CN101954309B - 一种磨矿分级过程的抗扰动控制装置及其方法 - Google Patents

一种磨矿分级过程的抗扰动控制装置及其方法 Download PDF

Info

Publication number
CN101954309B
CN101954309B CN 201010517582 CN201010517582A CN101954309B CN 101954309 B CN101954309 B CN 101954309B CN 201010517582 CN201010517582 CN 201010517582 CN 201010517582 A CN201010517582 A CN 201010517582A CN 101954309 B CN101954309 B CN 101954309B
Authority
CN
China
Prior art keywords
pump pond
loop
disturbance
control
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010517582
Other languages
English (en)
Other versions
CN101954309A (zh
Inventor
陈夕松
李世华
李奇
郭聪
王洪超
胡晓嵬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN 201010517582 priority Critical patent/CN101954309B/zh
Publication of CN101954309A publication Critical patent/CN101954309A/zh
Application granted granted Critical
Publication of CN101954309B publication Critical patent/CN101954309B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明公开了一种磨矿分级过程的抗扰动控制装置及其方法,包括可编程逻辑控制器、泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、粒度分析仪、电耳、浓度计、调节阀、给矿机变频器和监控计算机;所述的可编程逻辑控制器包括模拟量输入模块、CPU模块和模拟量输出模块。本发明能有效解决一大类工业过程的扰动、耦合和模型失配等控制问题,提高自动控制系统的控制性能,有利于降低企业发展扩建、设备维护更新的费用,大大增加了企业经济效益,同时可以避免恶劣生产现场的人工操作,降低工人劳动强度,改善了劳动环境。

Description

一种磨矿分级过程的抗扰动控制装置及其方法
技术领域
本发明涉及的是一种自动控制技术领域,尤其涉及的是一种磨矿分级过程的抗扰动控制装置及其方法。
背景技术
磨矿分级过程是冶金行业选矿生产过程中的关键流程。该过程是破碎筛分过程的继续,其目的是通过研磨使矿石中的有用成分全部或大部分达到单体分离(微米级),同时又尽量避免“过粉碎”现象,达到选别作业(如浮选、磁选)的粒度要求,为选别作业有效回收矿石中的有用成分创造条件。
传统的磨矿分级过程控制由磨矿操作工采用“触、听、看”的方法,不足在于对操作人员的要求比较高,并且无法保证生产安全与产品质量。随着控制理论的发展,基于分散单输入/输出的先进控制在磨矿分级过程中得到广泛应用,但目前这些控制器没有采取有针对的抗扰动设计,磨矿分级过程存在大时滞、多种内外部扰动和通道间的耦合,这都使得先进控制算法难以在实际的磨矿分级控制中取得好的控制效果。
发明内容
发明目的:本发明的目的在于克服现有技术的不足,提供了一种磨矿分级过程的抗扰动控制装置及其方法,对磨矿分级过程进行自动调节,使产品满足粒度要求,同时使球磨机工作在最佳负荷状态,满足产量要求,不仅能实时检测磨矿车间给矿、磨矿、泵池液位和水力旋流的工况,而且能根据产品粒度和循环负荷自动调节给矿、补水,实现磨矿分级过程的自动化。
技术方案:本发明是通过以下技术方案实现的,本发明包括可编程逻辑控制器、泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、浓度计、粒度分析仪、电耳、调节阀、给矿机变频器和监控计算机;所述的可编程逻辑控制器包括模拟量输入模块、CPU模块和模拟量输出模块,其中:CPU模块分别与模拟量输入模块和模拟量输出模块相连,监控计算机和CPU模块相连,泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、浓度计、粒度分析仪和电耳分别与模拟量输入模块相连,模拟量输出模块分别与调节阀和给矿机变频器相连以传输控制信号。
所述的模拟量输入模块上设有若干输入端,泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、浓度计、粒度分析仪和电耳通过各个输入端分别与模拟量输入模块相连。
所述的给矿机变频器和给矿机相连,给矿机位于给矿皮带上方,给矿皮带和皮带秤相连,模拟量输出模块通过给矿机变频器控制给矿机。
所述的调节阀通过泵池给水管路和泵池给水管路流量计相连,模拟量输出模块通过调节阀控制泵池给水管路。
一种磨矿分级过程的抗扰动控制装置的控制方法,包括以下步骤,
(1)设置工作参数,包括设定产品粒度、循环负荷、采样周期、基于扰动观测器的动态矩阵控制控制的预测时域、控制时域、阶跃模型系数、权重误差和控制量误差;
(2)采集实际值,包括产品粒度、循环负荷、给矿量和泵池补加水量;
(3)将步骤(1)中设置的产品粒度与和步骤(2)中采集的实际产品粒度比较,得出产品粒度偏差,将步骤(1)中设置的循环负荷与步骤(2)中采集的实际循环负荷进行比较,得出循环负荷偏差;
(4)用步骤(3)中得到的产品粒度偏差和循环负荷偏差分别对预测产品粒度和预测循环负荷进行校正;
(5)对步骤(4)得到的校正后的预测产品粒度和预测循环负荷分别进行移位以设置当前时刻的预测产品粒度初值和预测循环负荷初值;
(6)以步骤(5)得到的移位后的预测产品粒度和预测循环负荷和步骤(1)设定的工作参数,得出给矿回路的给矿量基值和泵池补加水回路的泵池补加水量基值;
(7)以步骤(2)中采集到的实际给矿量、泵池补加水量、产品粒度和循环负荷,得出给矿回路的扰动估计值和泵池补加水回路的扰动估计值;
(8)将步骤(6)得到的给矿回路的给矿量基值减去步骤(7)得到给矿回路的扰动估计值得到给矿回路的给矿量,将步骤(6)得到的泵池补加水回路的泵池补加水量基值减去步骤(7)得到的泵池补加水回路的扰动估计值得到泵池补加水回路的泵池补加水量;
(9)将步骤(8)得到的给矿量输送到给矿机变频器,以控制实际给矿量,将步骤(8)得到的泵池补加水量输送到泵池给水管路的调节阀,以控制泵池实际的补加水量;
(10)利用步骤(8)得到的给矿量和泵池补加水量得到预测产品粒度和预测循环负荷,然后返回步骤(2)。
有益效果:本发明采用基于扰动观测器的模型预测控制方法进行调控,避免了人工手动操作的不足,增强了先进控制系统的抗扰动能力,改善了系统的控制性能,增加了生产效益;以可编程逻辑控制器为核心控制器,增强了控制系统的可靠性,扩展了控制系统的应用范围;采用监控计算机进行实时监控,可在线修改可编程逻辑控制器的工作参数和指标参数,提高了控制系统的灵活性和生产效率。本发明能有效解决一大类工业过程的扰动、耦合和模型失配等控制问题,提高自动控制系统的控制性能,有利于降低企业发展扩建、设备维护更新的费用,大大增加了企业经济效益,同时可以避免恶劣生产现场的人工操作,降低工人劳动强度,改善了劳动环境。
附图说明
图1是本发明磨矿分级过程的抗扰动控制系统的结构示意图;
图2是本发明磨矿分级过程的抗扰动控制装置的结构框图;
图3是本发明的模拟量输入模块的连接示意图;
图4是本发明的模拟量输出模块的连接示意图;
图5是本发明磨矿分级过程的抗扰动控制方法的流程图。
具体实施方式
下面对本发明的实施例作详细说明,本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
如图1所示,本实施例包括可编程逻辑控制器1、给矿机变频器2、给矿机3、矿仓4、给矿皮带5、皮带秤6、电耳7、泵池给水管路流量计8、球磨机9、调节阀10、泵池11、粒度分析仪12、水力旋流器13、泵池出水管路流量计14、浓度计15、液位计16、水泵17和监控计算机,可编程逻辑控制器1包括模拟量输入模块、CPU模块和模拟量输出模块,其中:矿仓4内的矿石由矿仓4落下,经给矿机3、给矿皮带5送入球磨机9进行研磨。研磨后的矿浆经泵池11在水泵17作用下送入水力旋流器13进行分级,粗矿作为循环负荷返回球磨机9再磨,细矿作为磨矿分级过程的最终产品送入下道作业工序;泵池给水管路流量计8设置在泵池11的给水管路上用以检测泵池11的补加水量;皮带秤6设于给矿皮带5上用以检测给矿量;粒度分析仪12设于水力旋流器13的出水管路,用以检测产品粒度;液位计16设于泵池11上方,用以检测泵池11液位;电耳7设于球磨机9机身外侧,用以检测球磨机9音量;泵池出水管路流量计14设于泵池出水管路,用以检测泵池11出水管路的矿浆流量;浓度计15设于泵池出水管路,用以检测泵池11出水管路的矿浆浓度;给矿机变频器2用于控制给矿机3的给矿量;调节阀10用于控制泵池11给水管路的流量;可编程逻辑控制器1用于接收各检测装置的采样值,并经过控制计算,将控制量输送给给矿机变频器2和调节阀10,以实现给矿量和泵池补加水量的控制。
如图2所示,所述的CPU模块的输入端和模拟量输入模块相连,CPU模块的输出端和模拟量输出模块相连,监控计算机和CPU模块相连,用于设定可编程逻辑控制器1的工作参数并实时监控磨矿分级过程各设备的工作状态,设定的可编程逻辑控制器1的工作参数和指标参数包括产品粒度设定值、循环负荷设定值、采样周期、基于扰动观测器的动态矩阵控制控制的预测时域、控制时域、阶跃模型系数、权重误差、控制量误差。
泵池给水管路流量计8设置在泵池11的给水管路上用以检测泵池11的补加水量,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
皮带秤6设于给矿皮带5上用以检测给矿量,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
粒度分析仪12设于水力旋流器13的出水管路,用以检测产品粒度,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
液位计16设于泵池11上方,用以检测泵池11液位,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
电耳7设于球磨机9机身外侧,用以检测磨机音量,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
泵池出水管路流量计14设于泵池出水管路上用以检测泵池的出水管路流量,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
浓度计15设于泵池出水管路上用以检测泵池的出水管路中的矿浆浓度,并将其调理成标准检测电流信号(4~20mA)传输至模拟量输入模块,供CPU模块处理;
给矿机变频器2设于给矿机3上,其输入端接模拟量输出模块的输出端,用于控制给矿机3的给矿量;
调节阀10设于泵池11给水管路上,其输入端接模拟量输出模块的输出端,用于控制泵池11给水管路的流量。
CPU模块的处理过程如下:
(1)对泵池给水管路流量计8、皮带秤6、粒度分析仪12、液位计16、电耳7的检测电流信号进行滤波及规格化得到泵池11给水管路流量、给矿量、产品粒度、泵池11液位和磨机音量,并利用软测量的方法得到产品循环负荷;
(2)将设定好的产品粒度和循环负荷与检测到的实际产品粒度和循环负荷相减,计算出产品粒度偏差和循环负荷偏差;
(3)利用得到的粒度偏差和循环负荷偏差对预测产品粒度和预测循环负荷进行校正;
(4)对校正后的预测产品粒度和预测循环负荷进行移位,以得到当前时刻的预测产品粒度初值和预测循环负荷初值;
(5)利用基于扰动观测器的动态矩阵控制算法中的动态矩阵控制模块,移位后的预测产品粒度和预测循环负荷,以及设定好的工作和指标参数,计算出给矿回路的给矿量基值和泵池11补加水回路的泵池补加水量基值;
(6)利用基于扰动观测器的动态矩阵控制算法中的扰动观测器模块,采集到的给矿量、产品粒度、泵池11补加水量和循环负荷,计算出给矿回路的扰动量和泵池11补加水回路的扰动量;
(7)计算出给矿回路的给矿量和泵池11补加水回路的泵池11补加水量;
(8)将计算得到的给矿量输送到给矿机变频器2以控制实际给矿量,同时将计算得到的泵池11补加水量送到泵池11给水管路调节阀10以控制泵池11补加水量。
本实施例中,可编程逻辑控制器1包括一个模拟量输入模块和一个模拟量输出模块。
如图3所示,所述的模拟量输入模块中2号和3号通道连接到泵池给水管路流量计8;4号和5号通道连接到皮带秤6;6号和7号通道连接到粒度分析仪12;8号和9号通道连接到液位计16;12号和13号通道连接到电耳7;14号和15号通道连接到浓度计15;16号和17号通道连接到泵池出水管路流量计14;18号和19号通道为预留通道。
如图4所示,所述的模拟量输出模块中3号和6号通道连接到给矿机变频器2;7号和10号通道连接到调节阀10;其余为预留通道。
CPU模块与上述模拟量输入模块、模拟量输出模块通过模块间的背板总线连接。
如图5所示,一种磨矿分级过程的抗扰动控制方法,包括如下步骤:
(1)开始设置工作参数,包括产品粒度设定值、循环负荷设定值、采样周期、基于扰动观测器的动态矩阵控制控制的预测时域、控制时域、阶跃模型系数、权重误差、控制量误差;
(2)采集实际值,包括产品粒度、循环负荷、给矿量、泵池补加水量;
(3)将步骤(1)中设置的产品粒度与和步骤(2)中采集的实际产品粒度比较,得出产品粒度偏差,将步骤(1)中设置的循环负荷与步骤(2)中采集的实际循环负荷进行比较,得出循环负荷偏差;
(4)用步骤(3)中得到的产品粒度偏差和循环负荷偏差分别对预测产品粒度和预测循环负荷进行校正;
(5)对步骤(4)得到的校正后的预测产品粒度和预测循环负荷分别进行移位以设置当前时刻的预测产品粒度初值和预测循环负荷初值;
(6)利用基于扰动观测器的动态矩阵控制算法中的动态矩阵控制模块,步骤(5)得到的移位后的预测产品粒度和预测循环负荷,以及步骤(1)设定的工作参数,得出给矿回路的给矿量基值和泵池补加水回路的泵池补加水量基值;
(7)利用基于扰动观测器的动态矩阵控制算法中的扰动观测器模块和步骤(2)中采集到的实际给矿量、泵池补加水量、产品粒度和循环负荷,得出给矿回路的扰动估计值和泵池补加水回路的扰动估计值;
(8)将步骤(6)得到的给矿回路的给矿量基值减去步骤(7)得到给矿回路的扰动估计值得到给矿回路的给矿量,将步骤(6)得到的泵池补加水回路的泵池补加水量基值减去步骤(7)得到的泵池补加水回路的扰动估计值得到泵池补加水回路的泵池补加水量;
(9)将步骤(8)得到的给矿量输送到给矿机变频器,以控制实际给矿量,将步骤(8)得到的泵池补加水量输送到泵池给水管路的调节阀,以控制泵池实际的补加水量;
(10)利用步骤(8)得到的给矿量和泵池补加水量得到预测产品粒度和预测循环负荷,然后返回步骤(2)。

Claims (2)

1.一种磨矿分级过程的抗扰动控制装置,其特征在于,包括可编程逻辑控制器、泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、浓度计、粒度分析仪、电耳、调节阀、给矿机变频器和监控计算机;所述的可编程逻辑控制器包括模拟量输入模块、CPU模块和模拟量输出模块,其中:CPU模块分别与模拟量输入模块和模拟量输出模块相连,监控计算机和CPU模块相连,泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、浓度计、粒度分析仪和电耳分别与模拟量输入模块相连,模拟量输出模块分别与调节阀和给矿机变频器相连以传输控制信号;
所述的模拟量输入模块上设有若干输入端,泵池出水管路流量计、泵池给水管路流量计、皮带秤、液位计、浓度计、粒度分析仪和电耳通过各个输入端分别与模拟量输入模块相连;
所述的给矿机变频器和给矿机相连,给矿机位于给矿皮带上方,给矿皮带和皮带秤相连,模拟量输出模块通过给矿机变频器控制给矿机;
所述的调节阀通过泵池给水管路和泵池给水管路流量计相连,模拟量输出模块通过调节阀控制泵池给水管路。
2.根据权利要求1所述的磨矿分级过程的抗扰动控制装置的控制方法,其特征在于:包括以下步骤,
(1)设置工作参数,包括设定产品粒度、循环负荷、采样周期、基于扰动观测器的动态矩阵控制的预测时域、控制时域、阶跃模型系数、权重误差和控制量误差;
(2)采集实际值,包括产品粒度、循环负荷、给矿量和泵池补加水量;
(3)将步骤(1)中设置的产品粒度与和步骤(2)中采集的实际产品粒度比较,得出产品粒度偏差,将步骤(1)中设置的循环负荷与步骤(2)中采集的实际循环负荷进行比较,得出循环负荷偏差;
(4)用步骤(3)中得到的产品粒度偏差和循环负荷偏差分别对预测产品粒度和预测循环负荷进行校正;
(5)对步骤(4)得到的校正后的预测产品粒度和预测循环负荷分别进行移位以设置当前时刻的预测产品粒度初值和预测循环负荷初值;
(6)以步骤(5)得到的移位后的预测产品粒度和预测循环负荷和步骤(1)设定的工作参数,得出给矿回路的给矿量基值和泵池补加水回路的泵池补加水量基值;
(7)以步骤(2)中采集到的实际给矿量、泵池补加水量、产品粒度和循环负荷,得出给矿回路的扰动估计值和泵池补加水回路的扰动估计值;
(8)将步骤(6)得到的给矿回路的给矿量基值减去步骤(7)得到给矿回路的扰动估计值得到给矿回路的给矿量,将步骤(6)得到的泵池补加水回路的泵池补加水量基值减去步骤(7)得到的泵池补加水回路的扰动估计值得到泵池补加水回路的泵池补加水量;
(9)将步骤(8)得到的给矿量输送到给矿机变频器,以控制实际给矿量,将步骤(8)得到的泵池补加水量输送到泵池给水管路的调节阀,以控制泵池实际的补加水量;
(10)利用步骤(8)得到的给矿量和泵池补加水量得到预测产品粒度和预测循环负荷,然后返回步骤(2)。
CN 201010517582 2010-10-25 2010-10-25 一种磨矿分级过程的抗扰动控制装置及其方法 Expired - Fee Related CN101954309B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010517582 CN101954309B (zh) 2010-10-25 2010-10-25 一种磨矿分级过程的抗扰动控制装置及其方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010517582 CN101954309B (zh) 2010-10-25 2010-10-25 一种磨矿分级过程的抗扰动控制装置及其方法

Publications (2)

Publication Number Publication Date
CN101954309A CN101954309A (zh) 2011-01-26
CN101954309B true CN101954309B (zh) 2013-02-13

Family

ID=43482043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010517582 Expired - Fee Related CN101954309B (zh) 2010-10-25 2010-10-25 一种磨矿分级过程的抗扰动控制装置及其方法

Country Status (1)

Country Link
CN (1) CN101954309B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102357395A (zh) * 2011-10-27 2012-02-22 东南大学 一种磨矿分级过程的模糊监督控制装置及方法
CN102716802A (zh) * 2012-06-26 2012-10-10 中国矿业大学(北京) 一种硅藻土矿擦洗过程的控制方法
CN105195299A (zh) * 2015-10-21 2015-12-30 中冶北方(大连)工程技术有限公司 一种球磨-旋流器组闭路控制系统及方法
CN105344459B (zh) * 2015-11-26 2017-11-03 东南大学 一种用于雷蒙磨粉碎工艺的抗干扰控制方法
EP3456417A1 (en) * 2017-09-18 2019-03-20 ABB Schweiz AG Method for operating a comminution circuit and respective comminution circuit
CN109499694A (zh) * 2018-12-26 2019-03-22 北京德润慧通大数据科技有限公司 给矿控制系统及方法
CN114522793B (zh) * 2021-12-31 2023-04-07 浙江艾领创矿业科技有限公司 选矿细磨控制方法及其选矿细磨控制系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063367A (zh) * 1991-01-12 1992-08-05 浙江大学 筒形钢球球磨机物料存量的监控方法
CN1119567A (zh) * 1994-05-27 1996-04-03 石川岛播磨重工业株式会社 金属带的连铸方法及装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI115854B (fi) * 2003-01-17 2005-07-29 Outokumpu Oy Menetelmä myllyn täyttöasteen määrittämiseksi

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1063367A (zh) * 1991-01-12 1992-08-05 浙江大学 筒形钢球球磨机物料存量的监控方法
CN1119567A (zh) * 1994-05-27 1996-04-03 石川岛播磨重工业株式会社 金属带的连铸方法及装置

Also Published As

Publication number Publication date
CN101954309A (zh) 2011-01-26

Similar Documents

Publication Publication Date Title
CN101954309B (zh) 一种磨矿分级过程的抗扰动控制装置及其方法
CN101950171B (zh) 选矿厂磨矿智能分级控制方法及控制设备
CN101244403B (zh) 一种磨矿分级过程优化控制方法
CN102357395A (zh) 一种磨矿分级过程的模糊监督控制装置及方法
CN102008998A (zh) 一种水力旋流器的自动控制装置及其控制方法
CN103412489B (zh) 一种磨矿粒度在线预报系统及方法
CN102169077B (zh) 湿式磨矿过程溢流粒度指标混合智能软测量方法
CN100401213C (zh) 选矿过程综合生产指标智能优化控制方法
CN104134120B (zh) 一种选矿生产指标监控系统及方法
CN103617456B (zh) 一种选矿过程运行指标优化方法
CN101183260A (zh) 选矿全流程自动控制方法
CN1307415C (zh) 基于案例推理的磨矿系统溢流粒度指标软测量方法
CN115238971A (zh) 一种选煤厂智慧大脑分析处理系统
CN100394163C (zh) 球磨机磨矿系统溢流粒度指标软测量方法
CN203470141U (zh) 重介质悬浮液密度自动测控系统
CN106676934A (zh) 一种高浓磨浆系统经济优化运行控制方法及系统
CN101275866A (zh) 自动称重式流态物料计量仪
CN106950946B (zh) 一种基于优化原则的湿法冶金异常控制方法
CN101776564A (zh) 铁矿石选矿产品矿物单体解离度测定方法
CN106483946A (zh) 一种冶金生产过程单位产品能耗在线检测系统及方法
CN104299045B (zh) 一种选矿生产全流程精矿产量预报系统及方法
CN201804265U (zh) 选矿厂磨矿智能分级控制设备
CN106886154B (zh) 基于区间数的湿法冶金全流程建模方法与优化方法
Huang et al. Production process management system for production indices optimization of mineral processing
CN205341055U (zh) 一种精确稳定的浮选液位检测及控制装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130213

Termination date: 20151025

EXPY Termination of patent right or utility model