CN101975938A - 基于射频信号的五维定位方法和系统 - Google Patents

基于射频信号的五维定位方法和系统 Download PDF

Info

Publication number
CN101975938A
CN101975938A CN 201010273309 CN201010273309A CN101975938A CN 101975938 A CN101975938 A CN 101975938A CN 201010273309 CN201010273309 CN 201010273309 CN 201010273309 A CN201010273309 A CN 201010273309A CN 101975938 A CN101975938 A CN 101975938A
Authority
CN
China
Prior art keywords
radiofrequency signal
destination node
location
induced voltage
beaconing nodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 201010273309
Other languages
English (en)
Inventor
胡超
王鲁佳
田龙强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Institute of Advanced Technology of CAS
Original Assignee
Shenzhen Institute of Advanced Technology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Institute of Advanced Technology of CAS filed Critical Shenzhen Institute of Advanced Technology of CAS
Priority to CN 201010273309 priority Critical patent/CN101975938A/zh
Publication of CN101975938A publication Critical patent/CN101975938A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

一种基于射频信号的五维定位方法,包括以下步骤:设定信标节点和目标节点,所述信标节点设有接收天线且设置在预设位置,所述目标节点设有发射天线且设置在待定目标位置;所述信标节点为N个,N大于或等于5个;所述发射天线发射射频信号,所述接收天线接收所述射频信号并建立感应电压模型,根据所述感应电压模型,利用非线性定位算法获得目标节点位置值。采用本发明的定位方法,能够得到三维的位置信息和两维的方向信息,获得更高的定位精度。

Description

基于射频信号的五维定位方法和系统
【技术领域】
本发明涉及定位技术,特别是涉及一种基于射频信号的五维定位方法和系统。
【背景技术】
随着科学技术的发展,对物体或人的定位精度、识别速率等要求越来越高。目前,定位的方法和可进行定位的信号是多种多样的。采用不同定位技术的定位系统种类繁多,如利用卫星无线射频(Radio Frequency,RF)信号的GPS定位、利用红外和激光的光学定位、利用超声和声纳的声音定位、利用图像处理和计算机视觉的视觉定位、利用陀螺原理的相对定位等等。其中,用于远距离定位,GPS是目前较为普遍的定位技术;但是对室内等小空间环境下的近距离定位,GPS的精度远远达不到要求。目前,室内等小空间局部区域的定位技术主要有:基于射频信号并结合各种无线网络技术如ZigBee,超宽带(Ultra-WideBand,UWB),Wi-Fi,蓝牙(Bluetooth),射频识别(Radio-frequency Identification,RFID)等定位技术。
基于ZigBee的定位技术主要是采用接收信号强度指示(Received SignalStrength Indicator,RSSI)来实现,目前ZigBee已经广泛地应用于工业、农业、军事、医疗等领域。由于单纯的使用RSSI的ZigBee定位系统精度有限,一般在3~5米。
超宽带UWB,根据FCC的定义,只要信号在-10dB处的绝对带宽大于0.5GHz或者相对带宽大于20%,并且中心频率大于500MHz,那么这一信号就是超宽带。基于UWB的定位主要是通过到达时间(Time of Arrival,TOA)或者到达时间差(Time Difference of Arrival,TDOA)来实现的。基于UWB的TDOA方法,应用于人员定位、仓储物流、军事、安防预警等,定位精度可到15厘米以内。
基于RFID的定位技术是通过射频识别标签(tags)或者无线收发器(transponders)来存储和非接触地发送数据来进行自动身份辨认的技术。RFID应用于定位主要分为两种方式:一种是位置感知(location-aware)方式,另一种是基于RSSI方式。在位置感知方式下,可以通过对跟踪对象安装RFID标签,然后将RFID标签读取器(RFID tag reader)放置在预设位置的地方,当跟踪对象进入到RFID标签读取器感知范围内时,就可以检测到跟踪对象的位置了。基于RSSI的RFID定位在一定程度上与ZigBee的定位方法类似。但是,由于射频信号的传播速度相当快,为了实现1m的定位精度,系统至少要能分辨出3ns的时间,这个很难实现,因此TOA和TDOA的实现比较困难。基于到达角度的定位基本上没有被采用,这主要是因为AOA定位的实现要通过天线阵列来感知信号的到达方向,实现起来成本很高,所以很少采用。
而其它的无线定位技术,如Wi-Fi(IEEE 802.11)和蓝牙(Bluetooth)是目前较为常用的两种无线网络协议。基于Wi-Fi和蓝牙的无线定位也主要是根据接收信号强度来实现的。
综上所述的定位方法,基于RSSI或者根据接收信号强度的定位模型,其依靠的是经验模型,信号的传播受各种环境因素很大,定位精度不高依旧是最为突出的问题。
【发明内容】
基于此,有必要提供一种精确高的基于射频信号的五维定位方法。
另外,还有必要提供一种精度高的基于射频信号的五维定位系统。
一种基于射频信号的五维定位方法,包括以下步骤:
设定信标节点和目标节点,所述信标节点设有接收天线且设置在预设位置,所述目标节点设有发射天线且设置在待定目标位置;所述信标节点为N个,N大于或等于5个;
所述发射天线发射射频信号,所述接收天线接收所述射频信号并建立感应电压模型;
根据所述感应电压模型,利用非线性定位算法获得目标节点位置值。
优选地,所述感应电压模型为:
V = βη Il t l r 4 πR sin θ cos α
其中,R为目标节点到信标节点的距离;θ为目标节点到信标节点的距离矢量与发射天线面的夹角;α为接收天线的电场强度矢量与接收天线面的夹角;I通过发射天线的有效电流值;lt为发射天线的长度;lr为接收天线的长度;β相位常数;η为介质的特性常数。
优选地,所述接收天线和发射天线为偶极子天线。
优选地,所述射频信号的频率为设定的固定值。
优选地,所述发射天线定时发送射频信号。
优选地,所述信标节点所处位置的电场至少包括sinθ/R3、sinθ/R2和sinθ/R项。
优选地,所述非线性定位算法为LM算法。
优选地,所述感应电压模型在考虑噪声的情况下为:
Figure BSA00000258838800032
其中,令
Figure BSA00000258838800033
发射天线的中心坐标为Pt(x0,y0,z0),发射天线方向矢量为(m0,n0,p0),且m0 2+n0 2+p0 2=1;信标节点的位置坐标为(xi,yi,zi),接收天线方向矢量为(mi,ni,pi),且
Figure BSA00000258838800034
nσ是满足均值为零,标准方差为σ的标准正态分布的随机变量。
优选地,在根据所述感应电压模型,利用非线性定位算法获得目标节点位置值的步骤之后还包括:根据所述位置值与参考定位阈值比较,若大于所述参考定位阈值,则删除,然后采用初步定位方法对目标节点进行初步定位,再返回开始步骤进行重新定位。
优选地,在根据所述感应电压模型,利用非线性定位算法获得目标节点位置值的步骤之后还包括:将所述位置值作为下次对移动的目标节点进行定位的初值,进行迭代运算获得,对所述移动的目标节点定位。
另外,还有必要提供一种基于射频信号的五维定位系统,包括:
目标模块,用于发射射频信号;
信标模块,用于接收所述目标模块所发射的射频信号;
处理模块,用于根据所述信标模块所接收到的射频信号建立感应电压模型,且根据感应电压模型进行运算,得到目标模块的位置值;
所述感应电压模型为:
V = βη Il t l r 4 πR sin θ cos α
其中,R为目标节点到信标节点的距离;θ为目标节点到信标节点的距离矢量与发射天线面的夹角;α为接收天线的电场强度矢量与接收天线面的夹角;I通过发射天线的有效电流值;lt为发射天线的长度;lr为接收天线的长度;β相位常数;η为介质的特性常数。
优选地,所述处理模块进一步用于在噪音情沉下根据所述信标模块所接收到的射频信号建立的感应电压模型,具体的为:
Figure BSA00000258838800042
其中,令
Figure BSA00000258838800043
发射天线的中心坐标为Pt(x0,y0,z0),发射天线方向矢量为(m0,n0,p0),且m0 2+n0 2+p0 2=1;信标节点的位置坐标为(xi,yi,zi),接收天线方向矢量为(mi,ni,pi),且
Figure BSA00000258838800044
nσ是满足均值为零,标准方差为σ的标准正态分布的随机变量。
优选地,所述处理模块进一步用于对移动的目标模块进行定位。
优选地,还包括:矫正模块,用于对设定的参考定位阈值进行比较,并根据比较结果对所述目标模块位置值进行矫正。
在至少5个信标节点设有接收天线且设置在预设位置,目标节点设有发射天线且设置在待定目标位置,通过发射天线所发射的射频信号并建立感应电压模型,然后利用非线性算法获得目标节点的位置,即能够提供三维位置和二维方向的定位,而且精度更高,达到毫米级。
接收天线和发射天线采用偶极子天线,能够更快、更方便的建立感应电压模型。
同时,还提供了在噪音情况下的感应电压模型,能够在不同环境下进行定位。
当出现大于述参考定位阈值,则重新进行定位,进一步的提高其精度。
对移动的目标节点能够跟踪、定位,丰富了定位的功能。
【附图说明】
图1为一实施列的基于射频信号的五维定位方法的流程图;
图2为另一实施列的基于射频信号的五维定位方法的流程图;
图3为一实施列的基于射频信号的五维定位方法的偶极子天线的辐射场;
图4为一实施列的基于射频信号的五维定位方法的接收天线与发射天线的示意图;
图5为一实施列的基于射频信号的五维定位系统的逻辑图;
图6为一实施列的基于射频信号的五维定位方法的具体实施例的信标节点和目标节点的位置;
图7为一实施列的基于射频信号的五维定位方法的具体实施例噪声强度变化时的位置误差与信噪比的关系图;
图8为一实施列的基于射频信号的五维定位方法的具体实施例噪声强度变化时的角度误差与信噪比的关系图;
图9为一实施列的基于射频信号的五维定位方法的具体实施例目标节点移动情况时的跟踪定位图;
图10为一实施列的基于射频信号的五维定位方法的具体实施例中固定目标解的m,n,z,然后变化x,y的分析图;
图11为一实施列的基于射频信号的五维定位方法的具体实施例中固定目标解的x,y,z,然后变化m,n的分析图;
图12为一实施列的基于射频信号的五维定位方法的具体实施例中固定目标解的y,z,n,然后变化x,m的分析图;
图13为一实施列的基于射频信号的五维定位方法的具体实施例中固定目标解的y,m,n,然后变化x,z的分析图;
图14为一实施列的基于射频信号的五维定位方法的具体实施例中固定目标解的x,y,n,然后变化z,m的分析图。
【具体实施方式】
在感知区域内布置已知的信标节点,以及在待定目标设置目标节点,且在该信标节点和目标节点处均安装有天线。目标节点定时的发送射频信号,信标节点根据接收到的射频信号强度对目标节点进行五维定位运算并求解,获得目标节点的精确位置。现结合附图对本发明进行详细阐述。
参见图1~4,为基于射频信号的定位方法的一实施例,具体步骤如下:
步骤S100,设定信标节点和目标节点,该信标节点设有接收天线且设置在预设位置,该目标节点设有发射天线且设置在待定目标位置。在一定的空间区域(例如室内)或射频RF信号感知区域内布置已知的信标节点,该信标节点的数目为大于或等于五个;同时,在待定目标位置处设置目标节点。在信标节点处安装有接收天线并用于接收RF(射频)信号,目标节点处安装有发射天线并用于发射RF信号。为了更容易的分析电磁波传播衰落,该接收天线和发射天线优选地为偶极子天线。
步骤S200,该目标节点的发射天线发射RF信号,该信标节点的接收天线接收到该RF信号并建立感应电压模型。具体的,目标节点的发射天线定时的发射RF信号,布置在RF信号感知区域内的信标节点的接收天线接收到RF信号,该RF信号优选地频率为设定的固定值。
当发射天线与接收天线面正对时,信标节点的所处位置的电场至少包括sinθ/R3和sinθ/R2(近场),sinθ/R(远场)项,其中R为目标节点到信标节点的距离,具体的,Pt(xt,yt,zt)为目标节点上安装的发射天线中点,Pr(xr,yr,zr)为信标节点上安装的接收天线中点,表示Pt到Pr的三维距离向量,θ为目标节点到信标节点的距离矢量与发射天线面的夹角。同时,接收天线的负载阻抗
Figure BSA00000258838800072
,通过发射天线的有效电流值I,
Figure BSA00000258838800073
是接收天线的中点Pr的电场,其幅度值E表示如下:
E = βη Il t 4 πR sin θ
其中,lt为发射天线的长度,R为
Figure BSA00000258838800075
的幅度值,β相位常数,η为介质的特性常数。
当接收天线的电场强度矢量与接收天线面的夹角为α时,则信标节点的接收天线所接收到的感应电压模型为:
V = El r cos α = βη Il t l r 4 πR sin θ cos α
其中lr为接收天线的长度;同时,设发射天线的位置坐标为(xt,yt,zt),方向矢量坐标
Figure BSA00000258838800078
为(mt,nt,pt);接收天线的位置坐标为(xr,yr,zr),方向矢量坐标为(mr,nr,pr),利用三角公式得:
Figure BSA000002588388000710
Figure BSA000002588388000711
Figure BSA000002588388000712
则接收感应电压模型为:
V = k · 1 - ( m t ( x r - x t ) + n t ( y r - y t ) + p t ( z r - z t ) ) 2 R 2 · 1 - ( m r ( x r - x t ) + n r ( y r - y t ) + p r ( z r - z t ) ) 2 R 2 R
步骤S300,根据感应电压模型,利用非线性定位算法获得目标节点位置值。确定天线的结构,根据电磁场理论所建立RF信号的感应电压模型,运用非线性定位算法对目标节点的位置进行定位,进而实现对目标的定位跟踪、导航和控制。
令发射天线的中心坐标为Pt(x0,y0,z0),其发射天线方向矢量为(m0,n0,p0),其中m0 2+n0 2+p0 2=1;在目标节点的周围布置N(N>=5)个信标节点,第i(i为1、2、3、4、5...)个信标节点的位置坐标为(xi,yi,zi),其接收天线方向矢量为(mi,ni,pi),其中
Figure BSA00000258838800081
同时接收天线测量获得的感应电压模型Vi如下式所示:
Figure BSA00000258838800082
若考虑噪声的情况,同时测量的感应电压模型Vi如下式所示:
Figure BSA00000258838800083
nσ是满足均值为零,标准方差为σ的标准正态分布的随机变量,其概率分布密度函数为
Figure BSA00000258838800084
根据感应电压模型,采用非线性定位算法,例如Powell’s算法、DownhillSimples算法、DIRECT算法、MCS(Multilevel Coordinate Search)算法。优选地为LM(Levenberg Marquardt)算法,精度较高、计算速度快;借助MATLAB解得,具体如下:
目标函数:
Figure BSA00000258838800085
约束条件:(x,y,z,m,n)∈S,
其中, R i = ( x i - x ) 2 + ( y i - y ) 2 + ( z i - z ) 2 ,
d i = R i 2 - ( m ( x i - x ) + n ( y i - y ) + p ( z i - z ) ) 2 ,
d i ′ = R i 2 - ( m i ( x i - x ) + n i ( y i - y ) + p i ( z i - z ) ) 2 ,
p = 1 - m 2 - n 2 ;
解得,S是解集,
(xi,yi,zi)是信标节点的位置坐标,
(mi,ni,pi)是信标节点的方向矢量,
(x,y,z)是目标节点的位置坐标,
(m,n,p)是目标节点的方向矢量。
此外,在其它实施方式中,本发明基于射频信号的五维定位方法,还包括如下步骤:
步骤S400,若步骤S300所获得的目标节点位置值与参考定位阈值(例如之前的历史数据值,TDOA、ZigBee传统定位方法获得的位置值,或者经验获得的位置值)比较,若大于该参考定位阈值,则删除,然后采用初步定位方法(例如ZigBee、超宽带UWB、射频识别RFID、TOA和TDOA的定位技术)对目标节点进行初步定位,再返回开始步骤S100进行重新计算并定位。
步骤S500,对移动的目标节点,通过步骤300所获得的位置值,然后将该位置值作为下次对移动的目标节点进行定位的初值,具体的是将该位置值作为目标节点移动至新位置重新定位的初值(已知值),然后进行迭代运算获得,进而实现定位、跟踪。
在其它实施例中,本发明的方法还可以应用在多个领域,例如对机器人的位置和角度的定位;例如对应用在人体内的微型装置(胶囊内窥镜)的位置和角度的多维定位。本发明有很高的定位精度,达到毫米级的精度,易于推广到各领域的应用,提高各领域的设备定位精度的提高。
基于上述的基于射频信号的五维定位方法,还有必要提供一种基于射频信号的五维定位系统,现结合附图5对该定位系统进行详细描述。
该基于射频信号的五维定位系统包括:目标模块,用于发射RF射频信号;信标模块,用于接收目标模块所发射的RF信号;处理模块,用于根据信标模块所接收到的RF信号建立感应电压模型,且根据感应电压模型进行运算,得到目标模块的位置值。
目标模块,在一定的空间区域(例如室内)或射频RF信号感知区域内设置在待定目标位置处,并定时的发射RF信号,该RF信号的发射频率为设定的固定值。
信标模块,在目标模块的周围布置至少5个信标模块,并接收目标模块所发射的RF信号。
处理模块,根据接收到的RF信号,建立了感应电压模型
V = k · 1 - ( m t ( x r - x t ) + n t ( y r - y t ) + p t ( z r - z t ) ) 2 R 2 · 1 - ( m r ( x r - x t ) + n r ( y r - y t ) + p r ( z r - z t ) ) 2 R 2 R ;
根据感应电压模型导入目标模块的中心坐标为Pt(x0,y0,z0)和方向矢量为(m0,n0,p0),其中m0 2+n0 2+p0 2=1;以及,信标模块的第i(i为1、2、3、4、5...)个信标模块的位置坐标为(xi,yi,zi),方向矢量为(mi,ni,pi),其中并通过非线性算法,优选地为LM算法,计算获得目标模块位置的具体信息。该运算模块还进一步的用于对移动的目标节点进行跟踪定位。
在其它实施例中,该处理模块进一步用于在噪音情沉下根据信标模块所接收到的射频信号建立的感应电压模型,具体的为:
Figure BSA00000258838800103
其中,令
Figure BSA00000258838800104
发射天线的中心坐标为Pt(x0,y0,z0),发射天线方向矢量为(m0,n0,p0),且m0 2+n0 2+p0 2=1;信标节点的位置坐标为(xi,yi,zi),接收天线方向矢量为(mi,ni,pi)且
Figure BSA00000258838800105
nσ是满足均值为零,标准方差为σ的标准正态分布的随机变量。另外,该处理模块还进一步用于对移动的目标模块进行定位。
矫正模块,用于对设定的参考定位阈值进行比较,并根据比较结果对该目标模块位置值进行矫正。具体的,对大于设定的参考定位阈值的定位数据重新进行初步定位,然后再精确定位。
参见图6,现结合上述具体实施例,详细阐述并验证射频信号的五维定位方法的应用过程,具体的通过Matlab进行仿真求解。
信标节点的目标固定且已知,随机选取7个接收信标节点的位置和方向信息(xi,yt,zi,mi,nt,pi)分别为(1.3,1.5,0.5,0.3,0.2,0.93),(1.4,1.7,1.5,0.6,0.4,0.69),(1.5,1.2,1.5,0.2,0.1,0.97),(0.7,1.4,0.5,0.5,0.3,0.81),(0.5,1.8,0.2,0.8,0.12,0.59),(1.6,1.3,1.5,0.6,0.3,0.74)以及(0.4,0.8,0.4,0.1,0.7,0.7)。目标节点的实际位置和方向信息(x0,y0,z0,m0,n0)为
Figure BSA00000258838800111
,信标节点和目标节点的布置如图4所示。
仿真结果如下:
噪声强度变化时的位置误差与信噪比的关系如图7所示,由图可见当信噪比低于25时,都可以得到小于1cm的定位精度。
噪声强度变化时的角度误差与信噪比的关系如图8所示,由图可见当信噪比低于25时,都可以得到小于1cm的定位精度。
当目标节点移动情况时,其跟踪定位如图9所示。目标节点的螺旋运动时的跟踪定位情况,仿真结果中采用均匀分布一个平面的25个信标节点。在此情况下,信噪比低于30时,可以得到小于0.5cm的定位精度。
可见,由仿真结果可以看出这一算法的可行性。即使在噪声环境中,这一算法也能有较好的表现。
进一步,为了研究初值对本发明的方法的影响,还通过仿真对感应电压模型的局部极小值进行了验证。
仿真结果如下:
固定目标解的m,n,z,然后变化x,y,对可能解的误差进行分析得到的结果如图10所示;固定目标解的x,y,z,然后变化m,n,对可能解的误差进行分析得到的结果如图11所示;固定目标解的y,z,n,然后变化x,m,对可能解的误差进行分析得到的结果如图12所示;固定目标解的y,m,n,然后变化x,z,对可能解的误差进行分析得到的结果如图13所示;固定目标解的x,y,n,然后变化z,m,对可能解的误差进行分析得到的结果如图14所示。
该感应电压模型在特殊的情况下可能会出现较多的局部极小值,因此,可以通过其中的精度较低的定位方式(例如ZigBee定位技术)来实现初步定位,然后再使用本方法进行定位。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (14)

1.一种基于射频信号的五维定位方法,包括以下步骤:
设定信标节点和目标节点,所述信标节点设有接收天线且设置在预设位置,所述目标节点设有发射天线且设置在待定目标位置;所述信标节点为N个,N大于或等于5个;
所述发射天线发射射频信号,所述接收天线接收所述射频信号并建立感应电压模型;
根据所述感应电压模型,利用非线性定位算法获得目标节点位置值。
2.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述感应电压模型为:
V = βη Il t l r 4 πR sin θ cos α
其中,R为目标节点到信标节点的距离;θ为目标节点到信标节点的距离矢量与发射天线面的夹角;α为接收天线的电场强度矢量与接收天线面的夹角;I通过发射天线的有效电流值;lt为发射天线的长度;lr为接收天线的长度;β相位常数;η为介质的特性常数。
3.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述接收天线和发射天线为偶极子天线。
4.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述射频信号的频率为设定的固定值。
5.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述发射天线定时发送射频信号。
6.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述信标节点所处位置的电场至少包括sinθ/R3、sinθ/R2和sinθ/R项。
7.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述非线性定位算法为LM算法。
8.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,所述感应电压模型在考虑噪声的情况下为:
Figure FSA00000258838700021
其中,令发射天线的中心坐标为Pt(x0,y0,z0),发射天线方向矢量为(m0,n0,p0),且m0 2+n0 2+p0 2=1;信标节点的位置坐标为(xi,yi,zi),接收天线方向矢量为(mi,ni,pi),且
Figure FSA00000258838700023
nσ是满足均值为零,标准方差为σ的标准正态分布的随机变量。
9.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,在根据所述感应电压模型,利用非线性定位算法获得目标节点位置值的步骤之后还包括:根据所述位置值与参考定位阈值比较,若大于所述参考定位阈值,则删除,然后采用初步定位方法对目标节点进行初步定位,再返回开始步骤进行重新定位。
10.根据权利要求1所述的基于射频信号的五维定位方法,其特征在于,在根据所述感应电压模型,利用非线性定位算法获得目标节点位置值的步骤之后还包括:将所述位置值作为下次对移动的目标节点进行定位的初值,进行迭代运算获得,对所述移动的目标节点定位。 
11.一种基于射频信号的五维定位系统,其特征在于,包括:
目标模块,用于发射射频信号;
信标模块,用于接收所述目标模块所发射的射频信号;
处理模块,用于根据所述信标模块所接收到的射频信号建立感应电压模型,且根据感应电压模型进行运算,得到目标模块的位置值;
所述感应电压模型为:
V = βη Il t l r 4 πR sin θ cos α
其中,R为目标节点到信标节点的距离;θ为目标节点到信标节点的距离矢量与发射天线面的夹角;α为接收天线的电场强度矢量与接收天线面的夹角;I通过发射天线的有效电流值;lt为发射天线的长度;lr为接收天线的长度;β相位常数;η为介质的特性常数。
12.根据权利要求11所述的基于射频信号的五维定位系统,其特征在于,所述处理模块进一步用于在噪音情沉下根据所述信标模块所接收到的射频信号建立的感应电压模型,具体的为:
Figure FSA00000258838700031
其中,令
Figure FSA00000258838700032
发射天线的中心坐标为Pt(x0,y0,z0),发射天线方向矢量为(m0,n0,p0),且m0 2+n0 2+p0 2=1;信标节点的位置坐标为(xi,yi,zi),接收天线方向矢量为(mi,ni,pi),且
Figure FSA00000258838700033
nσ是满足均值为零,标准方差为σ的标准正态分布的随机变量。
13.根据权利要求11所述的基于射频信号的五维定位系统,其特征在于,所述处理模块进一步用于对移动的目标模块进行定位。
14.根据权利要求11所述的基于射频信号的五维定位系统,其特征在于,还包括:矫正模块,用于对设定的参考定位阈值进行比较,并根据比较结果对所述目标模块位置值进行矫正。
CN 201010273309 2010-09-03 2010-09-03 基于射频信号的五维定位方法和系统 Pending CN101975938A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010273309 CN101975938A (zh) 2010-09-03 2010-09-03 基于射频信号的五维定位方法和系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010273309 CN101975938A (zh) 2010-09-03 2010-09-03 基于射频信号的五维定位方法和系统

Publications (1)

Publication Number Publication Date
CN101975938A true CN101975938A (zh) 2011-02-16

Family

ID=43575840

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010273309 Pending CN101975938A (zh) 2010-09-03 2010-09-03 基于射频信号的五维定位方法和系统

Country Status (1)

Country Link
CN (1) CN101975938A (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644480A (zh) * 2012-04-09 2012-08-22 南京龙渊微电子科技有限公司 基于rfid和无线传感的矿井实时定位预警系统
CN102879762A (zh) * 2012-09-27 2013-01-16 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN104122842A (zh) * 2013-04-23 2014-10-29 北京计算机技术及应用研究所 一种监狱事件的智能化监控方法及系统
CN104735781A (zh) * 2015-04-02 2015-06-24 上海海事大学 一种室内定位系统及其定位方法
CN106324585A (zh) * 2016-09-19 2017-01-11 裴庆祺 一种基于信号发射装置天线方向修正的定位方法和定位系统
CN106539553A (zh) * 2016-09-26 2017-03-29 武汉市瑞达源科技有限公司 胶囊摄像机系统
CN106714300A (zh) * 2016-12-16 2017-05-24 青岛安然物联网科技有限公司 UWB和ZigBee综合精确定位系统及其工作方法
CN108042094A (zh) * 2017-12-22 2018-05-18 宜宾学院 无线胶囊内窥镜5自由度的定位系统及其定位方法
CN108240824A (zh) * 2017-12-13 2018-07-03 北京华航无线电测量研究所 一种医疗导航电磁定位跟踪器的参数获取方法
CN114705114A (zh) * 2022-03-02 2022-07-05 中国人民解放军海军工程大学 一种电场测量装置定位方法、系统、设备及终端
CN116793199A (zh) * 2023-08-24 2023-09-22 四川普鑫物流自动化设备工程有限公司 一种集中式多层货架四向车定位系统及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100931137B1 (ko) * 2009-08-20 2009-12-10 윤승기 소방관용 생체인식 위치추적 단말기 및 그 제어방법
CN101629999A (zh) * 2008-07-18 2010-01-20 中国科学院国家天文台 利用卫星对目标进行通信和定位的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101629999A (zh) * 2008-07-18 2010-01-20 中国科学院国家天文台 利用卫星对目标进行通信和定位的方法
KR100931137B1 (ko) * 2009-08-20 2009-12-10 윤승기 소방관용 생체인식 위치추적 단말기 및 그 제어방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Automation and logistics》 20090807 Longqiang Tian et al. A Novel 5-Dimensional Indoor Localization Algorithm Based on RF Signal Strength 第1496-1497页 1-14 , *

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102644480A (zh) * 2012-04-09 2012-08-22 南京龙渊微电子科技有限公司 基于rfid和无线传感的矿井实时定位预警系统
CN102879762A (zh) * 2012-09-27 2013-01-16 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN102879762B (zh) * 2012-09-27 2014-02-26 东南大学 基于射频接收信号强度值的隧道内车辆的动态定位方法
CN104122842A (zh) * 2013-04-23 2014-10-29 北京计算机技术及应用研究所 一种监狱事件的智能化监控方法及系统
CN104735781B (zh) * 2015-04-02 2018-01-30 上海海事大学 一种室内定位系统及其定位方法
CN104735781A (zh) * 2015-04-02 2015-06-24 上海海事大学 一种室内定位系统及其定位方法
CN106324585A (zh) * 2016-09-19 2017-01-11 裴庆祺 一种基于信号发射装置天线方向修正的定位方法和定位系统
CN106539553A (zh) * 2016-09-26 2017-03-29 武汉市瑞达源科技有限公司 胶囊摄像机系统
CN106714300A (zh) * 2016-12-16 2017-05-24 青岛安然物联网科技有限公司 UWB和ZigBee综合精确定位系统及其工作方法
CN108240824A (zh) * 2017-12-13 2018-07-03 北京华航无线电测量研究所 一种医疗导航电磁定位跟踪器的参数获取方法
CN108240824B (zh) * 2017-12-13 2020-07-14 北京华航无线电测量研究所 一种医疗导航电磁定位跟踪器的参数获取方法
CN108042094A (zh) * 2017-12-22 2018-05-18 宜宾学院 无线胶囊内窥镜5自由度的定位系统及其定位方法
CN108042094B (zh) * 2017-12-22 2024-02-13 宜宾学院 无线胶囊内窥镜5自由度的定位系统及其定位方法
CN114705114A (zh) * 2022-03-02 2022-07-05 中国人民解放军海军工程大学 一种电场测量装置定位方法、系统、设备及终端
CN114705114B (zh) * 2022-03-02 2023-03-14 中国人民解放军海军工程大学 一种电场测量装置定位方法、系统、设备及终端
CN116793199A (zh) * 2023-08-24 2023-09-22 四川普鑫物流自动化设备工程有限公司 一种集中式多层货架四向车定位系统及方法
CN116793199B (zh) * 2023-08-24 2023-11-24 四川普鑫物流自动化设备工程有限公司 一种集中式多层货架四向车定位系统及方法

Similar Documents

Publication Publication Date Title
CN101975938A (zh) 基于射频信号的五维定位方法和系统
Oguntala et al. Indoor location identification technologies for real-time IoT-based applications: An inclusive survey
US6963301B2 (en) System and method for near-field electromagnetic ranging
Song et al. A survey on indoor positioning technologies
Nikitin et al. Phase based spatial identification of UHF RFID tags
US7298314B2 (en) Near field electromagnetic positioning system and method
CN101089654A (zh) 基于相位差测距的rfid无线定位方法
CN107356903A (zh) 基于相位差测量的无源rfid定位方法和装置
CN104076349A (zh) 一种基于多普勒频移的被动式移动目标定位方法
Khan et al. Location estimation technique using extended 3-D LANDMARC algorithm for passive RFID tag
CN110187333B (zh) 一种基于合成孔径雷达技术的rfid标签定位方法
CN107122811A (zh) 用于有源射频标签实时定位的智能rfid读写器及方法
CN110174668B (zh) 一种矿井无源动目标轮廓识别方法
Ahmad et al. Current technologies and location based services
CN107124455A (zh) 基于云端平台系统的室内定位方法
Regus et al. Indoor positioning and navigation system for autonomous vehicles based on RFID technology
Vojtech et al. Outdoor localization technique using active RFID technology aimed for security and disaster management applications
KR100857248B1 (ko) 이동체 위치 정보를 생성하는 장치 및 방법과 이동체위치를 인식하는 장치 및 방법
El Abkari et al. Real time positioning over WSN and RFID network integration
Jose et al. Taylor series method in TDOA approach for indoor positioning system.
Kamal et al. A new methods of mobile object measurement by using radio frequency identification
Chothani et al. RFID-based location tracking system using a RSS and DA
Samu et al. Survey on indoor localization: Evaluation performance of bluetooth low energy and fingerprinting based indoor localization system
Zhu et al. Integrated algorithms for RFID-based multi-sensor indoor/outdoor positioning solutions
Garg et al. Indoor tracking using BLE-brief survey of techniques

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20110216