CN101978162A - 地热发电站 - Google Patents

地热发电站 Download PDF

Info

Publication number
CN101978162A
CN101978162A CN2009801092262A CN200980109226A CN101978162A CN 101978162 A CN101978162 A CN 101978162A CN 2009801092262 A CN2009801092262 A CN 2009801092262A CN 200980109226 A CN200980109226 A CN 200980109226A CN 101978162 A CN101978162 A CN 101978162A
Authority
CN
China
Prior art keywords
geothermal power
unit
power plant
geothermal
underground heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2009801092262A
Other languages
English (en)
Inventor
S·约翰松
G·T·索莫兹森
S·托韦德
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GREEN ENERGY GROUP AS
Original Assignee
GREEN ENERGY GROUP AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GREEN ENERGY GROUP AS filed Critical GREEN ENERGY GROUP AS
Publication of CN101978162A publication Critical patent/CN101978162A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

地热发电站,包括被模块化和适配化以适合一个或多个容器的机组,作为地热容器机组,所述地热容器机组按一定体积制作以适于从一个钻井提取地热能源,每个地热容器机组具有用于与其他地热容器机组以及电力网络电连接的装置,由此提供布置在网络中的地热发电站,提供负载平衡和冗余。

Description

地热发电站
技术领域
本发明涉及地热发电站。更具体地说,本发明涉及一种较现有地热发电站水平提供技术和商业优势的地热发电站,尤其是当地热钻孔位于大面积上的情况下。
发明背景和现有技术
地热电力是利用地球内部存储的热产生的能量,或是收集采自地下的吸收热。目前最常见的地热发电站类型是闪蒸和双循环发电站。双循环发电站经过比水具有低得多沸点的二次流体传递适度热的地热水,该二次流体因此蒸发并驱动汽轮机。闪蒸型是最常见的,其中高温蒸汽直接从钻井被提取,送入汽轮机,汽轮机驱动发电机。增强地热系统(EGS)是一种新的替代型地热技术。增强地热系统(EGS)典型地使用深入至热岩层的井,以注入水并使用返回的蒸汽来发电。
目前的地热发电站设计为集中式发电站,在距发电站最大距离约2公里的范围内有许多井孔,地上蒸汽管道通常被布置为将蒸汽引致集中式发电站。所有地热电力项目开始于勘探阶段,在这期间最有希望的位置被选定。此后在选定的地点开始钻井阶段,钻井方案被制定例如约为50兆瓦(MW)。生产井钻井工作随后展开,一个典型的生产井具有5兆瓦或少于5兆瓦的电力。每个孔的钻井通常需要花2-4个月的时间,然后钻机被移至下一个位置。在50兆瓦的情况下,钻孔数可以是10,钻完所有孔这可能需要花长达3年的时间。这之后,开始评估/设计阶段(1-2年),然后是建设阶段(1-3年)。只有在那之后,电力生产才开始。在所有阶段期间,那些已完成的钻井被闲置,没有来自于电力销售上的收入产生。从第一个井准备好到建设完成需要的时间通常是6年。一个5兆瓦的井的平均成本可能在3-4百万美元范围内。因此,巨大的投资被闲置长达6年。
根据以上,投资高,回报开始晚,负载平衡的冗余和灵活性受到限制。更具体地说,设计到运营的阶段通常是6-10年,回报开始通常从第7-9年而且如果电力输出大大减少时冗余是有限的。更进一步,工程繁琐且昂贵,因为每个发电站是量身定制的,其复杂且昂贵。而且,为了避免管内过多的压力损失和蒸汽冷凝,井眼必须靠近集中式发电站。此外,大量的发电设备和不可见的管道铺设对环境造成了负面影响。
鉴于上述提到的种种缺点,需要具有有益特性的地热发电站。
发明内容
本发明满足上述提到的要求,避免或减少上述弊端。
更具体地说,本发明提供地热发电站,其特征在于包括被模块化和适配化以适合一个或多个容器(container)的机组,作为地热容器机组,
所述地热容器机组按体积制作以适配成从一个钻井或一个普通的孔提取地热能源,和
每个地热容器机组具有与其他地热容器机组以及电力网络电连接的装置,由此提供布置在网络中的地热发电站,提供负载平衡和冗余。
地热发电站可以是闪蒸(flash)或双循环发电站。
在一个优选实施方式中,本发明是一个闪蒸/双循环地热发电站,包括,
1.蒸汽/盐水处理机组,可操作地连接到
2.汽轮机/发电机机组,可操作地连接到
3.冷凝机组,可操作地连接到
4.冷却塔机组,
其区别在于
所述机组被模块化和适配化以适合一个或多个标准容器,作为地热容器机组,
所述地热容器机组按一定体积制作以适合主要地从一个钻井提取地热能,和
每个地热容器机组具有与其他地热容器机组以及电力网络电连接的装置,由此提供布置在网络中的地热发电站,提供负载平衡和冗余。
优选地,每个模块化和容器化的机组被放置于挨着或临近各自的钻孔(borehole)平台(井孔(wellbore)、井眼(drill bore)、钻孔(drillhole)),避免蒸汽的传输和造成压力损失以及环境不利。优选地,用于相互连接地热容器化机组的电缆埋于地下,以减少对环境的影响。一个典型的容器化机组优选地按一定体积制作设置为5兆瓦的装机容量,但是,完全适合于从本地一个或多个井孔可获取的容量。
优选地,地热发电站被安排在提供远程监控的对等网络中。远程管理工具集中控制和最大化电站产能。这包括预防性维护传感器和软件,以降低故障的风险。优选地,所有机组包括额外的带有叶片的汽轮机转子,它们能被现场容易地用来替换受损的汽轮机转子。当有故障时,分散化的网络提供完全的冗余。可交付的电力从约5兆瓦到50兆瓦或以上,相比从距离集中发电厂半径约2公里以内的传统区域大得多区域收集地热能。模块化设计使发电厂能大大升级,适应当地的需求。
计算表明,使用2008年欧洲电力现货市场平均价或者德国地热绿色能源2009年1月1日的馈入税收(Feed-in Tariff),电力生产商一般在4到6年内将收回全部的地上投资。每兆瓦装机价格在市场上具有很高的竞争力。交付时间从订单日期起将只有约7-9个月。进一步,随着技术的改进,模块化设计允许并促进更新和更高效的模块化机组或部件更换。由于地热机组容易运输并按一定体积制作为标准化的运输容器,当井眼电力减少时,这也适合。地热发电项目中的额外的风险管理具有相当高的投资价值。
附图说明
本发明通过若干附图加以说明,其中:
图1显示一个单独的地热容器机组的部件;
图2显示包含地热电力系统的若干地热机组;
图3a显示一个传统的地热发电站的规划;
图3b显示根据本发明的具有先进技术水平的地热电力系统的规划;
图4显示一个典型的地热电力项目与根据本发明的具有先进技术水平的地热电力系统相比早6年的开始时间;
图5显示根据本发明的具有先进技术水平的地热电力系统与传统地热发电厂相比的较早回报。
具体实施方式
首先参考图1,显示根据本发明的一个地热电力系统,更具体地说,是根据本发明的一个地热容器机组。更具体地,图1显示包括蒸汽处理机组1(包括用于闪蒸型系统的蒸汽和水气分离器和用于双循环型系统的蒸发器)的闪蒸/双循环地热容器机组的内含物,该蒸汽处理机组1可操作地连接到汽轮机/发电机组2、冷凝机组3和冷却塔4。
本发明的地热发电站的每个部分可以包含现有技术,但是其组合体提供了令人惊讶的技术和经济效果。然而,随着科技的进一步发展,新的和改进的技术被优先使用或代替老的技术。
图2是一个规划,进一步详细说明本发明的地热电力系统如何由若干个容器化机组装配而成。
图3a显示当前的地热发电站技术,示出了集中式发电站以及它是如何被连接到周围不足2公里远的每个钻孔,这种连接包括地上蒸汽管道。
图3b显示根据本发明的具有先进技术水平的地热电力系统的规划,示出了分布在较大区域的地热容器机组网络。
图4显示传统地热发电站项目的时间表和根据本发明的地热电力统的时间表,展示出多达6年之早的运营和收入。
图5显示与传统的地热发电站相比根据本发明早期获得的收入量(1和2之间的区间)。(如果)这个计算中的区间为1500亿千瓦时(GWh),根据本发明,按照2008年欧洲现货市场能源价格(65欧元/兆瓦),意味着97.5百万欧元的额外收入,如果使用当前德国可再生能源的电力价格,将意味着300百万欧元的额外收入。在图5是10个地热机组的情况下,在启动阶段晚期期间,将收回所有的地上投资。

Claims (4)

1.地热发电站,
其特征在于包括被模块化和适配化以适合一个或多个容器的机组,作为地热容器机组,
所述地热容器机组按一定体积制作以适配化成从至少一个钻井提取地热能,和
每个地热容器机组具有与其他地热容器机组以及电力网络电连接的装置,由此提供布置在网络中的地热电力系统,提供负载平衡和冗余。
2.根据权利要求1所述的地热发电站,进一步包括
蒸汽/盐水处理机组,可操作地连接到
汽轮机/发电机机组,可操作地连接到
蒸汽冷凝机组,可操作地连接到
冷却塔机组。
3.根据权利要求1所述的地热发电站,
其特征在于包括多个地热容器机组,每个机组被设置在地热能被从中提取的钻孔(井孔、井眼、钻孔)顶部或邻近位置。
4.根据权利要求1所述的地热发电站,
其特征在于它是被布置在对等网络中,所述网络包括地热发电站运营商、电力网络运营商、供应商和电力公司。
CN2009801092262A 2008-03-17 2009-03-17 地热发电站 Pending CN101978162A (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
NO20081397 2008-03-17
NO20081397 2008-03-17
PCT/NO2009/000100 WO2009116873A1 (en) 2008-03-17 2009-03-17 Geothermal power plant

Publications (1)

Publication Number Publication Date
CN101978162A true CN101978162A (zh) 2011-02-16

Family

ID=41091119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009801092262A Pending CN101978162A (zh) 2008-03-17 2009-03-17 地热发电站

Country Status (13)

Country Link
US (1) US20110109087A1 (zh)
EP (1) EP2279348A4 (zh)
JP (1) JP2011514482A (zh)
KR (1) KR20110009104A (zh)
CN (1) CN101978162A (zh)
AP (1) AP3053A (zh)
CA (1) CA2718907A1 (zh)
MX (1) MX2010010125A (zh)
NI (1) NI201000149A (zh)
NZ (1) NZ588493A (zh)
RU (1) RU2493431C2 (zh)
SV (1) SV2010003668A (zh)
WO (1) WO2009116873A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130406A (zh) * 2016-06-29 2016-11-16 中国石油大学(华东) 地层自身冷源型干热岩热电发电系统与方法
CN107062666A (zh) * 2017-05-10 2017-08-18 安徽新富地能源科技有限公司 一种热能转换电能存贮装置

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8789269B2 (en) 2010-01-07 2014-07-29 Comau, Inc. Modular manufacturing facility and method
EP2668441A4 (en) * 2011-01-28 2018-01-10 Exxonmobil Upstream Research Company Regasification plant
US20130291567A1 (en) * 2011-01-28 2013-11-07 Lalit Kumar Bohra Regasification Plant
US9863836B2 (en) * 2011-12-30 2018-01-09 Spirax-Sarco Limited Monitoring apparatus for a steam plant and a method of operating such an apparatus
EP3233370B1 (en) 2014-12-15 2018-09-12 Comau LLC Modular vehicle assembly system and method
CN105781161A (zh) * 2016-04-29 2016-07-20 华电郑州机械设计研究院有限公司 一种新型热网首站布置方式
WO2017193042A1 (en) 2016-05-06 2017-11-09 Comau Llc Inverted carrier lift device system and method
RU2681725C1 (ru) * 2018-05-07 2019-03-12 Алексей Юрьевич Кочубей Термальный генератор
US11420853B2 (en) 2019-10-03 2022-08-23 Comau Llc Assembly material logistics system and methods
CA3175859A1 (en) * 2020-03-27 2021-09-30 Schlumberger Canada Limited Wellhead container for a geothermal system
CA3192155A1 (en) 2020-06-08 2021-12-16 Comau Llc Assembly material logistics system and methods
US11852383B2 (en) 2022-02-28 2023-12-26 EnhancedGEO Holdings, LLC Geothermal power from superhot geothermal fluid and magma reservoirs
US11905797B2 (en) * 2022-05-01 2024-02-20 EnhancedGEO Holdings, LLC Wellbore for extracting heat from magma bodies
US11918967B1 (en) 2022-09-09 2024-03-05 EnhancedGEO Holdings, LLC System and method for magma-driven thermochemical processes
US11913679B1 (en) 2023-03-02 2024-02-27 EnhancedGEO Holdings, LLC Geothermal systems and methods with an underground magma chamber
US11905814B1 (en) 2023-09-27 2024-02-20 EnhancedGEO Holdings, LLC Detecting entry into and drilling through a magma/rock transition zone

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052531A (zh) * 1988-12-02 1991-06-26 奥马蒂系统公司 利用蒸汽产生动力的方法和装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4057736A (en) * 1974-09-13 1977-11-08 Jeppson Morris R Electrical power generation and distribution system
JPS5755304A (en) * 1980-09-22 1982-04-02 Tokyo Shibaura Electric Co Flasher
US4844162A (en) * 1987-12-30 1989-07-04 Union Oil Company Of California Apparatus and method for treating geothermal steam which contains hydrogen sulfide
IL88571A (en) * 1988-12-02 1998-06-15 Ormat Turbines 1965 Ltd Method of and apparatus for producing power using steam
TR199501702A2 (tr) * 1994-12-29 1997-03-21 Ormat Ind Ltd Jeotermal akiskandan güc üretmek icin usul ve cihaz.
NZ280926A (en) * 1995-02-06 1998-07-28 Ormat Ind Ltd Geothermal power plant: conduits between liquid/steam separator and well much shorter than conduits between separator and power plant
US6259165B1 (en) * 1999-04-23 2001-07-10 Power Tube, Inc. Power generating device and method
JP3780838B2 (ja) * 2000-09-26 2006-05-31 株式会社日立製作所 グリーン電力供給システム及びグリーン電力供給方法
US6539718B2 (en) * 2001-06-04 2003-04-01 Ormat Industries Ltd. Method of and apparatus for producing power and desalinated water
JP2003134895A (ja) * 2001-10-22 2003-05-09 Yukio Wakahata 再生可能エネルギーによるガス・熱電併給システム、及びこれらを単位として一定規模に集約した広域型のガス・熱電併給型エネルギー供給システム、及びそのネットワーク・システム
RU2259002C2 (ru) * 2003-03-25 2005-08-20 Государственное научное учреждение Всероссийский научно-исследовательский институт электрификации сельского хозяйства (ГНУ ВИЭСХ) Солнечная энергетическая система (варианты)
JP2005137138A (ja) * 2003-10-30 2005-05-26 Toshiba Plant Systems & Services Corp 地熱発電方法および地熱発電設備

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1052531A (zh) * 1988-12-02 1991-06-26 奥马蒂系统公司 利用蒸汽产生动力的方法和装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106130406A (zh) * 2016-06-29 2016-11-16 中国石油大学(华东) 地层自身冷源型干热岩热电发电系统与方法
CN107062666A (zh) * 2017-05-10 2017-08-18 安徽新富地能源科技有限公司 一种热能转换电能存贮装置

Also Published As

Publication number Publication date
AP3053A (en) 2014-12-31
MX2010010125A (es) 2011-04-05
EP2279348A4 (en) 2016-08-10
RU2010141485A (ru) 2012-04-27
NZ588493A (en) 2013-09-27
WO2009116873A1 (en) 2009-09-24
SV2010003668A (es) 2011-03-21
JP2011514482A (ja) 2011-05-06
NI201000149A (es) 2011-03-02
KR20110009104A (ko) 2011-01-27
EP2279348A1 (en) 2011-02-02
AP2010005417A0 (en) 2010-10-31
US20110109087A1 (en) 2011-05-12
RU2493431C2 (ru) 2013-09-20
CA2718907A1 (en) 2009-09-24

Similar Documents

Publication Publication Date Title
CN101978162A (zh) 地热发电站
Rehman et al. Pumped hydro energy storage system: A technological review
Sims et al. Integration of renewable energy into present and future energy systems
Bizuayehu et al. Analysis of electrical energy storage technologies' state-of-the-art and applications on islanded grid systems
Muyeen Wind power
Matek Flexible opportunities with geothermal technology: Barriers and opportunities
Holttinen et al. Design and operation of energy systems with large amounts of variable generation: Final summary report, IEA Wind TCP Task 25
Wu et al. Overview of power system flexibility in a high penetration of renewable energy system
Heavner et al. Renewables work: job growth from renewable energy development in California
KR20140014763A (ko) 마이크로그리드를 이용한 에너지 및 담수 통합 공급장치
Tomšić et al. Optimizing integration of the new RES generation and electrical energy storage in a power system: Case study of Croatia
Nielsen et al. Completion of Krafla geothermal power plant
Stocks et al. Powering ahead: Australia leading the world in renewable energy build rates
Németh Renewable Energy Production and Storage Options and their Economic Impacts in Hungary
Task Design and operation of power systems with large amounts of wind power
Karlsdottir et al. LCA of combined heat and power production at Hellisheiði geothermal power plant with focus on primary energy efficiency
Khazali et al. Modeling and Integrating of an Innovative Compressed Air Energy Storage and Pumped Hydroelectric Hybrid System with Wind Power
Price Dispatchable Solar Power Plant Project
CN110766283B (zh) 电网调度系统以及电网调度方法
Kibet et al. KenGen’s wellhead technology experience and business insight
Kastis et al. The energy system of Greece: A Techno-economic and Environmental Approach
Schierhorn et al. Czech Power Grid without Electricity from Coal by 2030: Possibilities for Integration of Renewable Resources and Transition into a System Based on Decentralized Sources
Murakami et al. Units 5 and 6 at Lahendong Geothermal Power Plant and Units 3 and 4 at Ulubelu Geothermal Power Plant in Indonesia
Keshtkar et al. Evaluation of the safe yield of groundwater production derived from wind energy
Davidson et al. Geothermally Coupled Well-Based Compressed Air Energy Storage

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110216