CN101948706A - 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法 - Google Patents

一种混合制冷剂与氮膨胀组合制冷式天然气液化方法 Download PDF

Info

Publication number
CN101948706A
CN101948706A CN2010102560048A CN201010256004A CN101948706A CN 101948706 A CN101948706 A CN 101948706A CN 2010102560048 A CN2010102560048 A CN 2010102560048A CN 201010256004 A CN201010256004 A CN 201010256004A CN 101948706 A CN101948706 A CN 101948706A
Authority
CN
China
Prior art keywords
nitrogen
liquefaction
natural gas
mix refrigerant
ice chest
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010102560048A
Other languages
English (en)
Other versions
CN101948706B (zh
Inventor
张道光
金海刚
王俊美
卜晓玲
陈广明
李琴
刘红波
杨福昌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China National Offshore Oil Corp CNOOC
CNOOC Research Institute Co Ltd
CNOOC Petrochemical Engineering Co Ltd
COOEC Enpal Engineering Co Ltd
Original Assignee
China National Offshore Oil Corp CNOOC
COOEC Enpal Engineering Co Ltd
CNOOC Research Center
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China National Offshore Oil Corp CNOOC, COOEC Enpal Engineering Co Ltd, CNOOC Research Center filed Critical China National Offshore Oil Corp CNOOC
Priority to CN2010102560048A priority Critical patent/CN101948706B/zh
Publication of CN101948706A publication Critical patent/CN101948706A/zh
Application granted granted Critical
Publication of CN101948706B publication Critical patent/CN101948706B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0042Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by liquid expansion with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0244Operation; Control and regulation; Instrumentation
    • F25J1/0245Different modes, i.e. 'runs', of operation; Process control
    • F25J1/0249Controlling refrigerant inventory, i.e. composition or quantity
    • F25J1/025Details related to the refrigerant production or treatment, e.g. make-up supply from feed gas itself
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0262Details of the cold heat exchange system
    • F25J1/0264Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams
    • F25J1/0265Arrangement of heat exchanger cores in parallel with different functions, e.g. different cooling streams comprising cores associated exclusively with the cooling of a refrigerant stream, e.g. for auto-refrigeration or economizer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/62Separating low boiling components, e.g. He, H2, N2, Air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation By Low-Temperature Treatments (AREA)

Abstract

本发明属于气体液化技术领域,涉及一种采用混合制冷剂循环与氮膨胀循环组合制冷式天然气液化方法,先将经过脱酸性气、脱水等预处理后的天然气进入天然气液化段冷箱,控制压力为4~10MPa在液化段冷箱中由混合制冷剂汽化制冷,将高压下的天然气进行液化,液化天然气(LNG)离开液化段冷箱的温度为-75℃~-110℃;LNG进入过冷段冷箱后冷却至-150℃左右,经液体膨胀机减压至储罐压力并进一步降温至-160℃左右,然后压缩后作燃料气;其工艺过程简单,可靠性强,液化率高,适于工业化生产。

Description

一种混合制冷剂与氮膨胀组合制冷式天然气液化方法
技术领域:
本发明属于气体液化技术领域,涉及一种天然气液化工艺方法,特别是一种采用混合制冷剂循环与氮膨胀循环组合制冷式天然气液化方法。
背景技术:
目前,国内外用于天然气液化的工艺主要有:氮膨胀制冷工艺、阶式制冷工艺、单混合制冷剂工艺、带丙烷预冷的混合制冷工艺和双混合制冷剂工艺等多种工艺方法,这些工艺均有各自的优缺点。氮膨胀制冷工艺简单,但效率低,只能用于调峰型等规模较小的液化装置;阶式制冷工艺效率较高,由于三个制冷循环都是纯组分,设计计算及操作等比较方便,但该工艺设备和压缩机组多,对制冷剂纯组分的纯度要求高,换热设备多且较复杂,设备投资高;单混合制冷剂工艺流程简单,效率相对于阶式制冷工艺较低,由于只有一个制冷循环,且节流后的气态制冷剂压力低,因此气态制冷剂体积流量大,应用于中到大型装置时受到压缩机、冷箱等设备的限制,故一般只应用于中小规模的液化装置,该工艺另外一个缺点是由于制冷剂的工作温度范围大,须有严格的制冷剂组分配比,否则热效率会有较大下降,因此需要外购和储存多个制冷剂纯组分,配置较困难,开工慢;带预冷的混合制冷剂工艺与双级混合制冷剂工艺等都具有较高的热效率,且都可以应用于大型的天然气液化装置,但是这两种工艺较复杂,设备数量较多,且制冷剂系统具有与单混合制冷剂系统类似的缺点,即制冷剂组分比例较严格、配置较困难,开工慢、外购和存储多个纯组分等,因此一般只应用于大型的液化天然气装置时才体现出经济价值。归结现有技术的缺点,寻求设计一种能克服现有技术主要缺点的天然气液化工艺方法具有明显的科学和经济价值。
发明内容:
本发明的目的在于克服现有技术存在的缺点,寻求设计并提供一种操作方便,液化效率高,可用于中到大型规模的天然气液化工艺方法,将混合制冷循环工艺与氮膨胀制冷工艺有机的组合形成天然气液化工艺。
为了实现上述发明目的,本发明的工艺过程包括天然气预处理、脱重烃、预冷、液化、过冷、补充制冷剂、混合制冷剂循环、氮气膨胀制冷循环和LNG储存;先将经过脱酸性气、脱水等预处理后的天然气(脱酸性气、脱水部分不属本发明内容)进入天然气液化段冷箱,控制压力为4~10Mpa在液化段冷箱中由混合制冷剂(甲烷~戊烷的混合物)的汽化制冷,将高压下的天然气进行液化,液化天然气(LNG)离开液化段冷箱的温度为-75℃~-110℃(依原料气组成及压力而定);LNG进入过冷段冷箱后冷却至-150℃左右,经液体膨胀机减压至储罐压力并进一步降温至-160℃左右(J-T阀作为液体膨胀机的旁路和备用),产生的BOG为预处理段脱水前天然气预冷,然后压缩后作燃料气;在混合制冷剂循环过程中,低压下的气态混合制冷剂经过两级压缩和水冷或空冷后,部分混合制冷剂冷凝为液体后进入天然气液化段冷箱换热被冷凝为液体,温度为-75℃~-110℃,再经过混合制冷剂J-T阀降压和减温后汽化返回液化段冷箱;另一部分混合制冷剂进入氮气换热器,在液化段冷箱中完全汽化后返回混合制冷剂一级压缩机入口,并将天然气和高压的混合制冷剂冷凝为液体;在氮气膨胀制冷循环中,氮气经三级压缩和冷却后进入氮气换热器,与从过冷段冷箱返回的低温氮气换热,氮气换热器中引入一部分经混合制冷剂J-T阀降压后的混合制冷剂补充换热,改善氮气之间的换热效果;高压氮气经换热降温,进入氮气膨胀机减压和降温后进入过冷段冷箱冷端与LNG换热,将LNG冷却至-150℃后再与高压氮气换热升温后回到氮气一级压缩机入口;氮气第三级压缩机由氮气膨胀机直接驱动;对天然气中的碳六以上重烃在液化前进行脱重烃是将天然气在液化段冷箱中的温度调为-30℃(依原料气性质定),抽出后进入脱重烃塔,脱重烃塔顶的气体进入液化段冷箱,降温10℃~20℃后经气液分离,气体返回液化段冷箱并进入后续的液化过程,液体作为脱重烃塔的回流;当需要补充制冷剂时,从脱重烃塔的回流抽出部分液体,经降压并进行气液分离,气体进入燃料气系统,液体经制冷剂汽化器汽化后补充到混合制冷剂一级压缩机入口的混合制冷剂缓冲罐。
本发明的混合制冷剂由脱重烃工序制取,不需进行制冷剂组分的配置;天然气脱重烃塔顶与液化段冷箱之间物流的组合方式采用从烃塔塔顶气体进入液化段冷箱进一步降温,然后气液分离,液相回到脱重烃塔顶回流,天然气液化后降压过程采用液体膨胀机可提高流程效率,降低压缩功耗,以J-T阀作为备用;混合制冷剂制冷循环和氮气膨胀制冷循环的组合来达到天然气的预冷、液化、过冷过程;两种制冷循环的分界点是高压下天然气的液化温度加适当的过冷度;混合制冷剂循环和氮气膨胀循环是两个独立的制冷循环,有各自的压缩机、冷却器、冷箱组成;氮气换热有部分冷量来自混合制冷剂,氮气膨胀循环效率明显提高;混合制冷剂由甲烷至戊烷的轻烃组成,基本不含氮气及碳六以上重组分;制冷剂在压缩后用水冷(或空冷)冷却,至少有一部分制冷剂冷凝,制冷剂在J-T阀前已全部液化,制冷剂经冷箱换热返回压缩机时已全部汽化,并有一定的过热度;氮膨胀循环中氮气始终为气相。
本发明采用混合制冷剂制冷循环和氮膨胀制冷循环相结合的组合制冷式工艺,混合制冷剂循环将天然气预冷并进一步冷却使天然气达到高压下的液化温度;氮膨胀循环将已液化的天然气过冷至更低的温度,达到常压下LNG的储存条件;一般的混合制冷剂循环效率高,但开工启动慢,混合制冷剂组分严格,且混合制冷剂工作温度范围越大,温度越低,则制冷剂组分要求越高;本发明的混合制冷剂工作温度范围为常温~-110℃,制冷剂组分要求低,可调范围宽,同时虽然混合制冷剂制冷温度范围变小,但仍然集中了天然气液化过程中约70%的制冷负荷,故热效率较高;传统的氮膨胀工艺具有安全、启动迅速、设备简单等优点,缺点是制冷效率低,特别是“高温段”制冷时相对于混合制冷剂系统效率很低;氮膨胀循环在低温段如-100℃以下时制冷效率较高;在装置内制取混合制冷剂的混合组分,可减少装置的复杂性和操作劳动强度;同时制冷剂最低温度为-100℃左右,故节流后混合制冷剂压力比一般的混合制冷剂工艺高,从而降低气态混合制冷剂的体积流量,减少设备体积;本发明工艺的热效率高、气态制冷剂体积流量小、制冷剂系统简单等特点可用于中到大型天然气液化装置,相对于可大型化的丙烷预冷的混合制冷剂工艺、双混合制冷剂工艺和阶式制冷工艺都简单,设备投资低且可大大简化制冷剂的存储和配置问题;该方法如在将来的海上浮式液化天然气生产装置中应用,在特定海况和规模下可能比其它制冷工艺有较好的适应性;本发明制冷剂系统由原料气中制取,与原料气组成有一定的相关性,可调范围宽,同时由于氮膨胀循环对不同天然气的适应性强,故整体工艺对不同性质和组成的天然气具有较好的适应性。
附图说明:
图1为本发明涉及的组合工艺流程及装置结构原理示意图,其中101~110为天然气或液化天然气物流;111~118为脱重烃塔及制冷剂补充系统中物流;121~131为混合制冷剂制冷循环中物流;140~149为氮膨胀制冷循环中物流。
具体实施方式:
下面结合附图并通过实施例对本发明做进一步说明。
实施例:
本实施例涉及的工艺及装置系统包括混合制冷剂制冷单元、混合制冷剂压缩单元、氮膨胀制冷单元、氮气压缩单元、脱重烃单元和混合制冷剂制取补充单元;所使用的装置主体包括液化段冷箱201、过冷段冷箱205、氮气换热器220、LNG J-T阀207、液体膨胀机206、LNG储罐208、混合制冷剂J-T阀218、混合制冷剂缓冲罐213、混合制冷剂一级压缩机214、混合制冷剂一级冷却器215、混合制冷剂二级压缩机216、混合制冷剂二级冷却器217、氮气一级压缩机221、氮气一级冷却器222、氮气二级压缩机223、氮气二级冷却器224、氮气三级压缩机225、氮气三级冷却器226、氮气膨胀机227、脱重烃塔202、回流罐203、回流泵204、制冷剂减压阀210、制冷剂分离罐211和制冷剂汽化器212;预处理后的天然气与液化段冷箱201的入口连接,液化段冷箱201的出口与脱重烃塔202入口连接,脱重烃塔202的上部出口与液化段冷箱201入口连接,液化段冷箱201的出口与回流罐203入口连接,回流罐203上部出口与液化段冷箱201的入口连接,液化段冷箱201的出口与过冷段冷箱205入口连接,过冷段冷箱205出口与并联的LNG J-T阀207和液体膨胀机206连接,LNGJ-T阀207和液体膨胀机206出口合并后与LNG储罐208连接;脱重烃塔202下部出口连接气体分离单元(不属本发明内容);回流罐203下部出口与回流泵204入口连接,回流泵204出口一部分与脱重烃塔202入口连接,另一部分与制冷剂减压阀210入口连接,制冷剂减压阀210出口与制冷剂分离罐211入口连接,制冷剂分离罐211下部出口与制冷剂汽化器212入口连接,制冷剂汽化器212出口与混合制冷剂缓冲罐213入口连接;混合制冷剂一级压缩机214的入口与混合制冷剂缓冲罐213出口连接,混合制冷剂一级压缩机214出口与混合制冷剂一级冷却器215入口连接,混合制冷剂一级冷却器215出口与混合制冷剂二级压缩机216入口连接,混合制冷剂二级压缩机216出口与混合制冷剂二级冷却器217入口连接,混合制冷剂二级冷却器217出口与液化段冷箱201入口连接,液化段冷箱201出口与混合制冷剂J-T阀218入口连接,混合制冷剂J-T阀218出口一部分与液化段冷箱201入口连接,另外一部分与氮气换热器220入口连接;液化段冷箱201出口与混合制冷剂缓冲罐213入口连接,氮气换热器220出口与混合制冷剂缓冲罐213入口连接,混合制冷剂缓冲罐213出口连接混合制冷剂一级压缩机214入口;氮气一级压缩机221入口与氮气换热器220出口连接,氮气一级压缩机221入口与氮气一级冷却器222入口连接,氮气一级冷却器222入口与氮气二级压缩机223入口连接,氮气二级压缩机223入口与氮气二级冷却器224连接,氮气二级冷却器224出口与氮气三级压缩机225入口连接,氮气三级压缩机225出口与氮气三级冷却器226入口连接,氮气三级冷却器226出口与氮气换热器220入口连接,氮气换热器220出口与氮气膨胀机227入口连接,氮气膨胀机227出口与过冷段冷箱205入口连接,过冷段冷箱205出口与氮气换热器220入口连接,氮气换热器220出口与氮气一级压缩机221入口连接,组成组合制冷式天然气液化系统装置。
本实施例的工艺过程包括天然气预处理、脱重烃、预冷、液化、过冷、补充制冷剂、混合制冷剂循环、氮气膨胀制冷循环和LNG储存;先将经过脱酸性气、脱水预处理后的天然气进入天然气液化段冷箱201,控制压力为4~10Mpa在液化段冷箱201中由混合制冷剂的汽化制冷将高压下的天然气进行液化,液化天然气(LNG)离开液化段冷箱201的温度为-75℃~-110℃(依原料气组成及压力而定);LNG进入过冷段冷箱205后冷却至-150℃左右,经液体膨胀机206减压至储罐压力并进一步降温至-160℃左右,产生的BOG为预处理段脱水前天然气预冷,然后压缩后作燃料气;在混合制冷剂循环过程中,低压下的气态混合制冷剂经过两级压缩和水冷或空冷后,部分混合制冷剂冷凝为液体后进入天然气液化段冷箱201换热被冷凝为液体,温度为-75℃~-110℃,再经过混合制冷剂J-T阀218降压和减温后汽化返回液化段冷箱201,另一部分制冷剂进入氮气换热器220,在液化段冷箱201中完全汽化后返回混合制冷剂一级压缩机214入口,并将天然气和高压的制冷剂冷凝为液体;在氮气膨胀制冷循环中,氮气经三级压缩和冷却后进入氮气换热器220,与从过冷段冷箱205返回的低温氮气换热,氮气换热器220中引入一部分经混合制冷剂J-T阀218降压后的混合制冷剂补充换热,改善氮气之间的换热效果;高压氮气经换热降温,进入氮气膨胀机227减压和降温后,进入过冷段冷箱205冷端,与LNG换热,将LNG其冷却至-150℃后再与高压氮气换热升温后回到氮气一级压缩机221入口;氮气三级压缩机225由氮气膨胀机227直接驱动;对天然气中的碳六以上重烃在液化前进行的脱重烃,将天然气在液化段冷箱201中的温度调为-30℃(依原料气性质定),抽出后进入脱重烃塔202,脱重烃塔202顶的气体进入液化段冷箱201,降温10℃~20℃后经气液分离,气体返回液化段冷箱201并进入后续的液化过程,液体作为脱重烃的回流;当需要补充制冷剂时,从脱重烃塔202的回流抽出部分液体,经降压并进行气液分离,气体进入燃料气系统,液体经制冷剂汽化器212汽化后补充到混合制冷剂一级压缩机214入口的混合制冷剂缓冲罐213。
本实施例中天然气的流量为10000kmol/h,压力为50bar,温度为35℃,进入液化单元的天然气摩尔组成为:
Figure BSA00000233255600071
本实施例进入液化单元的天然气已经过预处理,脱除其中的CO2、H2S、水及汞等杂质,天然气101进入液化段冷箱201,在其冷却过程中为-30℃,将其抽出,抽出的天然气102从脱重烃塔202的第10块塔板进入,脱重烃塔202设有二十块塔板,脱重烃塔202的顶压力为49bar,回流温度为-45℃,脱重烃塔202的底部设重沸器,温度为147℃,脱重烃塔202顶气体为脱除碳六以上重组分的天然气气体103,温度为-33℃,返回到液化段冷箱201;脱重烃塔202底部组分111为脱除甲烷的组分,进入气体分馏装置;脱重烃后天然气103进入液化段冷箱201冷却到-45℃左右再次从液化段冷箱201抽出,进入回流罐203进行气液分离,气相105返回液化段冷箱201进行后续的液化过程;回流罐203的液相112由回流泵204升压后物流113作为脱重烃塔202的回流,当需要补充制冷剂时,由物流113分出一部分114,114经制冷剂减压阀210减压至35bar后进入制冷剂分离罐211,制冷剂分离罐211顶气体为富含甲烷的轻组分116,可进入燃料气系统,制冷剂分离罐211底液体117经制冷剂汽化器212汽化后118补充至混合制冷剂缓冲罐213;天然气105进入液化段冷箱201,离开液化段冷箱201时温度为-90℃,此时天然气已全部液化,压力为48bar,然后进入过冷段冷箱205,冷却到-150℃进入液体膨胀机206降压,降压后的物流108温度为-159℃,压力为1.2bar,为气液两相,进入LNG储罐208,气相BOG 109占进入液化单元天然气的5%,产品LNG为9270kmol/h。
本实施例由脱重烃工序制取的用于混合制冷剂系统的补充组分118的组成为:
Figure BSA00000233255600081
以该组分作为混合制冷剂循环中的制冷剂,其制冷剂循环量为21040kmlo/h,开工时按以上比例配置,生产中以该组分进行补充;在混合制冷剂循环中,制冷剂由混合制冷剂缓冲罐213进入混合制冷剂压缩及冷却系统,经压缩机214、216两级压缩及215、217两级冷却到40℃,压力为42bar,此时混合制冷剂126约34%(mole)冷凝为液体,并进入液化段冷箱201,经液化段冷箱201换热后,混合制冷剂127被冷却到-90℃,并经制冷剂J-T阀218降压至7.8bar及-103.5℃,混合制冷剂128然后分成两部分,其中97.6%的制冷剂129返回液化段冷箱201,其余一小部分130进入氮气换热部分;混合制冷剂129在液化段冷箱201中升温汽化,并将进入液化段冷箱201的天然气101及高压态的混合制冷剂126冷凝,汽化后的混合制冷剂120返回到混合制冷剂缓冲罐213进行循环;在氮气膨胀制冷循环中,制冷剂为纯氮气,循环量为19440kmol/h;换热后的低压氮气经过压缩机221、223、225三级压缩及冷却器222、224、226三级冷却,最终温度为40℃,压力为70bar,其中氮气三级压缩机225由氮气膨胀机227直接驱动,经压缩冷却后的氮气146进入氮气换热器220,冷却后氮气147温度为-85℃,经氮气膨胀机227降压,氮气膨胀机227输出功率驱动氮气三级压缩机225,氮气膨胀机227出口氮气148压力为14bar,温度为-153℃,进入过冷段冷箱205,与液化后的天然气106换热,换热后氮气149升温至-94℃,进入氮气换热器220,换热后氮气140温度35℃,压力13.5bar,返回氮气一级压缩机221入口循环;氮气换热部分有部分冷量来自混合制冷剂J-T阀218后分出混合制冷剂,该混合制冷剂130流量为500kmol/h,130经氮气换热器220汽化后返回混合制冷剂缓冲罐213。
本实施例中整个制冷循环的压缩功耗为56MW,LNG产品为160t/h,比压缩功耗为0.35KWh/kg(压缩机效率以80%计,膨胀机效率以85%计);根据文献和资料报道的阶式制冷工艺、丙烷预冷的混合制冷剂工艺及双混合制冷剂工艺等可大型化的液化工艺的比压缩功耗一般在0.3~0.4KWh/kg之间,而双级氮膨胀制冷工艺一般在0.45~0.6KWh/kg之间。本实施例的实际生产中各种参数以原料气的具体组成、压力状况及设备的生产能力等情况进行确定和优化。

Claims (2)

1.一种混合制冷剂与氮膨胀组合制冷式天然气液化方法,其特征在于先将经过脱酸性气、脱水等预处理后的天然气进入天然气液化段冷箱,控制压力为4~10Mpa在液化段冷箱中由混合制冷剂汽化制冷,将高压下的天然气进行液化,液化天然气(LNG)离开液化段冷箱的温度为-75℃~-110℃;LNG进入过冷段冷箱后冷却至-150℃,经液体膨胀机减压至储罐压力并进一步降温至-160℃,产生的BOG为预处理段脱水前天然气预冷,然后压缩作燃料气;在混合制冷剂循环过程中,低压下的气态混合制冷剂经过两级压缩和水冷或空冷后,部分混合制冷剂冷凝为液体后进入天然气液化段冷箱换热被冷凝为液体,温度为-75℃~-110℃,再经过混合制冷剂J-T阀降压和减温后汽化返回液化段冷箱;另一部分混合制冷剂进入氮气换热器,在液化段冷箱中完全汽化后返回混合制冷剂一级压缩机入口,并将天然气和高压的混合制冷剂冷凝为液体;在氮气膨胀制冷循环中,氮气经三级压缩和冷却后进入氮气换热器,与从过冷段冷箱返回的低温氮气换热,氮气换热器中引入一部分经混合制冷剂J-T阀降压后的混合制冷剂补充换热,改善氮气之间的换热效果;高压氮气经换热降温,进入氮气膨胀机减压和降温后进入过冷段冷箱冷端与LNG换热,将LNG冷却至-150℃后再与高压氮气换热升温后回到氮气一级压缩机入口;氮气第三级压缩机由氮气膨胀机直接驱动;对天然气中的碳六以上重烃在液化前进行脱重烃是将天然气在液化段冷箱中的温度调为-30℃,抽出后进入脱重烃塔,脱重烃塔顶的气体进入液化段冷箱,降温10℃~20℃后经气液分离,气体返回液化段冷箱并进入后续的液化过程,液体作为脱重烃塔的回流;当需要补充制冷剂时,从脱重烃塔的回流抽出部分液体,经降压并进行气液分离,气体进入燃料气系统,液体经制冷剂汽化器汽化后补充到混合制冷剂一级压缩机入口的混合制冷剂缓冲罐。
2.根据权利要求1所述的混合制冷剂与氮膨胀组合制冷式天然气液化方法,其特征在于混合制冷剂由脱重烃工序制取,不需进行制冷剂组分的配置;天然气脱重烃塔顶与液化段冷箱之间物流的组合方式采用从烃塔塔顶气体进入液化段冷箱进一步降温,然后气液分离,液相回到脱重烃塔顶回流,天然气液化后降压过程采用液体膨胀机提高流程效率,降低压缩功耗,以J-T阀作为备用;混合制冷剂制冷循环和氮气膨胀制冷循环的组合达到天然气的预冷、液化、过冷过程,两种制冷循环的分界点是高压下天然气的液化温度加过冷度;混合制冷剂循环和氮气膨胀循环是两个独立的制冷循环,有各自的压缩机、冷却器、冷箱组成;氮气换热有部分冷量来自混合制冷剂,氮气膨胀循环效率明显提高;混合制冷剂由甲烷至戊烷的轻烃组成,不含氮气及碳六以上重组分;制冷剂在压缩后用水冷或空冷冷却,至少有一部分制冷剂冷凝,制冷剂在J-T阀前已全部液化,制冷剂经冷箱换热返回压缩机时已全部汽化,并有过热度;氮膨胀循环中氮气始终为气相。
CN2010102560048A 2010-08-18 2010-08-18 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法 Active CN101948706B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102560048A CN101948706B (zh) 2010-08-18 2010-08-18 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102560048A CN101948706B (zh) 2010-08-18 2010-08-18 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法

Publications (2)

Publication Number Publication Date
CN101948706A true CN101948706A (zh) 2011-01-19
CN101948706B CN101948706B (zh) 2013-02-27

Family

ID=43452338

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102560048A Active CN101948706B (zh) 2010-08-18 2010-08-18 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法

Country Status (1)

Country Link
CN (1) CN101948706B (zh)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093921A (zh) * 2011-01-20 2011-06-15 中国海洋石油总公司 一种海上天然气液化方法及液化装置
CN103205294A (zh) * 2013-04-02 2013-07-17 健雄职业技术学院 一种以纳米煤、甲烷为基础的复合汽油燃料及其生产工艺
CN103205292A (zh) * 2013-04-19 2013-07-17 杨泊宁 一种新型甲醇复合汽油燃料的生产工艺及配方
CN103205291A (zh) * 2013-04-02 2013-07-17 健雄职业技术学院 一种新型液化石油气的复合柴油或重油燃料及其生产工艺
CN103322769A (zh) * 2012-03-20 2013-09-25 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化系统
WO2013184068A1 (en) * 2012-06-06 2013-12-12 Keppel Offshore & Marine Technology Centre Pte Ltd System and process for natural gas liquefaction
CN103865601A (zh) * 2014-03-13 2014-06-18 中国石油大学(华东) 丙烷预冷脱乙烷塔顶回流的重烃回收方法
CN104017622A (zh) * 2014-04-15 2014-09-03 张家港富瑞特种装备股份有限公司 一种撬装式天然气液化装置的空间布置结构
CN104822807A (zh) * 2012-08-27 2015-08-05 1304342阿尔伯塔有限公司 生产和分配液态天然气的方法
CN105605882A (zh) * 2015-12-23 2016-05-25 中石化石油工程技术服务有限公司 一种复合制冷天然气液化方法
CN105737516A (zh) * 2016-04-18 2016-07-06 中国寰球工程公司 混合制冷剂预冷氮气膨胀的天然气液化系统及方法
CN108533329A (zh) * 2018-03-26 2018-09-14 西安交通大学 一种lng接收站中lng冷能利用系统
US10077937B2 (en) 2013-04-15 2018-09-18 1304338 Alberta Ltd. Method to produce LNG
US10288347B2 (en) 2014-08-15 2019-05-14 1304338 Alberta Ltd. Method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
US10571187B2 (en) 2012-03-21 2020-02-25 1304338 Alberta Ltd Temperature controlled method to liquefy gas and a production plant using the method
US10852058B2 (en) 2012-12-04 2020-12-01 1304338 Alberta Ltd. Method to produce LNG at gas pressure letdown stations in natural gas transmission pipeline systems
CN112556446A (zh) * 2020-12-08 2021-03-26 江苏科技大学 一种原油轮的油气冷凝回收系统及其工作方法
US11097220B2 (en) 2015-09-16 2021-08-24 1304338 Alberta Ltd. Method of preparing natural gas to produce liquid natural gas (LNG)
CN113984827A (zh) * 2021-10-25 2022-01-28 重庆科技学院 一种超音速喷管对天然气液化性能模拟实验装置及方法
US11460244B2 (en) 2016-06-30 2022-10-04 Baker Hughes Oilfield Operations Llc System and method for producing liquefied natural gas
US11486636B2 (en) 2012-05-11 2022-11-01 1304338 Alberta Ltd Method to recover LPG and condensates from refineries fuel gas streams

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413749A (zh) * 2008-11-20 2009-04-22 成都赛普瑞兴科技有限公司 一种单级混合冷剂制冷循环液化天然气的方法及装置
CN101625190A (zh) * 2009-08-13 2010-01-13 上海交通大学 利用变压吸附余压预冷的煤层气混合制冷剂循环液化工艺
CN101787314A (zh) * 2010-04-01 2010-07-28 中国石油大学(华东) 紧凑式天然气液化浮式生产工艺

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101413749A (zh) * 2008-11-20 2009-04-22 成都赛普瑞兴科技有限公司 一种单级混合冷剂制冷循环液化天然气的方法及装置
CN101625190A (zh) * 2009-08-13 2010-01-13 上海交通大学 利用变压吸附余压预冷的煤层气混合制冷剂循环液化工艺
CN101787314A (zh) * 2010-04-01 2010-07-28 中国石油大学(华东) 紧凑式天然气液化浮式生产工艺

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102093921A (zh) * 2011-01-20 2011-06-15 中国海洋石油总公司 一种海上天然气液化方法及液化装置
CN103322769B (zh) * 2012-03-20 2015-07-08 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化系统
CN103322769A (zh) * 2012-03-20 2013-09-25 中国海洋石油总公司 一种基荷型天然气液化工厂的级联式液化系统
US10571187B2 (en) 2012-03-21 2020-02-25 1304338 Alberta Ltd Temperature controlled method to liquefy gas and a production plant using the method
US11486636B2 (en) 2012-05-11 2022-11-01 1304338 Alberta Ltd Method to recover LPG and condensates from refineries fuel gas streams
US9863696B2 (en) 2012-06-06 2018-01-09 Keppel Offshore & Marine Technology Centre Pte Ltd System and process for natural gas liquefaction
WO2013184068A1 (en) * 2012-06-06 2013-12-12 Keppel Offshore & Marine Technology Centre Pte Ltd System and process for natural gas liquefaction
AU2012382092B2 (en) * 2012-06-06 2017-02-02 Keppel Offshore & Marine Technology Centre Pte Ltd System and process for natural gas liquefaction
CN104822807B (zh) * 2012-08-27 2017-03-08 1304342阿尔伯塔有限公司 生产和分配液态天然气的方法
US10006695B2 (en) 2012-08-27 2018-06-26 1304338 Alberta Ltd. Method of producing and distributing liquid natural gas
CN104822807A (zh) * 2012-08-27 2015-08-05 1304342阿尔伯塔有限公司 生产和分配液态天然气的方法
US10852058B2 (en) 2012-12-04 2020-12-01 1304338 Alberta Ltd. Method to produce LNG at gas pressure letdown stations in natural gas transmission pipeline systems
CN103205294A (zh) * 2013-04-02 2013-07-17 健雄职业技术学院 一种以纳米煤、甲烷为基础的复合汽油燃料及其生产工艺
CN103205291A (zh) * 2013-04-02 2013-07-17 健雄职业技术学院 一种新型液化石油气的复合柴油或重油燃料及其生产工艺
US10077937B2 (en) 2013-04-15 2018-09-18 1304338 Alberta Ltd. Method to produce LNG
CN103205292A (zh) * 2013-04-19 2013-07-17 杨泊宁 一种新型甲醇复合汽油燃料的生产工艺及配方
CN103865601A (zh) * 2014-03-13 2014-06-18 中国石油大学(华东) 丙烷预冷脱乙烷塔顶回流的重烃回收方法
CN103865601B (zh) * 2014-03-13 2015-07-08 中国石油大学(华东) 丙烷预冷脱乙烷塔顶回流的重烃回收方法
CN104017622A (zh) * 2014-04-15 2014-09-03 张家港富瑞特种装备股份有限公司 一种撬装式天然气液化装置的空间布置结构
US10288347B2 (en) 2014-08-15 2019-05-14 1304338 Alberta Ltd. Method of removing carbon dioxide during liquid natural gas production from natural gas at gas pressure letdown stations
US11097220B2 (en) 2015-09-16 2021-08-24 1304338 Alberta Ltd. Method of preparing natural gas to produce liquid natural gas (LNG)
US11173445B2 (en) 2015-09-16 2021-11-16 1304338 Alberta Ltd. Method of preparing natural gas at a gas pressure reduction stations to produce liquid natural gas (LNG)
CN105605882B (zh) * 2015-12-23 2018-06-05 中石化石油工程技术服务有限公司 一种复合制冷天然气液化方法
CN105605882A (zh) * 2015-12-23 2016-05-25 中石化石油工程技术服务有限公司 一种复合制冷天然气液化方法
CN105737516A (zh) * 2016-04-18 2016-07-06 中国寰球工程公司 混合制冷剂预冷氮气膨胀的天然气液化系统及方法
US11460244B2 (en) 2016-06-30 2022-10-04 Baker Hughes Oilfield Operations Llc System and method for producing liquefied natural gas
CN108533329A (zh) * 2018-03-26 2018-09-14 西安交通大学 一种lng接收站中lng冷能利用系统
CN112556446A (zh) * 2020-12-08 2021-03-26 江苏科技大学 一种原油轮的油气冷凝回收系统及其工作方法
CN112556446B (zh) * 2020-12-08 2022-08-19 江苏科技大学 一种原油轮的油气冷凝回收系统及其工作方法
CN113984827A (zh) * 2021-10-25 2022-01-28 重庆科技学院 一种超音速喷管对天然气液化性能模拟实验装置及方法
CN113984827B (zh) * 2021-10-25 2023-11-21 重庆科技学院 一种超音速喷管对天然气液化性能模拟实验装置及方法

Also Published As

Publication number Publication date
CN101948706B (zh) 2013-02-27

Similar Documents

Publication Publication Date Title
CN101948706B (zh) 一种混合制冷剂与氮膨胀组合制冷式天然气液化方法
RU2753342C2 (ru) Низкотемпературный смешанный хладагент для крупномасштабного предварительного охлаждения водорода
RU2718378C1 (ru) Крупномасштабное сжижение водорода посредством водородного холодильного цикла высокого давления, объединенного с новым предварительным охлаждением однократно смешанным хладагентом
CN107560319B (zh) 一种采用阶式制冷的天然气乙烷回收装置及方法
CN101180509B (zh) 将利用第一冷却循环冷却所获gnl流过冷的方法及相关设备
CN104520660B (zh) 用于天然气液化的系统和方法
CN101711335B (zh) 用于生产lng的方法和系统
CA2887150C (en) Integrated nitrogen removal in the production of liquefied natural gas using dedicated reinjection circuit
CN105043011B (zh) 在生产液化天然气时用中间进料气体分离来一体地移除氮
EP2229567B1 (en) Method for regulation of cooling capacity of a cooling system based on a gas expansion process.
CN101608860B (zh) 混合制冷剂气体液化工艺及混合制冷剂
CN101392983B (zh) 一种液化富甲烷气的过程
CN101967413A (zh) 采用单一混合工质制冷来液化天然气的方法和装置
WO2012172281A2 (en) Process for liquefaction of natural gas
CN102492505B (zh) 一种两段式单循环混合制冷剂天然气液化工艺及设备
CN104513680B (zh) 富甲烷气精馏脱氢氮并生产液化天然气的工艺和装置
CN101893367A (zh) 一种利用混合制冷剂液化天然气的方法
US20180313604A1 (en) Hydrogen-neon mixture refrigeration cycle for large-scale hydrogen cooling and liquefaction
NZ567356A (en) Method for treating a liquefied natural gas stream obtained by cooling using a first refrigerating cycle and related installation
RU2730090C2 (ru) Способ и система сжижения сырьевого потока природного газа
CN207299714U (zh) 一种采用阶式制冷的天然气乙烷回收装置
WO2015069138A2 (en) Natural gas liquefaction method and unit
CN102748919A (zh) 单循环混合冷剂四级节流制冷系统及方法
CN104807287A (zh) 一种小型天然气液化制冷系统及方法
CN101709238B (zh) 一种利用焦炉气制备液化天然气的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee after: CNOOC RESEARCH INSTITUTE Co.,Ltd.

Patentee after: CHINA NATIONAL OFFSHORE OIL Corp.

Co-patentee after: COOEC-ENPAL ENGINEERING Co.,Ltd.

Address before: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee before: CNOOC Research Institute

Patentee before: CHINA NATIONAL OFFSHORE OIL Corp.

Co-patentee before: COOEC-ENPAL ENGINEERING Co.,Ltd.

Address after: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee after: CNOOC Research Institute

Patentee after: CHINA NATIONAL OFFSHORE OIL Corp.

Co-patentee after: COOEC-ENPAL ENGINEERING Co.,Ltd.

Address before: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee before: CNOOC RESEARCH CENTER

Patentee before: CHINA NATIONAL OFFSHORE OIL Corp.

Co-patentee before: COOEC-ENPAL ENGINEERING Co.,Ltd.

CP01 Change in the name or title of a patent holder
TR01 Transfer of patent right

Effective date of registration: 20190109

Address after: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee after: CNOOC RESEARCH INSTITUTE Co.,Ltd.

Patentee after: CHINA NATIONAL OFFSHORE OIL Corp.

Co-patentee after: CNOOC PETROCHEMICAL ENGINEERING Co.,Ltd.

Address before: 100010 Chaoyangmen North Street, Dongcheng District, Dongcheng District, Beijing

Co-patentee before: CNOOC RESEARCH INSTITUTE Co.,Ltd.

Patentee before: CHINA NATIONAL OFFSHORE OIL Corp.

Co-patentee before: COOEC-ENPAL ENGINEERING Co.,Ltd.

TR01 Transfer of patent right