 一种衡量不同多电平换流器直流故障穿越能力的计算方法
CN101505106B (zh) 一种级联型多电平变换器
CN204012661U (zh) 一种电机驱动保护电路
CN101022262A (zh) 采用内外环双组整流桥箝位式五电平变频驱动装置
CN104333208A (zh) 一种三段桥式变流电路开路故障处理装置及故障诊断方法
CN108336752B (zh) 一种不可控预充电阶段的电容电压平衡方法
CN103236710A (zh) 采用模块化结构的统一潮流控制器
CN104615842A (zh) 一种全桥型模块化多电平换流器功率器件损耗计算方法
CN105743378A (zh) 一种t型三电平逆变器并联系统及其解耦控制方法
CN104796025A (zh) 一种模块化多电平换流器子模块拓扑结构
CN102437575B (zh) 一种中高压无变压器结构统一电能质量控制器
CN102608468A (zh) 一种检测海上风电柔性直流输电变流器特性的试验系统
CN103475252B (zh) 一种变频器死区补偿方法及装置
CN105808901A (zh) 一种模块化多电平换流器通态损耗的确定方法
CN104539201A (zh) 一种通用无刷电机电流闭环控制系统及控制方法
CN104319786A (zh) 一种基于svg的直流融冰装置控制系统
CN107479016A (zh) 一种柔性直流电网直流高速测量装置性能检测方法及系统
CN101873100A (zh) 三电平变频器简化相电压重构方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130417

Termination date: 20170513

CF01 Termination of patent right due to non-payment of annual fee