CN101979265B - Method for controlling stroke lengthening of serially connected pluggable electric vehicle - Google Patents

Method for controlling stroke lengthening of serially connected pluggable electric vehicle Download PDF

Info

Publication number
CN101979265B
CN101979265B CN 201010509551 CN201010509551A CN101979265B CN 101979265 B CN101979265 B CN 101979265B CN 201010509551 CN201010509551 CN 201010509551 CN 201010509551 A CN201010509551 A CN 201010509551A CN 101979265 B CN101979265 B CN 101979265B
Authority
CN
China
Prior art keywords
engine
car load
driving engine
hcu
operating point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN 201010509551
Other languages
Chinese (zh)
Other versions
CN101979265A (en
Inventor
李宗华
李超
苏岭
周安健
任勇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing Changan Automobile Co Ltd
Chongqing Changan New Energy Automobile Co Ltd
Original Assignee
Chongqing Changan Automobile Co Ltd
Chongqing Changan New Energy Automobile Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing Changan Automobile Co Ltd, Chongqing Changan New Energy Automobile Co Ltd filed Critical Chongqing Changan Automobile Co Ltd
Priority to CN 201010509551 priority Critical patent/CN101979265B/en
Publication of CN101979265A publication Critical patent/CN101979265A/en
Application granted granted Critical
Publication of CN101979265B publication Critical patent/CN101979265B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Hybrid Electric Vehicles (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)

Abstract

The invention provides a method for controlling stroke lengthening of a serially connected pluggable electric vehicle. The system adopted by the method consists of an engine, a control unit EMS of the engine, a generator, a controller IPU of the generator and a whole vehicle controller HCU. The controlling method comprises the following steps of: (1) setting starting conditions of a stroke lengthening module; (2) starting the stroke lengthening module; and (3) controlling operation of the stroke lengthening module. In the method, a small starting motor which starts the engine can be saved, the engine can be directly started by the generator with high efficiency so as to reduce cost and save arrangement space of parts and components, simultaneously a command is sent to the IPU through the HCU to ensure the generator starts the engine, so that the success rate of one-time start is higher, and the starting effect and the communication command are simpler compared with those obtained when the small starting motor starts the engine. Meanwhile, in the method, several operation points with better economy can be selected on an external characteristic curve of the engine so as to reduce energy consumption and meet the requirement of electricity utilization of the whole vehicle.

Description

The plug-in electronlmobil of a kind of series connection increases the process control method
Technical field
The invention belongs to the Full Vehicle System control field, be specifically related to increase journey travel startup and the progress control method of module.
Background technology
Energy shock and ecological deterioration are two large factors of restriction economic development.The new of research energy-conserving and environment-protective can automobile be one of effective means that overcomes the above problems, and the plug-in electronlmobil of wherein connecting is the focus of researching and developing at present.The cardinal principle of this battery-driven car is: supply with the drive motor energy by lithium cell and drive Vehicle Driving Cycle, when the energy shortage of lithium cell, need start the engine to drive the electrical generator generating, the electricity that sends makes vehicle continue to travel by drive motor.Wherein driving engine, electrical generator, control unit of engine EMS, engine controller IPU are referred to as and increase the journey module.Wherein driving engine does not participate in the car load driving, only drives the electrical generator generating.In the prior art, mostly be by setting a point as the point of engine power generation operation, although the setting better economy of this point can not satisfy the torque demand of other operating mode of car load.Have under the larger torque demand at car load, can not satisfy the power demand of car load.
Summary of the invention
The object of the invention is to propose the plug-in electronlmobil of a kind of series connection and increase the process control method, the problem that mainly solves is: (1) increases the journey module and starts, and namely in the car load operational process, how driving engine starts and how to drive electrical generator is generated electricity.(2) operation that increases the journey module is controlled, and namely increases the journey module and starts how to realize that a plurality of operating points of driving engine switch afterwards.
In order to realize above-mentioned control method, the system that the present invention adopts consists of: driving engine, control unit of engine EMS, electrical generator, engine controller IPU, entire car controller HCU.Connection mode between the above assembly is: the output shaft of driving engine and the rotor of electrical generator are rigidly connected; The communication relation occurs in control unit of engine monitoring engine running state between while and the entire car controller HCU; The communication relation occurs in engine controller IPU monitoring electrical generator state between while and the entire car controller HCU.
Control process is as follows:
(1) set the entry condition that increases the journey module: in the process that vehicle is moving, the remaining capacity SOC signal of battery sends to entire car controller HCU to be judged, when SOC reached threshold values A, driving engine just started; Described threshold values A is the maxim in following three limiting condition values: the minimum operation limit value of (1) this car battery; (2) calculate resulting electrokinetic cell SOC requirements according to car load low-voltage electrical appliance electrobalance; (3) can satisfy driving engine and start smoothly the battery discharge power of requirement to the SOC value of correspondence;
(2) increasing the journey module starts: when battery reaches above-mentioned threshold values A, entire car controller HCU sends a demand torque order to engine controller IPU, engine controller IPU control electrical generator start the engine, driving engine enters idle state by halted state;
(3) increase journey module operation control: after increasing the startup of journey module, car load enters driven by engine electrical generator generating energy supply pattern, by the chaufeur step on the accelerator, the torque demand signal of car load is passed to entire car controller HCU, this signal is voltage signal; Entire car controller HCU obtains the demand torque of car load according to described voltage signal, and this demand torque is sent to control unit of engine EMS, and control unit of engine EMS is operated in one of operating point 1-3 according to this demand torque control engine; The car load demand torque of the described operating point 1 corresponding acceleration pedal degree of depth between 0% ~ 30%, the electric weight that this moment, driving engine sent are used for car load and drive, and unnecessary electric weight charges the battery; Car load demand torque when the operating point 2 corresponding acceleration pedal degree of depth are 30% ~ 60%, the electric weight that this moment, driving engine sent only are used for car load and drive; The operating point 3 corresponding acceleration pedal degree of depth are greater than 60% car load demand torque less than 80% time, and the electric energy that driving engine sends satisfies the dynamic property demand under the car load max. climb slope; When the acceleration pedal degree of depth greater than 80% the time, control unit of engine EMS limiting engine horsepower output, driving engine are still in 3 times work of operating point.
The present invention can save the little starter motor of start the engine, directly use the electrical generator start the engine, more efficient, reduced cost, saved the arrangement space of parts, simultaneously by HCU to the IPU instruction, allow the electrical generator start the engine, disposable startup has higher success rate, and startup effect, communication instruction use little starter motor start the engine more succinct.Simultaneously, the present invention can select the better operating point of several economy on the engine test bench characteristic curve, reduced energy consumption, also satisfies the car load need for electricity simultaneously.
Description of drawings
Fig. 1 increases journey module operation control block diagram.
Fig. 2 engine working point control algorithm.
The specific embodiment
Below in conjunction with description of drawings specific implementation process of the present invention:
The present invention adopts driving engine, control unit of engine EMS, electrical generator, engine controller IPU, entire car controller HCU composition to increase the journey module.Connection mode between the above assembly is: the output shaft of driving engine and the rotor of electrical generator are rigidly connected; The communication relation occurs in control unit of engine monitoring engine running state between while and the entire car controller HCU; The communication relation occurs in engine controller IPU monitoring electrical generator state between while and the entire car controller HCU.
Referring to Fig. 1, increase journey module entry condition: in the process that vehicle is moving, the remaining capacity SOC signal of battery sends to HCU to be judged, when SOC reached threshold values A, driving engine just can start.Threshold values A is the maxim in following three limiting condition values: the minimum operation limit value of (1) this car battery; (2) calculate resulting electrokinetic cell SOC requirements according to car load low-voltage electrical appliance electrobalance; (3) can satisfy driving engine and start smoothly the battery discharge power of requirement to the SOC value of correspondence.
When battery reached above-mentioned threshold values A, entire car controller HCU sent a demand torque order to engine controller IPU, engine controller IPU control electrical generator start the engine, and driving engine enters idle state by halted state;
Increase journey module operation control: after increasing the startup of journey module, car load enters driven by engine electrical generator generating energy supply pattern.The acceleration pedal of chaufeur is trampled, and the torque demand signal of car load is passed to HCU, and this signal is voltage signal.HCU obtains the demand torque of car load according to this signal, this demand torque demand motive electric machine controller is carried out.In order to satisfy the demand power of car load, the while is considered again economical, and the present invention designs a certain specific operating point work of driving engine among operating mode 1-3 that allows.Wherein, definite principle of operating point 1 and operating point 2 is: under this operating point, the fuel consumption rate of driving engine is lower, better economy; Definite principle of operating point 3 is: the electric energy that driving engine sends under this operating point can satisfy the dynamic property demand under the car load max. climb slope.Be that economy is considered in operating point 1,2 setting, dynamic property is considered in the setting of operating point 3.
Referring to Fig. 2, the car load demand torque situation that operating mode 1-3 is corresponding is:
The car load demand torque of the operating point 1 corresponding pedal degree of depth 0% ~ 30% time, driving engine are with fixedly operating point 1 operation, and the electric weight that this moment, driving engine sent is used for car load and drives, and unnecessary electric weight charges the battery.
Car load demand torque when 2 pairs of operating modes should the pedal degree of depth be 30% ~ 60%, driving engine is with fixedly operating point 2 operations, and the electric weight that this moment, driving engine sent only is used for car load and drives.
The operating mode 3 corresponding pedal degree of depth are greater than 60% and car load demand torque less than 80% time, and driving engine satisfies the larger acceleration demand of car load in operating point 3 operations, the NVH of this moment and discharge relatively poor.This point be provided as the standby function point.When the pedal degree of depth greater than 80% the time, engine output is limited, still in 3 times work of operating point.
Among the figure, dotted line statement drive motor actual demand power, solid line represents engine power generation power.

Claims (1)

1. the plug-in electronlmobil of series connection increases the process control method, described control method realizes by the journey module that increases that is comprised of driving engine, control unit of engine EMS, electrical generator, engine controller IPU, entire car controller HCU, and the connection mode between each assembly is: the output shaft of driving engine and the rotor of electrical generator are rigidly connected; The communication relation occurs in control unit of engine EMS monitoring engine running state between while and the entire car controller HCU; The communication relation occurs in engine controller IPU monitoring electrical generator state between while and the entire car controller HCU;
Control process is as follows:
(1) set the entry condition that increases the journey module: in the process that vehicle is moving, the remaining capacity SOC signal of battery sends to entire car controller HCU to be judged, when SOC reached threshold value A, driving engine just started; Described threshold value A is the maxim in following three limiting condition values: the minimum operation limit value of (1) this car battery; (2) calculate resulting electrokinetic cell SOC requirements according to car load low-voltage electrical appliance electrobalance; (3) can satisfy the corresponding SOC value of battery discharge power that driving engine starts requirement smoothly;
(2) increasing the journey module starts: when battery SOC reaches above-mentioned threshold value A, entire car controller HCU sends a demand torque order to engine controller IPU, engine controller IPU control electrical generator start the engine, driving engine enters idle state by halted state;
(3) increase journey module operation control: after increasing the startup of journey module, car load enters driven by engine electrical generator generating energy supply pattern, by the chaufeur step on the accelerator, the torque demand signal of car load is passed to entire car controller HCU, this signal is voltage signal; Entire car controller HCU obtains the demand torque of car load according to described voltage signal, and this demand torque is sent to control unit of engine EMS, and control unit of engine EMS is operated in one of operating point 1-3 according to this demand torque control engine; The described operating point 1 corresponding acceleration pedal degree of depth is at 0% ~ 30% car load demand torque, and the electric weight that this moment, driving engine sent is used for car load and drives, and unnecessary electric weight charges the battery; Car load demand torque when the operating point 2 corresponding acceleration pedal degree of depth are 30% ~ 60%, the electric weight that this moment, driving engine sent only are used for car load and drive; The operating point 3 corresponding acceleration pedal degree of depth are greater than 60% car load demand torque less than 80% time, and the electric energy that driving engine sends satisfies the dynamic property demand under the car load max. climb slope; When the acceleration pedal degree of depth greater than 80% the time, control unit of engine EMS limiting engine horsepower output, driving engine are still in 3 times work of operating point.
CN 201010509551 2010-10-18 2010-10-18 Method for controlling stroke lengthening of serially connected pluggable electric vehicle Active CN101979265B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010509551 CN101979265B (en) 2010-10-18 2010-10-18 Method for controlling stroke lengthening of serially connected pluggable electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010509551 CN101979265B (en) 2010-10-18 2010-10-18 Method for controlling stroke lengthening of serially connected pluggable electric vehicle

Publications (2)

Publication Number Publication Date
CN101979265A CN101979265A (en) 2011-02-23
CN101979265B true CN101979265B (en) 2013-01-23

Family

ID=43599817

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010509551 Active CN101979265B (en) 2010-10-18 2010-10-18 Method for controlling stroke lengthening of serially connected pluggable electric vehicle

Country Status (1)

Country Link
CN (1) CN101979265B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102267453B (en) * 2011-05-17 2013-06-12 奇瑞汽车股份有限公司 Energy management method for stroke-increased electric motor car
CN102275517A (en) * 2011-05-31 2011-12-14 北京高峰新扬汽车技术有限公司 Electric vehicle as well as range extender, range-extending control system and range-extending control method thereof
CN103101445B (en) * 2011-11-10 2014-12-24 长春易控汽车电子有限公司 Working mode control method for range extender
CN102745092B (en) * 2012-07-27 2015-11-25 浙江吉利汽车研究院有限公司杭州分公司 The control method of extended-range hybrid power car generator set and control setup
CN102795115B (en) * 2012-08-27 2014-12-10 奇瑞汽车股份有限公司 Power generation control method of extended range type electric automobile
CN103863300B (en) * 2012-12-07 2016-08-24 北汽福田汽车股份有限公司 A kind of control method of extended-range electric vehicle
CN103523006B (en) * 2013-11-01 2016-03-30 北京北内创意电控发动机有限责任公司 The engine control of extended-range electric vehicle and device
CN104163114B (en) * 2014-07-22 2016-06-08 浙江大学 A kind of car load energy management method for internal combustion power generating mileage increasing type electric vehicle
CN104329178B (en) * 2014-09-05 2017-04-05 北京新能源汽车股份有限公司 The control method of type range extender engine of the pure electric automobile without camshaft-signal sensor
CN104393355B (en) * 2014-10-27 2016-08-24 潍柴动力股份有限公司 The electric equilibrium control method of a kind of electrokinetic cell and device
CN104386059B (en) * 2014-11-15 2017-01-11 奇瑞汽车股份有限公司 Mode control method for plug-in hybrid vehicle motors
CN105459844B (en) * 2015-12-30 2017-11-28 北京理工大学 A kind of stroke-increasing electric automobile multi-mode energy management method
CN109808514A (en) * 2019-01-29 2019-05-28 浙江吉利新能源商用车集团有限公司 A kind of distance increasing unit device and its control method for vehicle
CN111469714B (en) * 2020-04-24 2021-12-07 上海元城汽车技术有限公司 Starting control method, device, equipment and storage medium of extended range electric vehicle
CN111619401A (en) * 2020-05-29 2020-09-04 重庆长安汽车股份有限公司 Auxiliary power generation control method and system of extended-range fuel cell vehicle, vehicle control unit and extended-range fuel cell vehicle
CN111856272A (en) * 2020-06-15 2020-10-30 杭州赫日新能源科技有限公司 Endurance test system and method for range extender
CN112065552A (en) * 2020-09-11 2020-12-11 北京车和家信息技术有限公司 Diagnostic method and device for three-way catalyst, vehicle controller and vehicle
CN112590764A (en) * 2020-12-21 2021-04-02 宝能(西安)汽车研究院有限公司 Engine control method and device for hybrid vehicle and hybrid vehicle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905360A (en) * 1996-08-22 1999-05-18 Toyota Jidosha Kabushiki Kaisha Battery system and electric motor vehicle using the battery system with charge equalizing features
CN101284534A (en) * 2007-04-13 2008-10-15 丰田自动车株式会社 Control device for hybrid vehicle drive apparatus
CN101428614A (en) * 2007-11-08 2009-05-13 丰田自动车株式会社 Hybrid vehicle and control method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010023740A (en) * 2008-07-23 2010-02-04 Toyota Motor Corp Hybrid vehicle and control method of hybrid vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5905360A (en) * 1996-08-22 1999-05-18 Toyota Jidosha Kabushiki Kaisha Battery system and electric motor vehicle using the battery system with charge equalizing features
CN101284534A (en) * 2007-04-13 2008-10-15 丰田自动车株式会社 Control device for hybrid vehicle drive apparatus
CN101428614A (en) * 2007-11-08 2009-05-13 丰田自动车株式会社 Hybrid vehicle and control method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2010-23740A 2010.02.04

Also Published As

Publication number Publication date
CN101979265A (en) 2011-02-23

Similar Documents

Publication Publication Date Title
CN101979265B (en) Method for controlling stroke lengthening of serially connected pluggable electric vehicle
CN201544960U (en) Hybrid power control system of rail hybrid power locomotive
CN102259646B (en) Series hybrid electric vehicle as well as method and device for controlling energy of same
RU2012127409A (en) HYBRID VEHICLE CONTROL DEVICE
CN102963354B (en) The torque processing method of motor vehicle driven by mixed power
CN103192717B (en) Low-voltage power supply system of hybrid power automobile and control method thereof
CN102431547A (en) Method for controlling chargeable hybrid power vehicle
CN112590759B (en) Drive-by-wire and brake coordination control method for hybrid electric vehicle
CN102869533A (en) Wind based load isolated electrical charging system
CN203713586U (en) integrated control system for range extender of electric motor coach
CN104029606A (en) Control method of vehicle permanent magnet synchronous motor range extender
CN107351693B (en) Method for efficient integrated control of hybrid electric vehicle power system
CN102130489A (en) Charging system of electric vehicle
CN201366958Y (en) Electric energy system of dual-energy hybrid electric vehicle in combination with wind power
CN102910061A (en) Supercapacitor energy-storage ISG (Integrated Started Generator) asynchronous motor type hybrid power system and generating control method
CN108688457A (en) A kind of hybrid electric drive system
CN101659204B (en) Hybrid driving system and driving method thereof
CN201566616U (en) Multimode control system of extended-range type electric car-mounted generator
CN105197009A (en) BSG (belt starter generator) motor power supply method and system, vehicle control unit and vehicle
CN206647360U (en) A kind of dual power supply type engineering machinery
CN101830220A (en) Generator multimode control system of range-extended electric car
CN206255175U (en) Ship direct current networking propulsion system with batteries to store energy
CN112878414A (en) Driving system and method of hybrid power mechanical equipment
CN201296160Y (en) Hybrid power drive system
CN202965928U (en) Super capacitor energy storage hybrid power system with ISG asynchronous motor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant