CN101973768A - 一种热辐射材料及其应用热辐射材料的耐火材料 - Google Patents

一种热辐射材料及其应用热辐射材料的耐火材料 Download PDF

Info

Publication number
CN101973768A
CN101973768A CN2010102704241A CN201010270424A CN101973768A CN 101973768 A CN101973768 A CN 101973768A CN 2010102704241 A CN2010102704241 A CN 2010102704241A CN 201010270424 A CN201010270424 A CN 201010270424A CN 101973768 A CN101973768 A CN 101973768A
Authority
CN
China
Prior art keywords
burner hearth
parts
thermal
radiant element
materials
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2010102704241A
Other languages
English (en)
Inventor
李余庆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BEIJING ENJI ENERGY CONSERVATION TECHNOLOGY Co Ltd
Original Assignee
BEIJING ENJI ENERGY CONSERVATION TECHNOLOGY Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BEIJING ENJI ENERGY CONSERVATION TECHNOLOGY Co Ltd filed Critical BEIJING ENJI ENERGY CONSERVATION TECHNOLOGY Co Ltd
Priority to CN2010102704241A priority Critical patent/CN101973768A/zh
Publication of CN101973768A publication Critical patent/CN101973768A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

本发明公开了一种应用热辐射材料的耐火材料,包括耐火材料本体,所述耐火材料本体上设置有炉膛热辐射元件;所述耐火材料本体和所述炉膛热辐射元件的外表面涂覆有热辐射材料。本发明还公开了一种热辐射材料。本发明针对现有的各种工业加热炉的缺点,通过在炉膛内壁喷涂及设置热辐材料来减少工业加热炉窑的热损失,提高了热效率,达到节能减排的目的。

Description

一种热辐射材料及其应用热辐射材料的耐火材料 
技术领域
本发明涉及一种热能技术,具体说,涉及一种热辐射材料及其应用热辐射材料的耐火材料。 
背景技术
从目前使用的工业加热炉可以看出,要使工件获得的热量增多,就必需使炉内传热量增加,那就必需提高炉墙发射率和增加炉膛内传热面积。现有的工业加热炉炉壁多数是耐火砖、浇注料或者耐火纤维,它们发射率都很低,且能耗大、加热效率低。 
传热学基本理论包括以下几点: 
A)热能传递的形式:辐射、传导、对流。 
B)斯蒂芬-玻耳兹曼定律:E=ε0C0(T/100)4,辐射强度E与温度的四次方成正比。 
工业加热炉中,炉膛温度一般为1000℃以上,热辐射能在高温下主要(大约90%)是以辐射的形式传递,所以工业加热炉,主要以热辐射加热为主。 
C)根据基尔霍夫定律:物体的吸收率(又称黑度)等于它的发射率。 
D)热辐射能的吸收能力与受热物体的表面黑度成正比。 
E)受热物体的热能传导强度与该物体表面和内部的温度梯度成正比,与热阻成反比。 
F)不同特性的物体发射的红外线特性(波长)不同,不同特性的红外线易被其特性相同的物体所接收,即固体物质发射的红外线易为固体吸收,而不易为气体所吸收。 
G)根据兰贝特定律:空间各方向发射的辐射能中,法线方向的能量最多,切线方向的能量等于零。 
全纤维工业加热炉,采用筑炉材料轻型化,是以容重很小的耐火纤维作为炉体材料,旨在减少蓄热损失和散热损失,降低能耗,但耐火纤维的发射率很低,这一技术措施只是将热量堵在炉膛内部,却不能解决热辐射能的热射线射到被加热工件上,故节能率不高。全纤维工业加热炉结构采用全纤维,耐火纤维的热发射率更低(ε=0.35)。将热量堵在炉膛内,热射线在炉体内呈漫射状态,确实减少了炉窑的蓄热损失和散热损失,但是,纤维在高温下发生较大收缩并易粉化。 
蓄热式工业加热炉采用高温空气燃烧技术(HTAC),蓄热式工业加热炉自身设置有套蓄热式烟气余热回收装置,炉体加入的余热回收装置使得整个炉体结构比较复杂,对加热炉排放的尾气余热进行回收,它充分利用加热炉的余热,故节能效果较好。蓄热式工业加热炉采用蓄热式烟气余热回收,而热量在炉膛内并没有充分利用,只是利用热流下游。但是,给炉体加入余热回收装置使得整个炉体结构复杂、投资大、蓄热体寿命短,因此维护和运行成本较高,也不适用于小型的工业加热炉。 
黑体技术是将炉膛和黑体元件共同组成一个红外加热系统,在高温下,仅黑体元件的发射率保持在原来的水平。但现有的黑体元件在高温下,经过一段时间的使用就开始粉化、脱落和缺损,同时,对炉膛进行全面的强化红外涂装(采用的是一般涂料),涂层易老化,难以从根本上解决难题,并且寿命短(仅几个月涂层就会不起作用),从而使整个炉膛的辐射强化加热减弱。 
发明内容
本发明所解决的技术问题是采用一种热辐射综合强化传热节能技术,提供一种热辐射材料,从而提高了整个炉膛内的高发射率,并且热辐材料根本不老化,寿命长。 
技术方案如下: 
一种热辐射材料,包括:辐射材料、填充料和粘接剂,其中, 
辐射材料包括: 
硅系材料        20~35份; 
铁系材料        30~50份; 
锰系材料        25~35份; 
碳材料          10~13份; 
铬系材料        10~15份; 
铜系材料        10~12份; 
钴系材料        7~10份; 
钛系材料        10~14份; 
钒系材料        5~10份; 
稀土材料        15~20份; 
填充料: 
锆系材料        40~50份; 
铝系材料        40~50份; 
石英材料        30~40份; 
烧结剂: 
耐火粘土        5~10份; 
膨润土          10~15份; 
苏州土          10~15份; 
粘接剂: 
无机粘接剂      400~500份。 
其中,份代表单位重量或者质量。 
进一步:所述无机粘接剂选用水玻璃、硅溶胶或者PA-80胶。 
本发明所解决的另一个技术问题是提供一种应用热辐射材料的耐火材料,能够减少工业加热炉窑的热损失,提高热效率。 
一种应用热辐射材料的耐火材料,包括耐火材料本体,所述耐火材料本体上设置有炉膛热辐射元件;所述耐火材料本体和所述炉膛热辐射元件的外表面涂覆有热辐射材料。 
优选的:所述炉膛热辐射元件为空心结构。 
优选的:所述炉膛热辐射元件采用八面锥台、六面锥台、圆锥台、圆锥体或者圆柱体。 
优选的:所述炉膛热辐射元件设置在所述耐火材料本体内部,所述炉膛热辐射元件在所述耐火材料本体的外表面设置有开口。 
优选的:所述炉膛热辐射元件采用八面锥台、六面锥台、圆锥台、圆锥体或者圆柱体。 
优选的:所述炉膛热辐射元件的底面到锥体顶点的高和底面直径的比值范围在25~100之间。 
技术效果包括: 
1、本发明针对现有的各种工业加热炉的缺点,通过在炉膛内壁喷涂及设置热辐材料来减少工业加热炉窑的热损失,提高了热效率,达到节能减排的目的; 
2、热辐射材料提高了整个炉膛内的高发射率,具有很高的热稳定性,并且热辐射材料根本不老化; 
3、在其炉膛内壁表面喷涂热辐射材料后,热辐射材料除了吸收和发射热射线,从而提高炉膛内壁的黑度,增加辐射传热效果,强化炉膛内热交换,并且将散失的热能转换成以电磁波形式辐射回炉膛,将热能留在炉膛内;不仅降低了排烟温度,又使炉膛内温度升高,增强被加热物体的热能吸收速度,减少热能损失,又会促使一部分对流传热转换为辐射热能,导致炉墙壁传热损失的减少。 
附图说明
图1是本发明中热辐射材料的使用状态图; 
图2是本发明优选实施例一的纵剖面示意图; 
图3是本发明优选实施例一的俯视图; 
图4是本发明优选实施例二的纵剖面示意图; 
图5是本发明优选实施例二的俯视图。 
具体实施方式
本发明通过对现有工业加热炉进行节能改造,采用高发射率的热辐射材料,在炉膛内形成一个热辐射能的强化加热系统,从而提高炉膛整体发射率(ε=0.95,1473K测试),在高温下,高发射率不衰减,根本不老化,始终保持在高发射率状态。 
如图1所示,是本发明中热辐射材料的使用状态图。热辐射材料12喷涂及设置在炉膛内壁11的表面;炉膛内壁11表面喷涂的热辐射材料12其发射率为0.95,并且热辐射材料12在使用后不老化。整个炉膛内的吸收率大于0.90以上,故能吸收大量辐射热能,并转换成物体易吸收的远红外热能,形成红外加热(即强化加热)。 
炉膛内壁11设置有高发射率的热辐射材料12,目的之一是强化炉衬,之二是提高炉衬的发射率,当炉内热射线碰到热辐射材料12,那么辐射能中将有一部分被发射。热辐射材料12将散失的热能转换成远红外热能,并以电磁波的形式辐射回炉膛,为炉膛内的被加热物体所吸收。由于炉膛内主要气氛为烟气,烟气的主要成分为氧气和氮气,烟气对辐射传热不敏感,热损耗少,从而将热能留在炉膛内;不仅降低了排烟温度,而且使炉膛温度升高,使燃料和烟气中的可燃成分得到充分燃烧。 
在传热过程中,热辐射材料12不仅将吸收的辐射热能转换成远红外热能传递,其自身变成远红外辐射热源,而且随着热辐射材料12表面温度的提高导致温度梯度增大,使被加热物体的热能传导强度加强,吸热能力大大提高。 
热辐射材料12通过配方和配比,以及烧结工艺和加工成超细化粉末来保证热辐射材料在高温工作时,不老化,保持高反射率0.95。 
热辐射材料12的成分包括:辐射材料、填充料、烧结剂和粘接剂。 
成分和质量配比如下: 
辐射材料: 
硅系材料            20~35份; 
铁系材料            30~50份; 
锰系材料            25~35份; 
碳材料              10~13份; 
铬系材料            10~15份; 
铜系材料            10~12份; 
钴系材料            7~10份; 
钛系材料            10~14份; 
钒系材料            5~10份; 
稀土材料            15~20份; 
填充料: 
锆系材料            40~50份; 
铝系材料            40~50份; 
石英材料            30~40份; 
烧结剂: 
耐火粘土            5~10份; 
膨润土              10~15份; 
苏州土              10~15份; 
粘接剂: 
无机粘接剂          400~500份。 
将各组份按配比称重,混合,制成粘稠状悬浮流体。 
上述组分中的单位份代表单位重量或者质量,具体的数量可以按照实际 需要进行设定,例如,每份代表1千克、2千克或者500千克。当然,每种组分的份数数量可以按照实际需要进行增减变化。其中,无机粘接剂作为载体,可以选用水玻璃、硅溶胶或者PA-80胶。 
采用纳米超细化处理,使粒度达20-100nm,得纳米级热辐射材料,发射率为0.95,耐火度1800℃,使用寿命达5年。 
热辐射材料的节能工作原理: 
热辐射材料12为超细化粉体(纳米级)。从爱因斯坦辐射理论可以看出,用纳米粉体制成的热辐射材料,它的反射率与吸收率都接近于1,可以认为是黑体模型。黑体是指能够吸收全部投射辐射的物体,它是一个辐射体。热辐射材料的平均颗粒越小,发射率就越大,本热辐射材料为纳米级,其发射率为0.95。 
根据基尔霍夫定律:物体的吸收率(又称黑度)等于它的发射率。由于热辐射材料的吸收率高,故能吸收大量的辐射热能,又因其发射率高,能连续不断向外发送热射线(以电磁波的形式传递)。 
热辐射材料经过高温烧结后,晶格结构及性能发生变化,达到高发射率。又由于烧结温度高于使用温度,晶格结构及性能很稳定,在使用中不衰减,也不老化,始终保持高反射率的良好状态。 
热辐射材料12制成的产品用于工业加热炉炉膛内的炉壁,炉壁可以是耐火材料(砖)或浇注料,在炉壁表面设置热辐射材料12,热辐射材料12的涂层厚、热阻大、反射率高,热辐射材料12除了吸收和发射热射线,还将散失的热能转换成以电磁波形式辐射回炉膛,将热能留在炉膛内,不仅降低了排烟温度,又使炉膛内温度升高,增强炉膛内的被加热物体的热能吸收速度,减少了热能损失,达到了节能目的。 
热辐射材料12应用于工作温度800℃~1800℃的高温工业炉窑。适用于轧钢加热炉、锻造加热炉、热处理炉、工业电炉、热风炉、焦化炉、电站锅炉、工业及民用锅炉(供热锅炉及蒸汽锅炉)、陶瓷窑炉等,煤、气、油、电等燃料均适用。 
使用热辐射材料12的工业炉窑节能效果明显,经测算综合节能10- 20%,并且可以提高炉温均匀性,延长炉窑的使用寿命,降低排烟温度,提高热效率。 
下面是采用热辐射材料12的两个优选实施例,即热辐射材料12和炉膛热辐射元件配合使用的实施例。 
优选实施例一 
为了进一步有效地强化了辐射加热,本发明在不改变现有炉膛结构的情况下,在炉膛内设置炉膛热辐射元件21,通过炉膛热辐射元件21来增大炉膛内的传热面积,从而使得辐射加热速度加快,炉膛对被加热工件的辐射传热量增加,提高了整个炉膛内的发射率,具有很高的热稳定性,并且不老化。 
炉膛热辐射元件21可以设置到炉膛内的耐火材料上,例如耐火砖上,炉膛热辐射元件的形状可以采用八面锥台、六面锥台、圆锥台、圆锥体或者圆柱体。或者,炉膛热辐射元件的结构采用空腔形式,即在耐火砖的本体内部设置八面锥体、六面锥体、圆锥体或者圆柱体空腔。 
如图2和3所示,炉膛热辐射元件21采用空心六面锥斜柱体结构,炉膛热辐射元件21设置在耐火砖20的上平面。炉膛热辐射元件21由六个侧壁围成,也可以在炉膛热辐射元件21的底部设置底面。炉膛热辐射元件11有内壁和外壁,这样可以有效增大传热面积。 
耐火砖20可以设置于工业加热炉的炉膛内壁各处,从而炉膛热辐射元件21随着分布于炉膛各个地方,增大了炉膛内部平面,炉膛热辐射元件21热发射率为0.95。炉膛热辐射元件21采用高温陶瓷材料,经过一系列的高温烧结成型。 
热辐射材料12涂覆在炉膛热辐射元件21外表面,该热辐射材料12的热发射率为0.95,热辐射材料12通过特殊的粘接技术固定于炉膛内壁或者炉膛热辐射元件21的内、外壁各处,可以在整个炉膛内壁喷涂多层热辐射材料12。 
优选实施例二 
如图4和5所示,炉膛热辐射元件41采用六面锥斜柱体空腔,炉膛热辐射元件41设置在耐火砖20的内部,炉膛热辐射元件41的开口在耐火砖 20的上平面。炉膛热辐射元件41具有六个侧面和一个底面,耐火砖20可以设置于工业加热炉的炉膛内壁各处,炉膛热辐射元件41随着分布于炉膛各个地方,增大了炉膛内部平面,炉膛热辐射元件41热发射率为0.95。 
热辐射材料12涂覆在炉膛热辐射元件31内表面,该热辐射材料12的热发射率为0.95,热辐射材料12通过特殊的粘接技术固定于炉膛内壁或者炉膛热辐射元件31内壁各处,热辐射材料12可以在整个炉膛内壁和炉膛热辐射元件31内壁喷涂多层。 
对于优选实施例一和优选实施例二这种炉膛热辐射元件21和炉膛热辐射元件41的结构形式,在法线方向上具有高热发射率,炉膛热辐射元件21和41的内壁吸收炉膛内漫射的热射线,同时又以同样高的发射率连续不断地发射出热射线,直接射向被加热物体,这样,就在炉膛内壁形成许许多多的辐射热源,以电磁波的形式传递,强化了辐射传热。 
在炉膛和炉膛热辐射元件31内壁表面喷涂高发射率热辐射的材料12,会促使一部分对流传热转化为辐射传热,导致炉墙壁传热损失减少,引起热平衡的重新分配,结果也加强辐射传热。将许许多多炉膛热辐射元件31设置在炉膛内壁各处,增加的传热面积比原来炉膛内壁面积大一倍以上,强化了炉气与炉衬间的辐射传热,使炉衬内表面温度升高,这样就强化炉衬与被加热工件的辐射传热。 
在优选实施例一和优选实施例二中,炉膛热辐射元件21和炉膛热辐射元件41底面到锥体顶点的高H和底面直径L的比值范围是25~100,即100>H/L>25。 
炉膛热辐射元件21和炉膛热辐射元件41能够吸收全部投射的热辐射,同时它还是一个辐射体。当炉膛内的热辐射能或炉膛内漫射的热辐射能(即热辐射线)投射到炉膛热辐射元件21或者炉膛热辐射元件41的侧面上时,经多次反射而逐渐被墙壁所吸收,热发射率可达0.95。 

Claims (8)

1.一种热辐射材料,包括:辐射材料、填充料和粘接剂,其中,
辐射材料包括:
硅系材料            20~35份;
铁系材料            30~50份;
锰系材料            25~35份;
碳材料              10~13份;
铬系材料            10~15份;
铜系材料            10~12份;
钴系材料            7~10份;
钛系材料            10~14份;
钒系材料            5~10份;
稀土材料            15~20份;
填充料:
锆系材料            40~50份;
铝系材料            40~50份;
石英材料            30~40份;
烧结剂:
耐火粘土            5~10份;
膨润土              10~15份;
苏州土              10~15份;
粘接剂:
无机粘接剂          400~500份。
其中,份代表单位重量或者质量。
2.如权利要求1所述的热辐射材料,其特征在于:所述无机粘接剂选用水玻璃、硅溶胶或者PA-80胶。
3.一种应用热辐射材料的耐火材料,包括耐火材料本体,其特征在于:所述耐火材料本体上设置有炉膛热辐射元件;所述耐火材料本体和所述炉膛热辐射元件的外表面涂覆有热辐射材料。
4.如权利要求3所述的应用热辐射材料的耐火材料,其特征在于:所述炉膛热辐射元件为空心结构。
5.如权利要求4所述的应用热辐射材料的耐火材料,其特征在于:所述炉膛热辐射元件采用八面锥台、六面锥台、圆锥台、圆锥体或者圆柱体。
6.如权利要求4所述的应用热辐射材料的耐火材料,其特征在于:所述炉膛热辐射元件设置在所述耐火材料本体内部,所述炉膛热辐射元件在所述耐火材料本体的外表面设置有开口。
7.如权利要求6所述的设置有炉膛热辐射元件的耐火材料,其特征在于:所述炉膛热辐射元件采用八面锥台、六面锥台、圆锥台、圆锥体或者圆柱体。
8.如权利要求5或者7所述的设置有炉膛热辐射元件的耐火材料,其特征在于:所述炉膛热辐射元件的底面到锥体顶点的高和底面直径的比值范围在25~100之间。
CN2010102704241A 2010-09-02 2010-09-02 一种热辐射材料及其应用热辐射材料的耐火材料 Pending CN101973768A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102704241A CN101973768A (zh) 2010-09-02 2010-09-02 一种热辐射材料及其应用热辐射材料的耐火材料

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102704241A CN101973768A (zh) 2010-09-02 2010-09-02 一种热辐射材料及其应用热辐射材料的耐火材料

Publications (1)

Publication Number Publication Date
CN101973768A true CN101973768A (zh) 2011-02-16

Family

ID=43573685

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102704241A Pending CN101973768A (zh) 2010-09-02 2010-09-02 一种热辐射材料及其应用热辐射材料的耐火材料

Country Status (1)

Country Link
CN (1) CN101973768A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153946A (zh) * 2011-05-27 2011-08-17 中国科学院唐山高新技术研究与转化中心 高温红外辐射涂料及其制备方法
CN103090671A (zh) * 2013-01-14 2013-05-08 浙江西华节能技术有限公司 管式加热炉及其节能方法
CN104596287A (zh) * 2014-12-31 2015-05-06 上海乐恒石油化工集团有限公司 耐火辐射元件、其用途及工业炉
CN106278203A (zh) * 2016-07-22 2017-01-04 武汉科技大学 一种高温窑炉用高铝耐火涂料及其制备方法
CN109180166A (zh) * 2018-10-23 2019-01-11 宁夏众信耐火材料有限公司 一种用于加热炉的高辐射耐火砖制作工艺
CN109970461A (zh) * 2019-01-29 2019-07-05 河南三松节能环保科技有限公司 一种陶瓷靶向加热元件及其制造方法
CN110132018A (zh) * 2019-05-31 2019-08-16 北京建筑大学 一种周期性高温余热回收装置
CN114890812A (zh) * 2022-04-26 2022-08-12 武汉科技大学 一种基于粉煤灰的高温红外定向辐射元件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1548912A (zh) * 2003-05-08 2004-11-24 李治岷 自带黑体筑炉材料及其加热炉窑
CN1553779A (zh) * 2000-12-27 2004-12-08 日清奥利友株式会社 人工植物及其使用方法
JP2008184377A (ja) * 2007-01-31 2008-08-14 Denki Kagaku Kogyo Kk アルミニウム−セラミックス複合体及びその製造方法
CN101607813A (zh) * 2009-07-17 2009-12-23 武汉理工大学 电气石红外辐射地聚物材料及其制备方法
CN101734915A (zh) * 2008-11-25 2010-06-16 北京有色金属研究总院 锰酸锶镧基智能热辐射材料及其制备方法
CN101805208A (zh) * 2010-04-08 2010-08-18 桂林理工大学 利用自释釉制备低放射性辐射赤泥陶瓷材料的方法
CN201754028U (zh) * 2010-07-30 2011-03-02 北京恩吉节能科技有限公司 设置有炉膛热辐射元件的耐火材料

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1553779A (zh) * 2000-12-27 2004-12-08 日清奥利友株式会社 人工植物及其使用方法
CN1548912A (zh) * 2003-05-08 2004-11-24 李治岷 自带黑体筑炉材料及其加热炉窑
JP2008184377A (ja) * 2007-01-31 2008-08-14 Denki Kagaku Kogyo Kk アルミニウム−セラミックス複合体及びその製造方法
CN101734915A (zh) * 2008-11-25 2010-06-16 北京有色金属研究总院 锰酸锶镧基智能热辐射材料及其制备方法
CN101607813A (zh) * 2009-07-17 2009-12-23 武汉理工大学 电气石红外辐射地聚物材料及其制备方法
CN101805208A (zh) * 2010-04-08 2010-08-18 桂林理工大学 利用自释釉制备低放射性辐射赤泥陶瓷材料的方法
CN201754028U (zh) * 2010-07-30 2011-03-02 北京恩吉节能科技有限公司 设置有炉膛热辐射元件的耐火材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
徐龙敏等: "MTY系列埋入式陶瓷辐射元件", 《红外研究》 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102153946A (zh) * 2011-05-27 2011-08-17 中国科学院唐山高新技术研究与转化中心 高温红外辐射涂料及其制备方法
CN102153946B (zh) * 2011-05-27 2012-12-19 中国科学院唐山高新技术研究与转化中心 高温红外辐射涂料及其制备方法
CN103090671A (zh) * 2013-01-14 2013-05-08 浙江西华节能技术有限公司 管式加热炉及其节能方法
CN103090671B (zh) * 2013-01-14 2016-07-06 成都西华工业炉节能技术有限公司 管式加热炉及其节能方法
CN104596287A (zh) * 2014-12-31 2015-05-06 上海乐恒石油化工集团有限公司 耐火辐射元件、其用途及工业炉
CN106278203B (zh) * 2016-07-22 2018-10-26 武汉科技大学 一种高温窑炉用高铝耐火涂料及其制备方法
CN106278203A (zh) * 2016-07-22 2017-01-04 武汉科技大学 一种高温窑炉用高铝耐火涂料及其制备方法
CN109180166A (zh) * 2018-10-23 2019-01-11 宁夏众信耐火材料有限公司 一种用于加热炉的高辐射耐火砖制作工艺
CN109180166B (zh) * 2018-10-23 2022-05-13 宁夏众信耐火材料有限公司 一种用于加热炉的高辐射耐火砖制作工艺
CN109970461A (zh) * 2019-01-29 2019-07-05 河南三松节能环保科技有限公司 一种陶瓷靶向加热元件及其制造方法
CN109970461B (zh) * 2019-01-29 2021-11-05 河南三松节能环保科技有限公司 一种陶瓷靶向加热元件及其制造方法
CN110132018A (zh) * 2019-05-31 2019-08-16 北京建筑大学 一种周期性高温余热回收装置
CN110132018B (zh) * 2019-05-31 2023-12-12 北京建筑大学 一种周期性高温余热回收装置
CN114890812A (zh) * 2022-04-26 2022-08-12 武汉科技大学 一种基于粉煤灰的高温红外定向辐射元件及其制备方法

Similar Documents

Publication Publication Date Title
CN101973768A (zh) 一种热辐射材料及其应用热辐射材料的耐火材料
CN201754028U (zh) 设置有炉膛热辐射元件的耐火材料
CN103954131B (zh) 一种工业炉窑内衬材料
CN201050938Y (zh) 设置有工业标准黑体的加热炉窑
CN101905290A (zh) 精密铸造模壳的烧结热处理炉
CN202329132U (zh) 一种烧成辊道窑节能环保装置
CN104101206B (zh) 箱式马弗炉
CN101293775A (zh) 工业标准黑体
CN203964672U (zh) 节能加热炉
CN104101213B (zh) 节能加热炉
CN204787826U (zh) 轻质高强加热炉耐火材料炉衬结构
CN201446216U (zh) 一种新型精密铸造模壳的烧结热处理炉
CN107032735A (zh) 一种锅炉用隔热涂料、制备方法及施工方法
CN100339673C (zh) 加热炉窑
CN104121778B (zh) 一种节能裂解炉
CN105543764B (zh) 一种用于爆炸喷涂的红外辐射金属陶瓷粉末及其制备方法
CN207487412U (zh) 黑体强化辐射传热节能加热炉
CN202393208U (zh) 一种日用陶瓷窑炉
CN110173994A (zh) 一种空腔多孔的辐射黑体元件
CN2627440Y (zh) 自带黑体筑炉材料及其加热炉窑
CN2916547Y (zh) 红外辐射加热聚能板
CN204104152U (zh) 耐高温红外辐射板
CN102384652A (zh) 高蓄热强辐射筑炉内衬材料及其加热炉窑
CN201181158Y (zh) 节能红外全波固化炉
CN107478061A (zh) 黑体强化辐射传热节能加热炉及其建造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C12 Rejection of a patent application after its publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20110216