CN101938080B - An active optical fiber with single-mode output TM01 mode characteristics - Google Patents
An active optical fiber with single-mode output TM01 mode characteristics Download PDFInfo
- Publication number
- CN101938080B CN101938080B CN2010102186261A CN201010218626A CN101938080B CN 101938080 B CN101938080 B CN 101938080B CN 2010102186261 A CN2010102186261 A CN 2010102186261A CN 201010218626 A CN201010218626 A CN 201010218626A CN 101938080 B CN101938080 B CN 101938080B
- Authority
- CN
- China
- Prior art keywords
- rare
- doping
- mode
- fibre core
- optical fiber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 25
- 229910052761 rare earth metal Inorganic materials 0.000 claims abstract description 66
- 239000000835 fiber Substances 0.000 claims abstract description 36
- 238000003491 array Methods 0.000 claims abstract description 6
- -1 rare-earth ions Chemical class 0.000 claims description 51
- 238000005253 cladding Methods 0.000 abstract description 15
- 230000010287 polarization Effects 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 230000005684 electric field Effects 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012576 optical tweezer Methods 0.000 description 1
Images
Landscapes
- Lasers (AREA)
Abstract
本发明公开了一种具有单模输出TM01模式特性的有源光纤,涉及一种具有源光纤。该有源光纤包括:掺杂稀土离子纤芯(1)和包层(4)。掺杂稀土离子纤芯(1)和包层(4)之间设置非掺杂稀土离子环形纤芯(2)。在非掺杂稀土离子环形纤芯(2)中沿半径方向引入轴对称分布矩形空气孔(3)或圆形空气孔阵列(5),相临空气孔之间的夹角为360/m度,12<m<30,m为整数。解决了要求简化单模输出TM01模式光纤激光器系统结构,提高工作稳定性的问题。最终使得光纤激光器中TM01模式在模式竞争中占据主导地位。利用该有源光纤可以获得高径向偏振纯度的输出信号光,不需要额外在谐振腔内引入选模器件。
The invention discloses an active optical fiber with single-mode output TM 01 mode characteristics, and relates to an active optical fiber with an active optical fiber. The active optical fiber includes: doped rare earth ion core (1) and cladding (4). A non-doped rare earth ion annular core (2) is arranged between the doped rare earth ion core (1) and the cladding (4). Introduce axisymmetrically distributed rectangular air holes (3) or circular air hole arrays (5) along the radial direction in the non-doped rare earth ion annular core (2), and the angle between adjacent air holes is 360/m degrees , 12<m<30, m is an integer. It solves the problem of simplifying the structure of the single-mode output TM01 mode fiber laser system and improving the working stability. Finally, the TM 01 mode in the fiber laser occupies a dominant position in the mode competition. The output signal light with high radial polarization purity can be obtained by using the active optical fiber, without additionally introducing a mode selection device in the resonant cavity.
Description
技术领域 technical field
本发明涉及一种具有单模输出TM01模式特性的有源光纤。The invention relates to an active optical fiber with single-mode output TM 01 mode characteristics.
背景技术 Background technique
径向偏振激光有别于线偏振光与圆偏振光,其电场方向沿径向分布,并且电场矢量和场幅都具有轴对称性。径向偏振激光与线(圆)偏振相比,通过高数值孔径的透镜聚焦可以获得更小的光斑,因此可以作为超分辨显微光源,另外其在高效的金属切割,电子加速和生物光镊等领域也具有重要的应用价值。获得径向偏振模式输出的激光器主要分为固态激光器、气态激光器和光纤激光器。相比较固态和气态激光器,光纤激光器具有体积小,散热好和光束质量高等优点,因此利用光纤激光器输出径向偏振模式成为近几年的研究热点。目前利用光纤激光器输出径向偏振模式,即TM01模式的方法主要如下:The radially polarized laser is different from linearly polarized light and circularly polarized light. The direction of the electric field is distributed along the radial direction, and the electric field vector and field amplitude are both axisymmetric. Compared with linear (circular) polarization, the radially polarized laser can obtain a smaller spot by focusing through a lens with a high numerical aperture, so it can be used as a super-resolution microscopic light source. In addition, it is used in efficient metal cutting, electron acceleration and biological optical tweezers It also has important application value in other fields. Lasers that obtain radially polarized mode output are mainly classified into solid-state lasers, gas lasers, and fiber lasers. Compared with solid-state and gas lasers, fiber lasers have the advantages of small size, good heat dissipation and high beam quality. Therefore, using fiber lasers to output radial polarization modes has become a research hotspot in recent years. At present, the method of using fiber laser to output radial polarization mode, that is, TM 01 mode, is mainly as follows:
一、在光纤激光器谐振腔中引入一个布儒斯特双圆锥棱镜,根据布儒斯特定律只有径向偏振的TM01模式经过棱镜时的损耗最小,其他模式因具有垂直入射面的偏振分量而发生发射,从而导致较大的损耗,最终光纤激光器获得单模输出TM01模式的特性。1. A Brewster biconical prism is introduced into the fiber laser resonator. According to Brewster's law, only the radially polarized TM 01 mode has the smallest loss when passing through the prism, and other modes have the polarization component of the vertical incident plane. Emission occurs, resulting in a large loss, and finally the fiber laser acquires the characteristics of a single-mode output TM 01 mode.
二、光纤放大器利用有源保偏光纤作为增益介质,线偏振种子信号光以恰当的角度注入有源保偏光纤,从而最大限度地激励LP11模式而抑制LP01模式,同时对有源保偏光纤施加压力,其方向与主轴呈45度夹角,通过精确地调节压力大小和角度使两个正交偏振的LP11模式同相位合成为TM01模式。2. The fiber amplifier uses the active polarization maintaining fiber as the gain medium, and the linearly polarized seed signal light is injected into the active polarization maintaining fiber at an appropriate angle, so as to maximize the excitation of the LP 11 mode and suppress the LP 01 mode. The optical fiber applies pressure, and its direction is at an angle of 45 degrees to the main axis. By precisely adjusting the pressure and angle, the two orthogonally polarized LP 11 modes are synthesized into TM 01 mode in phase.
以上两种方法各有不足,前者需要在激光谐振腔中引入分立光学元件从而降低了激光器的输出效率,后者则需要利用辅助工具精确调整种子光源的入射角度,以及施加于有源保偏光纤上压力的大小和方向,这些既增加了系统的复杂度,同时也给激光器带来不稳定的因素。The above two methods have their own shortcomings. The former needs to introduce discrete optical components into the laser resonator to reduce the output efficiency of the laser. The latter needs to use auxiliary tools to accurately adjust the incident angle of the seed light source and apply it to the active polarization maintaining fiber The size and direction of the upper pressure not only increase the complexity of the system, but also bring instability to the laser.
发明内容 Contents of the invention
本发明所要解决的技术问题:要求简化单模输出TM01模式光纤激光器系统结构,提高工作稳定性的问题,提出一种具有单模输出TM01模式特性的有源光纤。The technical problem to be solved by the present invention is to simplify the single-mode output TM01 mode fiber laser system structure and improve the working stability, and propose an active optical fiber with single-mode output TM01 mode characteristics.
本发明的技术方案:Technical scheme of the present invention:
一种具有单模输出TM01模式特性的有源光纤,该有源光纤包括:掺杂稀土离子纤芯和包层;掺杂稀土离子纤芯和包层之间设置非掺杂稀土离子环形纤芯。An active optical fiber with single-mode output TM 01 mode characteristics, the active optical fiber includes: a doped rare earth ion core and a cladding; a non-doped rare earth ion annular fiber is arranged between the doped rare earth ion core and the cladding core.
在非掺杂稀土离子环形纤芯中沿半径方向引入轴对称分布的空气孔,相临空气孔之间的夹角为360/m度,12<m<30,m为整数。Axisymmetrically distributed air holes are introduced into the non-doped rare earth ion annular core along the radial direction, and the angle between adjacent air holes is 360/m degrees, 12<m<30, m is an integer.
在非掺杂稀土离子环形纤芯中沿半径方向引入轴对称分布的空气孔为矩形孔或圆形孔阵列。In the non-doped rare earth ion annular core, the air holes distributed axially symmetrically along the radial direction are introduced into a rectangular hole or a circular hole array.
本发明的有益结果:Beneficial results of the present invention:
本发明提供的一种具有单模输出TM01模式特性的有源光纤,是通过在掺杂稀土离子纤芯与包层之间引入环状非掺杂纤芯,并且引入轴对称分布的矩形空气孔或圆形孔阵列,以获得径向双折射,从而导致TM01模式的限制损耗远远小于TE01模式和HE21模式,最终使得光纤激光器中TM01模式在模式竞争中占据主导地位。利用具有单模输出TM01模式特性的有源光纤可以获得高径向偏振纯度的输出信号光,不需要额外在谐振腔内引入选模器件,从而简化了单模输出TM01模式光纤激光器的系统结构,提高了工作稳定性。The present invention provides an active optical fiber with single-mode output TM 01 mode characteristics, which is achieved by introducing a ring-shaped non-doped core between the doped rare earth ion core and the cladding, and introducing axisymmetrically distributed rectangular air Holes or circular hole arrays to obtain radial birefringence, resulting in confinement loss of TM 01 mode much smaller than TE 01 mode and HE 21 mode, and finally make TM 01 mode dominate in the mode competition in fiber lasers. Using the active fiber with single-mode output TM 01 mode characteristics can obtain output signal light with high radial polarization purity, and does not need to introduce additional mode selection devices in the resonator, thus simplifying the system of single-mode output TM 01 mode fiber laser The structure improves the working stability.
附图说明 Description of drawings
图1矩形空气孔夹角为30度的单模输出TM01模式的有源光纤结构示意图;Figure 1 Schematic diagram of the active optical fiber structure of the single-mode output TM 01 mode with a rectangular air hole angle of 30 degrees;
图2矩形空气孔夹角为20度的单模输出TM01模式的有源光纤结构示意图;Figure 2 is a schematic diagram of the structure of an active optical fiber with a single-mode output TM 01 mode with a rectangular air hole at an angle of 20 degrees;
图3矩形空气孔夹角为12度的单模输出TM01模式的有源光纤结构示意图;Figure 3 is a schematic diagram of the active optical fiber structure of the single-mode output TM 01 mode with a rectangular air hole angle of 12 degrees;
图4圆形空气孔阵列夹角为30度的单模输出TM01模式的有源光纤结构示意图;Figure 4 is a schematic diagram of the active optical fiber structure of the single-mode output TM 01 mode with a circular air hole array at an angle of 30 degrees;
附图标号:1-掺杂稀土离子纤芯,2-非掺杂稀土离子环形纤芯,3-矩形空气孔,4-包层,5-圆形空气孔阵列。Reference numerals: 1 - doped rare earth ion core, 2 - non-doped rare earth ion annular core, 3 - rectangular air hole, 4 - cladding, 5 - circular air hole array.
具体实施方式 Detailed ways
下面结合附图对本发明作进一步描述。The present invention will be further described below in conjunction with the accompanying drawings.
一种具有单模输出TM01模式特性的有源光纤,该有源光纤包括:掺杂稀土离子纤芯1和包层4。掺杂稀土离子纤芯1和包层4之间设置非掺杂稀土离子环形纤芯2。An active optical fiber with single-mode output TM 01 mode characteristics, the active optical fiber includes: doped rare
在所述的非掺杂稀土离子环形纤芯2中沿半径方向引入轴对称分布的矩形空气孔3或圆形空气孔阵列5,相临空气孔之间的夹角为360/m度,12<m<30,m为整数。Axisymmetrically distributed
所述的掺杂稀土离子纤芯1,非掺杂稀土离子环形纤芯2和包层4的折射率分别表示为n1,n2和n4。The refractive indices of the doped rare
实施例一Embodiment one
一种具有单模输出TM01模式特性的有源光纤,如图1所示,由掺杂稀土离子纤芯1,非掺杂稀土离子环形纤芯2和包层4组成。An active optical fiber with single-mode output TM 01 mode characteristics, as shown in Figure 1, consists of a rare earth ion doped
掺杂稀土离子纤芯1的直径:8μm,折射率n1=1.4573。The diameter of the rare earth ion-doped
掺杂稀土离子纤芯1中的稀土离子分布为:中间半径为2.35μm的圆形区域中稀土离子浓度为0,其余区域稀土离子浓度为1.8×1026m-3。The distribution of rare earth ions in the rare earth ion-doped
非掺杂稀土离子环状纤芯2的外径=20μm,在非掺杂稀土离子环形纤芯2中沿半径方向引入轴对称分布的空气孔为矩形空气孔3,矩形空气孔3的尺寸宽和长分别为:0.1μm和6μm,相邻矩形空气孔3的夹角为360/12度=30度,矩形空气孔3的折射率n3=1;非掺杂稀土离子环形纤芯2的折射率n2=1.449。The outer diameter of the non-doped rare-earth ion
包层4的折射率n4=1.4508。The refractive index n 4 of the cladding 4 =1.4508.
实施例二Embodiment two
实施例二,如图2所示,与实施例一区别:
掺杂稀土离子纤芯1的折射率n1=1.464。The refractive index n 1 of the
非掺杂稀土离子环状纤芯2的外径=20μm,在非掺杂稀土离子环形纤芯2中沿半径方向引入轴对称分布的空气孔为矩形空气孔3,相邻矩形空气孔3的夹角为360/18度=20度,矩形空气孔3的折射率n3=1;非掺杂稀土离子环形纤芯2的折射率n2=1.46。The outer diameter of the non-doped rare-earth ion
包层4的折射率n4=1.4573。The refractive index n 4 of the cladding 4 =1.4573.
实施例三Embodiment Three
实施例三,如图3所示,与实施例一区别:
掺杂稀土离子纤芯1的折射率n1=1.4415。The refractive index n 1 of the
非掺杂稀土离子环状纤芯2的外径=16μm,非掺杂稀土离子环状纤芯2的折射率n2=1.421。The outer diameter of the non-doped rare earth ion
在非掺杂稀土离子环形纤芯2中沿半径方向引入轴对称分布的空气孔为矩形空气孔3,矩形空气孔3的尺寸宽和长分别为:0.1μm和4μm,相邻矩形空气孔3的夹角为360/30度=12度,矩形空气孔3的折射率n3=1。In the non-doped rare earth ion
包层4的折射率n4=1.43385。The refractive index n 4 of the cladding 4 =1.43385.
实施例四Embodiment Four
实施例四,如图4所示,与实施例一区别:Embodiment 4, as shown in Figure 4, is different from Embodiment 1:
掺杂稀土离子纤芯1的折射率n1=1.4573。The refractive index n 1 of the
非掺杂稀土离子环状纤芯2的外径:20μm,非掺杂稀土离子环形纤芯2中沿半径方向引入轴对称分布的空气孔为圆形空气孔阵列5,圆形空气孔直径为0.1微米,圆形空气孔阵列5的尺寸宽和长分别为:0.1μm和6μm,相临圆形空气孔阵列5之间的夹角为360/12度=30度30度,圆形空气孔的折射率=1。The outer diameter of the non-doped rare earth ion annular fiber core 2: 20 μm, the air holes introduced into the non-doped rare earth ion
非掺杂稀土离子环状纤芯2的折射率n2=1.4515。The refractive index n 2 of the non-doped rare earth ion
包层4的折射率n4=1.451。The refractive index n 4 of the cladding 4 =1.451.
具有单模输出TM01模式特性的有源光纤参数的设计步骤:Design steps of active optical fiber parameters with single-mode output TM 01 mode characteristics:
1.设定有源光纤的基本参数,即掺杂稀土离子纤芯1的直径和折射率;非掺杂稀土离子环状纤芯2的外径和矩形空气孔的尺寸,相邻空气孔的夹角;包层折射率。1. Set the basic parameters of the active optical fiber, that is, the diameter and refractive index of the doped rare
2.设定调整非掺杂稀土离子环状纤芯2的折射率,使得TM01模式的限制损耗远远小于TE01模式和HE21模式。2. Setting and adjusting the refractive index of the non-doped rare earth ion
3.优化掺杂稀土离子纤芯1中的稀土离子分布,使得TM01和基模HE11的模场分布与增益区域的积分值分别达到最大和最小值,从而导致TM01模式在光纤激光器的模式竞争中占据主导地位.3. Optimize the rare earth ion distribution in the doped rare
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102186261A CN101938080B (en) | 2010-06-25 | 2010-06-25 | An active optical fiber with single-mode output TM01 mode characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102186261A CN101938080B (en) | 2010-06-25 | 2010-06-25 | An active optical fiber with single-mode output TM01 mode characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101938080A CN101938080A (en) | 2011-01-05 |
CN101938080B true CN101938080B (en) | 2011-11-30 |
Family
ID=43391277
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102186261A Expired - Fee Related CN101938080B (en) | 2010-06-25 | 2010-06-25 | An active optical fiber with single-mode output TM01 mode characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101938080B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104868350B (en) * | 2014-02-25 | 2018-03-30 | 福州高意通讯有限公司 | A kind of superpower laser |
PL226041B1 (en) | 2015-03-25 | 2017-06-30 | Inst Tech Materiałów Elektronicznych | Photonic optical waveguide for transmitting radially polarized light beam and method for manufacturing such an optical waveguide |
CN108333673A (en) * | 2018-01-04 | 2018-07-27 | 南京邮电大学 | A kind of heterogeneous fragmented packets layer large mould field single mode optical fiber |
CN113178769B (en) * | 2021-04-29 | 2022-11-22 | 上海大学 | A high-order mode broadband light source based on ring-core active fiber |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2822242B1 (en) * | 2001-03-16 | 2003-08-15 | Cit Alcatel | PHOTONIC FIBER WITH HIGH EFFECTIVE SURFACE |
US7403689B2 (en) * | 2003-11-19 | 2008-07-22 | Corning Incorporated | Active photonic band-gap optical fiber |
US7304719B2 (en) * | 2004-03-31 | 2007-12-04 | Asml Holding N.V. | Patterned grid element polarizer |
JP4561314B2 (en) * | 2004-10-28 | 2010-10-13 | 日立電線株式会社 | Optical fiber for fiber laser, fiber laser, and laser oscillation method |
CN1971323A (en) * | 2006-12-13 | 2007-05-30 | 中国科学院上海光学精密机械研究所 | Large mode field double-cladding single-mode optical fiber |
US20090052476A1 (en) * | 2007-08-07 | 2009-02-26 | Hitachi Cable, Ltd. | Optical fiber for an optical fiber laser, method for fabricating the same, and optical fiber laser |
CN101710194A (en) * | 2009-12-18 | 2010-05-19 | 北京交通大学 | Multilayer rare earth doped ion ring core fiber and manufacture method thereof |
-
2010
- 2010-06-25 CN CN2010102186261A patent/CN101938080B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101938080A (en) | 2011-01-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8285099B2 (en) | Large core holey fibers | |
US20130034326A1 (en) | Single Mode High Power Fiber Laser System | |
CN105896248B (en) | A kind of 1.7 μm of mode locked fiber lasers of high power tunable | |
CN103257394B (en) | Gain optical fiber for outputting specific single-mode lasers | |
CN101938080B (en) | An active optical fiber with single-mode output TM01 mode characteristics | |
CN105244741A (en) | Large-mode-field ytterbium-doped optical fiber | |
JP2002359420A (en) | Double clad photonic optical fiber | |
CN102820606A (en) | Mid-infrared supercontinuum laser based on excitation of supercontinuum light source | |
CN101819326A (en) | Photonic crystal optical fiber coupler for forming hollow light beam and preparation method thereof | |
Ma et al. | Bending-resistant design of a large mode area segmented cladding fiber with resonant ring | |
Hougaard et al. | Low pump power photonic crystal fibre amplifiers | |
CN114637069A (en) | A Ring-Core Ytterbium-Doped Fiber Supporting Multi-Orbital Angular Momentum Mode Amplification | |
CN103487879B (en) | A kind of seven core photonic crystal fibers suppressing high-order super model to export | |
CN101359804A (en) | Erbium-doped ring microcavity laser | |
CN109755850B (en) | Intermediate infrared Raman ultrafast fiber laser oscillator based on micro-cavity | |
CN101329490B (en) | High power frequency changer of small core radial bundling type high non-linear photon crystal optical fiber | |
CN108459371B (en) | Ytterbium-doped polarization maintaining optical fiber | |
CN106848814A (en) | A kind of high power post vector optical fiber laser based on linear counterfeit laser cavity | |
JP2015513119A (en) | Apparatus for converting the lateral spatial profile of the intensity of a light beam, preferably using a microstructured optical fiber | |
CN102820608A (en) | Method for generating mid-infrared supercontinuum laser under excitation of supercontinuum light source | |
CN103018820A (en) | Flat-top optical fiber | |
JP6055462B2 (en) | Triple sheath single mode optical fiber | |
CN202749673U (en) | Intermediate infrared super-continuum spectrum optical fiber laser device excited by super-continuum spectrum light source | |
CN102201640A (en) | Watt-stage 1,050nm photonic crystal optical fiber pulse laser device and amplifying system thereof | |
Limpert | Large-pitch fibers: pushing very large mode areas to highest powers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111130 Termination date: 20130625 |