CN101967110A - 一种吸附纯化碘克沙醇的方法 - Google Patents
一种吸附纯化碘克沙醇的方法 Download PDFInfo
- Publication number
- CN101967110A CN101967110A CN2010102411645A CN201010241164A CN101967110A CN 101967110 A CN101967110 A CN 101967110A CN 2010102411645 A CN2010102411645 A CN 2010102411645A CN 201010241164 A CN201010241164 A CN 201010241164A CN 101967110 A CN101967110 A CN 101967110A
- Authority
- CN
- China
- Prior art keywords
- visipaque
- sorbent material
- solution
- postpeak
- iodixanol
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C231/00—Preparation of carboxylic acid amides
- C07C231/22—Separation; Purification; Stabilisation; Use of additives
- C07C231/24—Separation; Purification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/10—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
- B01J20/103—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/02—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
- B01J20/20—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/22—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
- B01J20/26—Synthetic macromolecular compounds
- B01J20/264—Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28057—Surface area, e.g. B.E.T specific surface area
- B01J20/28066—Surface area, e.g. B.E.T specific surface area being more than 1000 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28078—Pore diameter
- B01J20/28083—Pore diameter being in the range 2-50 nm, i.e. mesopores
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J20/00—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
- B01J20/28—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
- B01J20/28054—Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
- B01J20/28088—Pore-size distribution
- B01J20/2809—Monomodal or narrow distribution, uniform pores
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B63/00—Purification; Separation; Stabilisation; Use of additives
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Analytical Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Nanotechnology (AREA)
- Treatment Of Liquids With Adsorbents In General (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Saccharide Compounds (AREA)
Abstract
本发明一般涉及非离子型X-射线造影剂。还涉及一种在纯化碘克沙醇中使用固体吸附剂以降低后峰含量的方法。本发明尤其涉及使用平均孔径小于约30nm的非极性有机吸附剂。本发明吸附剂的具体实例包括非极性丙烯酸酯、二乙烯基苯树脂、聚苯乙烯二乙烯基苯树脂和碳吸附剂。在某些实施方案中,降低30%以上后峰水平和60%以上N-乙酰基环状碘克沙醇水平损失5%碘克沙醇。
Description
相关申请的相互参照
本申请依据35U.S.C.§119(e),要求2009年7月21日提交的美国临时申请号61/227,103的优先权,该申请的全部公开内容通过引用结合到本发明中。
技术领域
本发明一般涉及非离子型X-射线造影剂。本发明还涉及一种在纯化碘克沙醇中使用固体吸附剂降低后峰(backpeaks)含量的方法。本发明尤其涉及使用平均孔径小于约30nm的非极性有机吸附剂。
发明背景
碘克沙醇是一种由挪威Lindesnes的GE Healthcare大批量生产的非离子型X-射线造影剂。碘克沙醇的工业生产涉及多步骤的化学合成。最低收率在最终步骤,涉及中间体5-乙酰氨基-N,N’-二(2,3-二羟基丙基)-2,4,6-三碘代间苯二酰胺(triiodoisophthalamide)(“化合物A”)与表氯醇在碱性条件下的偶合。收率损失归因于导致副产物(“后峰”)的副反应。必须将这些后峰降到最低以提供符合如美国药典所要求的那些监管要求的碘克沙醇。
虽然碘克沙醇的纯化是必须且大规模的,但这样的过程不导致碘克沙醇的大量损失也是重要的。这就对经济的方法存在着需求,该方法能达到所要求的碘克沙醇纯度,同时将纯化过程中终产物的损失降到最低。
附图简述
图1说明用各种基本上是非极性的吸附剂在水性溶液中纯化碘克沙醇。
图2说明最佳非极性吸附剂减少对照组中碘克沙醇水溶液的后峰。
图3说明用基本上是非极性的吸附剂减少碘克沙醇水溶液的N-乙酰基环状碘克沙醇。
图4说明对于CG71M树脂和BGHHM和NC01-125碳的水溶液中后峰的吸附等温线。
图5说明对于CG71M树脂和BGHHM和NC01-125碳的水溶液中碘克沙醇的吸附等温线。
图6说明20.8wt%水溶液中用于纯化碘克沙醇的各吸附剂的平均性能,表明吸附剂所吸附的原始物质的百分率。
图7说明在25℃水性溶液中,碘克沙醇与后峰和碘克沙醇与N-乙酰基环状碘克沙醇的平均分离因子。
图8说明作为BGHHM碳的平均孔径的函数的累积孔隙体积。
发明概述
本发明提供一种大规模纯化碘克沙醇的方法。该方法包括在处理原料碘克沙醇中使用非极性有机吸附剂,其中吸附剂的平均孔径小于约30nm。本发明吸附剂的具体实例包括非极性丙烯酸酯、二乙烯基苯树脂、聚苯乙烯二乙烯基苯树脂和碳吸附剂。在某些优选的实施方案中,使用具有90%孔隙体积小于30nm的吸附剂。在其它实施方案中,使用具有吸附表面积约为1350m2/g吸附剂的吸附剂。
极性较小的杂质包括N-乙酰基环化碘克沙醇(cyclized iodixanol)、环化碘克沙醇和伯o-烷基(primary o-alkyl)三聚体。在某些实施方案中,降低30%以上的后峰水平和60%以上的N-乙酰基环状碘克沙醇水平要损失5%碘克沙醇。例如,对于2∶1固体与吸附剂质量比,可获得30%以上的后峰水平降低。在另一实例中,在吸附纯化中碘克沙醇和后峰之间可获得的分离因子为4,伴有后峰降低约20%,对于吸附相有5%的碘克沙醇损失。
流程1
发明详述
本发明涉及使用非极性有机吸附剂纯化原料碘克沙醇,其中吸附剂的平均孔径小于约30nm。在一优选的实施方案中,对用吸附剂处理之前和之后的碘克沙醇溶液通过高效液相色谱(HPLC)进行分析。例如,基于HPLC测定,作为主要污染物的后峰可在0.80-0.90wt%。
在某些实施方案中,选择水作为碘克沙醇的溶剂,以利用相对于碘克沙醇的所述后峰的更加非极性的特性。这就为选择性除去后峰,创造了碘克沙醇与水的极性很大的相互作用和吸附剂上更为疏水的环境。这种策略与反相HPLC条件的结果一致,其中当用最初的含水流动相洗脱时,后峰在更大程度上(即比碘克沙醇具有更长的保留时间)被选择性地吸附到非极性C18柱上。
其中所选择的优选吸附剂是非极性丙烯酸酯和二乙烯基苯树脂,以及一组聚苯乙烯二乙烯基苯树脂和一些碳吸附剂。为了对比,还研究一组极性二氧化硅吸附剂。于25℃,使20.8wt%固体碘克沙醇水溶液与吸附剂以2∶1碘克沙醇∶吸附剂的质量比进行接触,以观察用高承载量吸附剂对碘克沙醇纯度是否有很大影响(图1)。
数据表明某些类型的碳和丙烯酸酯树脂吸附剂能从极性较小的后峰和N-乙酰基环状碘克沙醇的水溶液中纯化碘克沙醇。图2示出在纯化碘克沙醇中进行得最好的三种碳和丙烯酸酯树脂所降低的后峰的量。这四种吸附剂降低30%或以上的后峰水平,并且它们均可由市售获得。另外,图3中显示还可将环状碘克沙醇降低65-70%。
虽然CG71M比BGHHM碳(1350m2/g)具有较低的表面积(500m2/g),但吸附剂一个重要的对比是比较相对于产物吸附所要求物质的容量。测试这一点的优选方法是进行等温线研究。为测定吸附等温线,将已知重量的干燥吸附剂以碘克沙醇∶吸附剂为4∶1至最高30∶1的质量比加入到等份的20.8wt%固体的标准碘克沙醇水溶液中。使该浆状液混合接触24小时,然后将得到的等份上清液通过标准HPLC分析,分析碘克沙醇、后峰和N-乙酰基环状碘克沙醇含量。
图4中示出作为浓度函数的后峰吸收的结果。以每单位质量吸附剂吸收的后峰的量对平衡时溶液中后峰的质量浓度的数据作图。
图4中的散布度(scatter)源于几个因素。测定通过用水稀释的200微升上清液,然后注射入HPLC中进行。虽然将质量记录为四位小数(four decimal places),仍然存在着与称取小样本溶液有关的潜在的不准确性。另外,为从HPLC中得到所测定的质量浓度,将得自HPLC UV于254nm处测定的峰面积与对照样本(已知对照组中各组分的浓度)相关联。然后将所吸附样本的面积响应作为其相对于对照品的比例,以测定样本的质量浓度。另外,在人工积分(manual integration)的各峰中,可能存在一些不精确之处。除散布度外,数据表明BGHHM比NC01-125对后峰具有更高的容量。
示出作为承载函数的碘克沙醇吸附的类似结果。图5表明相对于接近于20-wt%浓度的溶液,所有吸附剂仅吸附非常小量的碘克沙醇。
为考察等温线数据,可绘制各吸附剂的平均效能图。由于这些浓度范围内的等温线的整体形状相当平坦,因此,平均等温线提供了所述吸附剂在纯化碘克沙醇中的某些相对性能。图6中示出这样的绘图。所述性能基于吸附剂所吸附的溶液中原物质的百分率。还给出标准差,其大都是源于在非常宽的浓度范围内所进行平均测定的性质。平均来讲,所有三种吸附剂除去约15-25%初始后峰水平(低浓度),而仅吸附4-7%的碘克沙醇(高浓度)。这表明相对于碘克沙醇,所述吸附剂对后峰具有高度选择性。
还可从所述测定中计算出平均分离因子。将分离因子定义为相1和2中组分i和j的摩尔份数之比。见King,C.J.Separation Processes.1980:McGraw-Hill。
对于αij>1,将组分i在相1中浓缩,而组分j在相2中浓缩。在这种情况下,碘克沙醇是组分i,而后峰或N-环化物是组分j,且相1是溶液,而相2是固体吸附剂。如图7中所示出的,可见碘克沙醇与后峰以及碘克沙醇与N-乙酰基环状碘克沙醇的平均分离因子。所有因子都大于1,表明碘克沙醇浓缩在溶液相中,而后峰和N-乙酰基环状碘克沙醇浓缩在吸附相中。正值越大,分离越好。N-乙酰基环状碘克沙醇极性较小,因此比后峰更好地与碘克沙醇分离。所有三种非极性吸附剂在后峰分离中都大约等同,在N-乙酰基环状碘克沙醇分离中,CG71M和NC01-125较好。由于以上提及的计算中潜在的不准确性,这种分离因子比较法可以是一种比等温线更优选的比较一定浓度范围内吸附性能的方法。
进行Calgon BGHHM碳孔径分布研究(见图8),并显示给出一有利于吸附纯化碘克沙醇的孔径实例。在该方法中,为最优化吸附性能,可测定纯化的优选孔径。
从BGHHM碳的累积孔隙体积中可以看出,90%空隙体积小于30nm,使得该吸附剂具有很高的微空隙。吸附的表面积为1350m2/g。对比来看,根据制造商提供,CG71M丙烯酸酯树脂的平均孔径为25nm和表面积为500m2/g。应对所有有希望的吸附剂进行进一步的特征鉴定,以确定具有大部分非极性空隙小于30nm的微孔吸附剂为优选的吸附剂,用于从极性溶剂中的碘克沙醇中分离杂质。
通过下列实施例进一步说明本发明,所述实施例不视为将本发明限定于此处所述的具体方法或产品的范围内。
实施例
实施例1:反应条件
用于吸附剂研究的试剂:使用2-甲氧基乙醇(2-ME;Aldrich,HPLC级,>=99.9%,Lot#03758HE),而不需进一步纯化。去离子水通过Millipore Synergy 185系统提供,得到18兆欧的水。碘克沙醇固体得自Lindesnes批号#1042986。所用的吸附剂及其生产商列于表1中。
表1.用于碘克沙醇纯化的吸附剂类型和生产商
另外,采用Supelo目录,鉴定某些其它的吸附剂,如强烈有效用于分离的这些类型的吸附剂,并在表2中列出。
表2从Supelco购得的各种极性和非极性吸附剂的列表
吸附试验:吸附研究使用碘克沙醇在2-ME或去离子水中的标准溶液。通过HPLC测定每种溶液的几种对照品中的碘克沙醇、后峰和N-乙酰基环状化合物。对照和吸附试验中使用的溶液的HPLC样本用称量的25ml去离子水中稀释的一份称量为125-μl的等分试样制备。
为了在与所述溶液混合前除去任何吸附的物质,二氧化硅和碳吸附剂通过在250℃及250mm Hg真空下的烘箱中干燥来制备。
所述吸附通过称取10ml标准溶液至50ml反应瓶中进行。然后向带有一Teflon搅拌棒的该瓶中加入一称量的量的吸附剂。然后在氮气下,将瓶密封,在搅拌台上混合24小时。也监控环境空气的温度,使之在22-27℃之间波动。
平衡后,将部分得到的溶液用0.5μm的Teflon注射滤器过滤,以除去任何吸附剂颗粒。然后将一份125-μl的该过滤的等分液用称量的量的25ml去离子水稀释。之后将稀释的样本通过HPLC分析。
接着用已知标准溶液的峰面积计算平衡的吸附溶液中的碘克沙醇、后峰和N-乙酰基环化物的量。将稀释因子考虑在内,计算出所述溶液和吸附的各相中各成分的量。
吸附剂溶液的HPLC分析:按如下所示,采用Agilent 1100系列HPLC进行HPLC分析。
柱:YMC-Pack ODS-AM,S-5μm,120A,15cm和直径4.6mm
流动相:-Millipore Synergy 185系统去离子水
-50%乙腈在Millipore Synergy 185系统去离子水中
流速:1.25ml/min
检测器:UV-254nm(15μl流通池和10mm路径长度)
温度:25℃或室温
梯度:
实施例2:使用2-甲氧基乙醇溶液的二氧化硅吸附
将157.5g碘克沙醇(GE Healthcare Lot#1042986)溶解于771.7g的2-甲氧基乙醇(Aldrich Lot#03758HE)中,得到在溶液中的16.95Wt%固体(碘克沙醇和杂质)。将一份25ml等分的该溶液加入到带有磁力搅拌棒的玻璃瓶中。将所有吸附剂在250℃及250mm Hg真空下的干燥箱中干燥。然后将一称量的量的干燥吸附剂中加入到瓶中,对照瓶除外,其中不加吸附剂。表3中总结出各量,给出碘克沙醇与吸附剂的各种比例。然后将玻璃瓶置于磁力搅拌板上,并使之搅拌和平衡20小时。然后用2微米Teflon注射滤器过滤随后的母液。随后将一份125-μl的过滤的等分溶液用25ml 16兆欧纯化水稀释,并分析溶液中保留的碘克沙醇、后峰和N-乙酰基环化固体的量。然后将各溶液中各成分的相对量与对照液对比,以确定吸附剂在移除杂质中的效率。表3中的数据表明二氧化硅吸附剂不能有效地从在2-甲氧基乙醇中的碘克沙醇分离出非极性杂质。
表3使用溶于2-甲氧基乙醇中的碘克沙醇的二氧化硅吸附试验的总结
实施例3:使用2-甲氧基乙醇溶液的氧化铝吸附
使用实施例2中制备的相同对照溶液和使用干燥吸附剂的相同方法,利用氧化铝吸附剂进行类似的一组试验。表4中总结出各量,给出碘克沙醇与吸附剂的各种比例。然后将玻璃瓶置于磁力搅拌板上,并使之搅拌和平衡20小时。然后用2微米Teflon注射滤器过滤随后的母液。随后将一份125-μl过滤的等分溶液用25ml 16兆欧纯化水稀释,并分析溶液中保留的碘克沙醇、后峰和N-乙酰基环化固体的量。然后将各溶液中各成分的相对量与对照液对比,以确定吸附剂在移除杂质中的效率。表4中的数据表明氧化铝吸附剂不能有效地从在2-甲氧基乙醇中的碘克沙醇分离出非极性杂质,事实上是由于该吸附剂表面的酸性特性,它们催化碘克沙醇转化为N-乙酰基环化杂质的反应。所加入的吸附剂的量越高,形成的N-乙酰基环化杂质越多。
表4使用溶于2-甲氧基乙醇中的碘克沙醇的氧化铝吸附试验的总结
实施例4:使用2-甲氧基乙醇溶液的聚合物树脂吸附作用
使用实施例2中制备的相同对照溶液和在100℃及250mm Hg真空下干燥吸附剂的相同方法,利用聚合树脂吸附剂进行类似的一组试验。表5中总结出各量,给出碘克沙醇与吸附剂的各种比例。然后将玻璃瓶置于磁力搅拌板上,并使之搅拌和平衡20小时。然后用2微米Teflon注射滤器过滤随后的母液。随后将一份125-μl过滤的等分溶液用25ml 16兆欧纯化水稀释,并分析溶液中保留的碘克沙醇、后峰和N-乙酰基环化固体的量。然后将各溶液中各成分的相对量与对照液对比,以确定吸附剂在移除杂质中的效率。表5中的数据表明聚合物吸附剂不能有效从在2-甲氧基乙醇中的碘克沙醇分离出非极性杂质。也是由于该吸附剂表面的酸性特性,某些聚合物树脂催化碘克沙醇转化为N-乙酰基环化杂质的反应。
表5使用溶于2-甲氧基乙醇中的碘克沙醇的树脂吸附试验的总结
实施例5:使用2-甲氧基乙醇溶液的其它聚合物树脂的吸附作用
使用实施例2中制备的相同对照溶液和在40℃及250mm Hg真空下干燥所述吸附剂相同的方法,利用一组新的非极性聚合树脂吸附剂进行与实施例4类似的一组试验。表6中总结出各量,给出碘克沙醇与吸附剂的各种比例。然后将玻璃瓶置于磁力搅拌板上,并使之搅拌和平衡20小时。然后用2微米Teflon注射滤器过滤随后的母液。随后将一份125-μl过滤的等分溶液用25ml 16兆欧纯化水稀释,并分析溶液中保留的碘克沙醇、后峰和N-乙酰基环化固体的量。然后将各溶液中各成分的相对量与对照液对比,以确定吸附剂在移除杂质中的效率。表6中的数据表明所述聚合物吸附剂不能有效从在2-甲氧基乙醇中的碘克沙醇分离出非极性杂质。
表6使用溶于2-甲氧基乙醇中的碘克沙醇的树脂吸附试验的总结
实施例6:使用水性溶液的碳吸附
将55.05g碘克沙醇(GE Healthcare Lot#1042986)溶解于220.1g的16兆欧纯化水中,得到20.76Wt%固体(碘克沙醇和杂质)溶液。将一份10ml等分的该溶液加入到带有磁力搅拌棒的玻璃瓶中。将所有吸附剂在250℃及250mm Hg真空下的干燥箱中干燥。然后将一称量的量的干燥吸附剂加入到瓶中,对照瓶除外,其中不加吸附剂。表7中总结出各量,给出碘克沙醇与吸附剂的各种比例。然后将玻璃瓶置于磁力搅拌板上,并使之搅拌和平衡20小时。然后用2微米Teflon注射滤器过滤随后的母液。随后将一份125-μl的过滤的等分该溶液用25ml 16兆欧纯化水稀释,并分析溶液中保留的碘克沙醇、后峰和N-乙酰基环化固体的量。然后将各溶液中各成分的相对量与对照液对比,以确定吸附剂在移除杂质中的效率。表7中的数据表明具有适合特性的某些碳吸附剂能有效从碘克沙醇的极性水溶液中分离出非极性杂质。
表7使用溶于水中的碘克沙醇的碳吸附试验的总结
实施例7:使用水性溶液的聚合物树脂和极性二氧化硅吸附作用
使用实施例6中制备的相同对照溶液和使用干燥所述吸附剂相同的方法,即对于聚合物在100℃(对于CG系列聚合物在40℃)和对于二氧化硅在250℃及250mm Hg真空下,利用一组新的非极性聚合树脂吸附剂和一组对比用的极性二氧化硅进行与实施例6类似的一组试验。表8中总结出各量,给出碘克沙醇与吸附剂的各种比例。然后将玻璃瓶置于磁力搅拌板上,并使之搅拌和平衡20小时。然后用2微米Teflon注射滤器过滤随后的母液。随后将一份125-μl过滤的等分该溶液用25ml 16兆欧纯化水稀释,并分析溶液中保留的碘克沙醇、后峰和N-乙酰基环化固体的量。然后将各溶液中各成分的相对量与对照液对比,以确定吸附剂在移除杂质中的效率。表8中的数据表明某些聚合物吸附剂能有效从在水中的碘克沙醇分离出非极性杂质,而极性二氧化硅不能有效用于极性溶剂(如水)中碘克沙醇的纯化。
表8使用溶于水中的碘克沙醇的树脂&二氧化硅吸附试验的总结
以上讨论和/或引用的所有专利、杂志、公开和其它文件均通过引用结合到本发明中。
Claims (1)
1.一种使用非极性有机吸附剂从N-乙酰基环化碘克沙醇、环化碘克沙醇或伯o-烷基三聚体中纯化碘克沙醇的方法,其中吸附剂的平均孔径小于约30nm。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US22710309P | 2009-07-21 | 2009-07-21 | |
US61/227103 | 2009-07-21 | ||
US12/581957 | 2009-10-20 | ||
US12/581,957 US20110021824A1 (en) | 2009-07-21 | 2009-10-20 | Adsorptive purification method for iodixanol |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101967110A true CN101967110A (zh) | 2011-02-09 |
Family
ID=41568926
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102411645A Pending CN101967110A (zh) | 2009-07-21 | 2010-07-21 | 一种吸附纯化碘克沙醇的方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110021824A1 (zh) |
EP (1) | EP2281805A1 (zh) |
KR (1) | KR20110009045A (zh) |
CN (1) | CN101967110A (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102875411A (zh) * | 2012-10-30 | 2013-01-16 | 广州牌牌生物科技有限公司 | 一种用大孔树脂分离纯化碘克沙醇注射剂原料的方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992008691A1 (en) * | 1990-11-16 | 1992-05-29 | Bracco Industria Chimica S.P.A. | 1,3-bis-[3-(mono- or poly-hydroxy)acylamino-5-(mono- or poly-hydroxyalkyl)aminocarbonyl-2,4,6-triiodo-benzoyl-amino]-hydroxy- or hydroxyalkyl-propanes, their methods of preparation and x-ray contrast media containing them |
US5204005A (en) * | 1990-02-26 | 1993-04-20 | Mallinckrodt, Inc. | Reversed phase chromatographic process |
US20050192465A1 (en) * | 1999-02-26 | 2005-09-01 | Bracco Imaging S.P.A. | Process for the preparation of iopamidol |
WO2008104853A1 (en) * | 2007-02-26 | 2008-09-04 | Wockhardt Research Centre | Processes for the preparation of pure ioversol |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5811581A (en) * | 1994-08-04 | 1998-09-22 | Dibra S.P.A. | Process for the purification of opacifying contrast agents |
NO20055643D0 (no) * | 2005-11-29 | 2005-11-29 | Amersham Health As | Preparation of lodixanol |
EP1966110B1 (en) * | 2005-12-19 | 2013-04-24 | Ge Healthcare As | Purification process of iodixanol |
-
2009
- 2009-10-20 US US12/581,957 patent/US20110021824A1/en not_active Abandoned
- 2009-11-19 EP EP09176526A patent/EP2281805A1/en not_active Withdrawn
-
2010
- 2010-07-20 KR KR1020100069976A patent/KR20110009045A/ko not_active Application Discontinuation
- 2010-07-21 CN CN2010102411645A patent/CN101967110A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5204005A (en) * | 1990-02-26 | 1993-04-20 | Mallinckrodt, Inc. | Reversed phase chromatographic process |
WO1992008691A1 (en) * | 1990-11-16 | 1992-05-29 | Bracco Industria Chimica S.P.A. | 1,3-bis-[3-(mono- or poly-hydroxy)acylamino-5-(mono- or poly-hydroxyalkyl)aminocarbonyl-2,4,6-triiodo-benzoyl-amino]-hydroxy- or hydroxyalkyl-propanes, their methods of preparation and x-ray contrast media containing them |
US20050192465A1 (en) * | 1999-02-26 | 2005-09-01 | Bracco Imaging S.P.A. | Process for the preparation of iopamidol |
WO2008104853A1 (en) * | 2007-02-26 | 2008-09-04 | Wockhardt Research Centre | Processes for the preparation of pure ioversol |
Also Published As
Publication number | Publication date |
---|---|
US20110021824A1 (en) | 2011-01-27 |
KR20110009045A (ko) | 2011-01-27 |
EP2281805A1 (en) | 2011-02-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Badawy et al. | A review of the modern principles and applications of solid-phase extraction techniques in chromatographic analysis | |
Kaya et al. | Molecularly imprinted polymers as highly selective sorbents in sample preparation techniques and their applications in environmental water analysis | |
CN103111091B (zh) | 茶叶固相萃取柱及检测茶叶农药残留物的样品前处理方法 | |
Nerín et al. | Critical review on recent developments in solventless techniques for extraction of analytes | |
EP2709754B1 (en) | Porous materials for solid phase extraction and chromatography | |
CN108732273B (zh) | 一种用于分析食品和饮用水中痕量磺胺类抗生素的方法 | |
Poole | Solid-phase extraction | |
JP2018036258A (ja) | 残留農薬の分析用試料の調製方法 | |
Mei et al. | Determination of fluoroquinolones in environmental water and milk samples treated with stir cake sorptive extraction based on a boron‐rich monolith | |
Lian et al. | Selective detection of chloramphenicol based on molecularly imprinted solid-phase extraction in seawater from Jiaozhou Bay, China | |
WO2018043465A1 (ja) | 残留農薬の分析用試料の調製方法 | |
JP2010137207A (ja) | ミックスモード型吸着剤 | |
CN101664669A (zh) | 羧基化的单壁碳纳米管-海藻酸固相萃取盘的制备及应用 | |
CN104815628B (zh) | 一种改性苯乙烯—二乙烯苯大孔吸附树脂的用途 | |
Khataei et al. | Applications of porous frameworks in solid‐phase microextraction | |
JP2005528628A (ja) | 試料前処理中の極性保持に優れた重合体 | |
CN103091150A (zh) | 一种多功能针式过滤器 | |
Deng et al. | Metal-organic framework-101 grafted with amino groups as solid-phase extraction adsorbent coupled with liquid chromatography for the determination of phenoxycarboxylic acids in environmental samples | |
Thakur et al. | Selective quantification of diclofenac from groundwater and pharmaceutical samples by magnetic molecularly imprinted polymer-based sorbent coupled with the HPLC-PDA detection | |
CN101967110A (zh) | 一种吸附纯化碘克沙醇的方法 | |
US20070264724A1 (en) | Method for sample preparation by solid phase extraction | |
Li et al. | Hierarchically porous zeolitic imidazole framework-8/cellulose membrane installed in filter as sorbent for microextraction in packed syringe towards trace tetracyclines in water samples | |
Gutiérrez‐Serpa et al. | Application of MOFs and Their Derived Materials in Solid‐Phase Extraction | |
CN115245690A (zh) | 一种用于富集水体中有机小分子化合物的系统及方法 | |
Campíns‐Falcó et al. | Solid‐phase extraction and clean‐up procedures in pharmaceutical analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20110209 |