CN101985726A - 非晶态储氢合金 - Google Patents

非晶态储氢合金 Download PDF

Info

Publication number
CN101985726A
CN101985726A CN 201010516572 CN201010516572A CN101985726A CN 101985726 A CN101985726 A CN 101985726A CN 201010516572 CN201010516572 CN 201010516572 CN 201010516572 A CN201010516572 A CN 201010516572A CN 101985726 A CN101985726 A CN 101985726A
Authority
CN
China
Prior art keywords
alloy
electrode
hydrogen storage
lamg
storage alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010516572
Other languages
English (en)
Inventor
刘子利
刘希琴
闫新春
刘新波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN 201010516572 priority Critical patent/CN101985726A/zh
Publication of CN101985726A publication Critical patent/CN101985726A/zh
Pending legal-status Critical Current

Links

Images

Abstract

本发明公开了一种非晶态储氢合金,其化学计量比为LaMg11Zr+200%Ni+X%La,上述百分比为质量百分比,其中X=5或10;本合金呈非晶态,La添加后合金颗粒得到明显细化;电化学研究表明,La添加后,合金电极充电阻力减小,放电容量随La含量的增加而增大,适量La的添加改善了合金电极的循环稳定性和动力学性能。

Description

非晶态储氢合金
技术领域
本发明涉及一种储氢合金,特别是一种抗蚀性好,合金容量衰退慢,循环稳定性好的非晶态储氢合金。
背景技术
La-Mg-Ni系储氢合金具有比AB5型合金更高的放电容量,成为新型高容量贮氢电极合金的一个重要研究方向。但由于其抗蚀性差,合金容量衰退较快,循环稳定性差,导致难以实际应用。
例如出版物《电化学》于2008年11月第14卷第四期出版的文章《LaMg11Zr+Ni合金电极电化学性能研究》(文章编号为1006-3471(2008)04-0415-03),其公开了LaMg11Zr+Ni合金具有较好的放电容量,但其合金容量衰退较快,循环稳定性差。
近年来的研究表明,控制合金元素化学计量比是提高合金电化学性能的一个重要途径。如何获得具有更高的放电容量,合金容量衰退慢,循环稳定性更好的非晶态储氢合金一直是本领域的技术人员研究的课题。
发明内容
本发明的目的是提供给一种合金容量衰退慢,循环稳定性好的非晶态储氢合金。
为了实现上述的技术目的,本发明的技术方案是:一种非晶态储氢合金,其化学计量比为LaMg11Zr+200%Ni+X%La,上述百分比为质量百分比,其中X=5或10。
上述,当X=5时,即化学计量比为LaMg11Zr+200%Ni+5%La时,合金电极达到最大放电容量,循环稳定性好。
结构分析表明,球磨20h该系列合金都呈非晶态,La添加后合金颗粒得到明显细化;电化学研究表明,La添加后,合金电极充电阻力减小,放电容量随La含量的增加而增大,适量La的添加改善了合金电极的循环稳定性和动力学性能。
球磨20h合金均为非晶态,Ni、La颗粒已完全溶于主相中,La元素添加使合金散射峰更加宽化。
由合金充放电曲线说明,合金均有良好的吸放氢特性,La元素添加使合金电极充电平台降低,充电阻力减小,这主要与合金的非晶态程度增加有关。
合金电极的电化学分析表明,La添加对合金的活化性能没有明显的影响,合金电极的最大放电容量逐渐增大,循环稳定性先增强后减弱。x=5时,达到最大放电容量597.2mAh.g-1,充放电30周循环后容量保持率为53.5%,表现出较好的综合电化学性能。
合金电极的高倍率放电性能测试表明,La元素的添加,使合金的HRD值先增大后减小,适量的La元素的替代会显著提高合金电极高倍率放电性能。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为LaMg11Zr+200%Ni+x%La(x=0,5,10)合金的XRD图谱。
图2为LaMg11Zr+200%Ni合金的SEM图。
图3为LaMg11Zr+200%Ni+5%La)合金的SEM图。
图4为LaMg11Zr+200%Ni+10%La合金的SEM图。
图5为LaMg11Zr+200%Ni+x%La(x=0,5,10)合金电极的首次充放电曲线。
图6为LaMg11Zr+200%Ni+x%La(x=0,5,10)合金电极放电容量随充放电循环次数增加的关系曲线。
图7为LaMg11Zr+200%Ni+x%La(x=0,5,10)合金电极高倍率放电性能曲线。
具体实施方式
一种非晶态储氢合金,其化学计量比为LaMg11Zr+200%Ni+X%La,上述百分比为质量百分比,其中X=5或10。
本合金通过以下方法制备:采用La、Mg和Zr(纯度均大于99.5%),按原子比为1∶11∶1的比例混合,在氩气保护气氛下熔炼制得LaMg11Zr合金。将铸锭合金在充满氩气的手套箱中机械粉碎过200目筛后,和Ni粉(纯度≥99%)、La粉按设定比例混合,装入不锈钢球磨罐中(球料比为35∶1),充入高纯氩气保护,以转速为350r.min-1球磨(采用QM-1SP球磨机),时间为20h,将球磨合金过400目的筛后,放入干燥密封的玻璃容器备用。
利用本合金电极的制备:将球磨所得合金粉、镍粉和粘接剂聚偏氟乙烯(PVDF)按1∶3∶0.4的质量比均匀混合,滴加粘接剂调成糊状,均匀涂覆在1×7cm泡沫镍网的1×3cm的任意一端,烘干,对叠,在FW-4型压片机上以15MPa的压力将其压制成合金电极。
电化学性能测试:合金电极的电化学性能测试在标准开口式三电极系统中进行,负极:研究电极,正极:Ni(OH)2/NiOOH,参比电极:Hg/HgO,电解液:KOH水溶液(6mol.L-1)。合金电极放电容量,循环寿命及高倍率性能均在Land电池测试仪上进行。进行电化学测试时,各电极均先在KOH水溶液中静置3h,以300mA.g-1恒电流充电4h,充电完成后,静置40min,以50mA.g-1恒电流放电至-0.5V,测试环境温度为30℃。
结构及表面形貌分析:使用X射线粉末衍射(Bruker D8)检测合金的相结构,射线源为Cu Ka(λ=0.15406nm),扫描速率0.02°/sec。采用JSM6300型扫描电子显微镜对合金粉末进行了形貌观察。
上述的测试与分析结果如下:
1、结构分析:如图1所示,球磨后三种合金都只呈现单一的“馒头状”漫散射峰,说明Ni、La颗粒已完全溶于主相中,合金形成均一的非晶相,La加入后,合金漫散射峰变宽,其峰位均移向高角区,合金半高宽(弧度)增大,说明合金非晶态程度增加。
合金粉末晶粒尺寸采用Scherrer表达式进行计算,计算结果如表1所示:
Scherrer表达式: φ = 0.9 λ L cos θ
式中φ,L,θ分别代表晶粒直径、校正后的半高宽(弧度)和衍射角。
LaMg11Zr+200%Ni+x%La(x=0,5,10)合金衍射峰峰位及晶粒尺寸如表1所示:
表1LaMg11Zr+200%Ni+x%La(x=0,5,10)合金衍射峰峰位及晶粒尺寸
  X   质心-A(°)   L(°)   θ(°)   Φ(nm)
  0   41.666   6.499   83.419   1.619
  5   42.407   7.213   85.218   1.479
  10   43.190   8.442   87.699   1.290
2、表面形貌分析:如图2所示并结合表1可知,加入La球磨后,合金颗粒尺寸逐步减小,颗粒得到明显细化。La的原子半径大于Mg,随着La的加入,造成了新的合金膨胀,增加了合金的体积,细化了合金颗粒。
3、充放电性能:如图3所示,添加La元素后合金电极充电平台降低,充电阻力减小。由XRD分析可知,加La球磨使合金非晶态程度增加,而非晶态合金拥有大量的长程无序和短程有序结构,为氢的扩散和占位提供了大量能垒较低的空穴,有利于吸放氢的进行,使合金充放电性能增强,从而使合金充电阻力减小。合金电极放电曲线均出现两个放电电位下降较为缓慢的放电平台区,研究表明此为氢化物中的氢进行氧化反应的放电电位平台区,说明合金电极中存在两个放氢相。
4、活化性能及循环寿命:如图4所示,La添加对合金的活化性能没有明显的影响,各合金电极经过1~2个充放电循环就可以达到最大放电容量,该类合金具有良好的活化性能。结合图4及如下表2可知,随x的增大,合金电极的最大放电容量逐渐增大,但循环稳定性降低。x=5时,合金电极达到最大放电容量597.2mAh.g-1,循环30次后的容量保持率仍为53.5%,表现出较好的综合电化学性能。由结构分析可知,La加入后合金颗粒得到明显细化,合金比表面积增加,表面电荷转移和氢扩散通道增多,从而使放电容量增大。La能够提高合金的热稳定性,并能够防止合金粉化,因而少量La添加对循环容量的衰退有一定抑制作用,但加入10%La球磨后,合金较小的颗粒尺寸和较大的比表面积增大了碱液与内部合金的接触机会,加速了合金的腐蚀,从而合金电极循环稳定性变差。
表2LaMg11Zr+200%Ni+x%La(x=0,5,10)合金电极电化学性能
Figure BDA0000029220100000051
5、高倍率放电性能:如图5所示,合金电极的高倍率放电性能均随放电电流密度的增大而减小,在相同的放电电流密度下,合金电极的高倍率放电性能随着La含量的增加先升高后降低,如放电电流密度为300mA.g-1时,合金的HRD值由x=0时的73.1%增大到x=5时的81.9%,又下降到x=10时的76.5%,说明适量La的添加会显著提高合金电极高倍率放电性能。合金电极的电催化活性提高是导致其高倍率放电性能提高的一个重要因素。少量La加入后,合金颗粒细化,比表面积增大,合金表面电催化活性增强,高倍率放电性能就增强。但加入的La量增多,导致合金膨胀以及缺陷加大,从而使得合金较容易被碱液腐蚀,导致活性物质表面形成致密薄膜,阻碍了氢在合金体内的扩散速率,使合金电催化活性降低,高倍率放电能力降低。
上述实施例不以任何方式限制本发明,凡是采用等同替换或等效变换的方式获得的技术方案均落在本发明的保护范围内。

Claims (2)

1.一种非晶态储氢合金,其特征在于:其化学计量比为LaMg11Zr+200%Ni+X%La,上述百分比为质量百分比,其中X=5或10。
2.根据权利要求1所述的非晶态储氢合金,其特征在于化学计量比为LaMg11Zr+200%Ni+5%La。
CN 201010516572 2010-10-22 2010-10-22 非晶态储氢合金 Pending CN101985726A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010516572 CN101985726A (zh) 2010-10-22 2010-10-22 非晶态储氢合金

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010516572 CN101985726A (zh) 2010-10-22 2010-10-22 非晶态储氢合金

Publications (1)

Publication Number Publication Date
CN101985726A true CN101985726A (zh) 2011-03-16

Family

ID=43710125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010516572 Pending CN101985726A (zh) 2010-10-22 2010-10-22 非晶态储氢合金

Country Status (1)

Country Link
CN (1) CN101985726A (zh)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078094A (zh) * 2007-06-22 2007-11-28 钢铁研究总院 一种高容量Mg2Ni型贮氢合金非晶带材及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101078094A (zh) * 2007-06-22 2007-11-28 钢铁研究总院 一种高容量Mg2Ni型贮氢合金非晶带材及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《电池》 20100228 闫新春,刘子利 LaMg11Zr + 200 %Ni + x %Zr 合金的电化学性能 30-32 1-2 第40卷, 第1期 2 *

Similar Documents

Publication Publication Date Title
Hou et al. Hollow dodecahedral Co3S4@ NiO derived from ZIF-67 for supercapacitor
Mo et al. The sucrose-assisted NiCo2O4@ C composites with enhanced lithium-storage properties
Liu et al. Structure and electrochemical hydrogen storage behaviors of alloy Co2B
Anik et al. Effect of Al, B, Ti and Zr additive elements on the electrochemical hydrogen storage performance of MgNi alloy
CN105576223B (zh) 一种具有高可逆容量的氧化锡基负极材料及其制备方法
Wang et al. Electrochemical hydrogen storage property of Co–S alloy prepared by ball-milling method
Sui et al. Construction of NiCo2O4@ Ni0. 85Se core-shell nanorod arrays on Ni foam as advanced materials for an asymmetric supercapacitor
Liu et al. Effect of mesoporous α-Fe2O3 nanoparticles doping on the structure and electrochemical hydrogen storage properties of Co0. 9Cu0. 1Si alloy
Kim et al. A study on the improvement of the cyclic durability by Cr substitution in V–Ti alloy and surface modification by the ball-milling process
Lim et al. Amorphous germanium oxide nanobubbles for lithium-ion battery anode
Ma et al. Freestanding core-shell Ni (OH) 2@ MnO2 structure with enhanced energy density and cyclic performance for asymmetric supercapacitors
Guo et al. Effects of γ-CoOOH coating on the high-temperature and high-rate performances of spherical nickel hydroxide electrodes
Tran et al. High rate performance of Lithium-ion batteries with Co-free LiNiO2 cathode
JP3136668B2 (ja) 水酸化ニッケル活物質粉末およびニッケル正極とこれを用いたアルカリ蓄電池
Lin et al. Hydrogen storage properties of Ti1. 4V0. 6Ni+ x Mg (x= 1–3, wt.%) alloys
Xu et al. Cyanometallic framework-derived dual-buffer structure of Sn-Co based nanocomposites for high-performance lithium storage
He et al. Preparation and electrochemical hydrogen storage property of alloy CoSi
CN104220613A (zh) 吸氢合金粉末、负极和镍氢二次电池
CN102891298B (zh) 一种Mg-Ni-Nd系贮氢电极合金的表面改性方法
Fan et al. Carbon coated porous SnO2 nanosheet arrays on carbon cloth towards enhanced lithium storage performance
Pan et al. Co3O4 nanoparticles anchored on stable Na2Ti2O5 nanobelts for improved lithium storage
Yi et al. Graphite-anchored lithium vanadium oxide as anode of lithium ion battery
CN102534338A (zh) 一种储氢用炭化钴材料及其制备方法
Yan et al. Enhancing performance of NiCo Sulfide composite cathode by Mn doping in Li-S batteries
Zhang et al. Effect of Si on electrochemical hydrogen storage properties of crystalline Co

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110316