CN101936897B - 一种基于拉锥及灌注型光子晶体光纤的湿度传感器 - Google Patents

一种基于拉锥及灌注型光子晶体光纤的湿度传感器 Download PDF

Info

Publication number
CN101936897B
CN101936897B CN2010102116589A CN201010211658A CN101936897B CN 101936897 B CN101936897 B CN 101936897B CN 2010102116589 A CN2010102116589 A CN 2010102116589A CN 201010211658 A CN201010211658 A CN 201010211658A CN 101936897 B CN101936897 B CN 101936897B
Authority
CN
China
Prior art keywords
humidity
fiber
photonic crystal
crystal fiber
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2010102116589A
Other languages
English (en)
Other versions
CN101936897A (zh
Inventor
赵春柳
李涛
董新永
钱文文
金永兴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN2010102116589A priority Critical patent/CN101936897B/zh
Publication of CN101936897A publication Critical patent/CN101936897A/zh
Application granted granted Critical
Publication of CN101936897B publication Critical patent/CN101936897B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及一种基于拉锥及灌注型光子晶体光纤的湿度传感器,以极其紧凑的结构解决了一般光纤湿度传感器存在的湿度灵敏度低、价格昂贵的缺点。本发明中取1cm光子晶体光纤拉锥并在包层的空气孔中灌注一种湿度敏感型溶液,该发明装置的两个光纤准直器分别放在光子晶体光纤两端,形成一准直系统,两个光纤准直器通过单模光纤分别与光源和光功率计相连接,形成湿度传感器。将光子晶体光纤拉锥后纤芯变细,纤芯中的光斑相对变大,就有一部分光扩展到包层中传输,包层折射率的变化对光的传输影响较大。因此在外界环境湿度变化时空气孔中湿度敏感性溶液折射率发生变化导致包层模相对折射率发生变化,由光源发出的光经整个系统后,用光功率计监测输出的光强大小就可以解调出湿度信息。本发明传感器的体积小,结构简单,价格便宜,可操作性强,并且在整个湿度范围变化内损耗从0.17dB/cm到73dB/cm,可广泛应用于各种湿度监测领域。

Description

一种基于拉锥及灌注型光子晶体光纤的湿度传感器
技术领域
本发明属于光纤传感技术领域,具体涉及一种基于拉锥及灌注型光子晶体光纤的湿度传感器。
背景技术
湿度与温度一样,是人们可以感知,广义上讲是定义水分含量的物理量。随着工业,科研领域对环境参数要求的提高,“湿度”越来越显得重要,尤其是在一些对环境要求苛刻的科研试验中,“湿度”值将直接影响试验的结果,因此现在湿度已经作为一门单独的学科开始研究。同时随着人们的生活质量的提高,对居住环境的要求也越来越高,“湿度”也是影响人们生活舒适度的一个重要参数,很多家庭购买加湿器就是这个缘故,所以总的来说,“湿度”与人们的生活已经越来越近。随着工农业,国防、科技及整个国民经济的迅猛发展,对环境湿度的控制和检测越来越受到人们的重视,市场也越来越大。在石油化工、电力、纺织等领域中,往往涉及易燃、易爆场合的温/湿度测量问题,对传感器的阻燃、防爆性能提出特殊要求,对湿度参量进行有效实时监测和控制,是正常生产的前提。早先发明的干湿球湿度计或毛发湿度计结构简单、测量精度不高,已不足以满足现代科技发展的需要。近年来,随着光纤技术和光集成技术的发展,光学湿度传感器受到极大关注并被广泛应用。
光纤传感器有许多独特的优点,如对电磁干扰不敏感,灵敏度高,体积小,抗腐蚀,可应用于各种不同的环境中。用光纤作为湿度测量媒介的机理多种多样,而基于布拉格光纤光栅或长周期光纤光栅的湿度传感器以其较简单的原理--采用湿度变化引起的波长漂移量或强度变化进行解调即可得到湿度信息,而受到人们的重视。然而,布拉格光纤光栅湿度传感器的灵敏度比较低,无法应用于高灵敏测湿领域,同时监测部分价格昂贵,不利于FBG湿度传感器的推广应用;长周期光纤光栅湿度传感器由于其对弯曲的极度敏感性,在湿度测量过程中极易引入无法预见的干扰,因此对测量条件要求非常高。
光子晶体光纤是一种新型光纤,其包层中沿轴向周期性排列着波长量级的空气孔,具有二维光子晶体结构。通过对这些空气孔的大小、分布或折射率的灵活设计,可以实现不同的功能。本发明就是在光子晶体光纤包层的空气孔中灌注湿度敏感型溶液来实现湿度传感。
发明内容
本发明目的就是针对现有光纤湿度传感器存在的价格昂贵、灵敏度不高的缺点,提出了一种简单、紧凑、价格便宜、灵敏度高的基于拉锥型的光子晶体光纤与灌注湿度敏感型溶液结合形成的湿度传感器。
本发明为解决技术问题所采取的技术方案是:
一种基于拉锥及灌注型的光子晶体光纤湿度传感器,包括光源、光子晶体光纤、单模光纤、光纤准直器、V型槽、湿度敏感型溶液和光功率计。
首先将1cm长的光子晶体光纤拉锥处理,并在包层的空气孔中灌入湿度敏感型溶液,具体灌注方法可参考文献:Y.Y.Huang,Y.Xu,Amnon Yariv,“Fabrication of functional microstructured optical fibersthrough a selective-filling technique,”Applied Physics Letters,Vol.85,No.22,2004。V型槽上的光子晶体光纤通过光纤准直器形成一准直系统,减少熔接带来的麻烦,更有利于对湿度的感应。两个光纤准直器通过单模光纤分别与光源和光功率计相连,形成湿度传感器。
本发明所具有的优点为:光纤拉锥处理后的光子晶体光纤使得束腰部分纤芯变小,纤芯传输的光斑相对变大,就有光扩展到包层中传输,包层相对折射率的变化对光的传输影响较大,又因光子晶体光纤中灌注的溶液对湿度变化非常敏感,随湿度增加溶液折射率增加。因此当外界环境湿度变化时会引起空气孔中溶液折射率变化,从而导致包层模相对折射率变化。因此当光源发出的光经准直进入光子晶体光纤后,通过监测输出光的光强大小就可以解调出湿度信息,在从0到100%RH整个湿度范围内,光强损耗从0.17dB/cm变化到73dB/cm,变化范围很大,我们用光功率计就可监测,然而基于FBG的湿度传感器监测部分价格十分昂贵;取1cm的光子晶体光纤用于传感部分,则该器件结构紧凑,体积小,监测装置价格便宜,制作成本低等优点,可广泛应用于各种湿度监测领域。
附图说明
图1为本发明的装置结构图;
图2为本发明中光子晶体光纤传感头的示意图;
图3为光子晶体光纤端面结构图。
具体实施方式
下面结合附图对本发明进一步描述。
如图1所示,一种基于拉锥及灌注型光子晶体光纤的湿度传感器,主要包括光源1、单模光纤2、光纤准直器3,光子晶体光纤4、光功率计5和V型槽6。光源1经单模光纤2连接到左边光纤准直器3,将光子晶体光纤4固定于V型槽6,出射光经右边光纤准直器3耦合入单模光纤2,再连接到光功率计5。取1cm长的光子晶体光纤4作为传感头,其端面结构如图3其中六个空气孔11直径都为30μm,光子晶体光纤纤芯10为8μm,其他部分为二氧化硅9。将该光子晶体光纤拉锥处理后如图2,其束腰8仅有5mm,光子晶体光纤由125μm变为30μm,空气孔与纤芯的距离缩短,在包层的六个空气孔11中灌入湿度敏感型溶液7。
本发明装置的工作方式为:由光源发出的光经单模光纤到光纤准直器,其将光纤端面出射的发散光束进行准直变成平行光束进入光子晶体光纤,出射光再经光纤准直器其作用是将平行光束会聚并高效耦合入单模光纤到光功率计,由光功率计检测出射光强大小。由于光子晶体光纤在拉锥后纤芯中的光斑相对变大,即有一部分光在包层中传输,当外界环境湿度变化时,会引起光子晶体光纤小孔中灌注湿度敏感型溶液折射率发生改变,即包层模相对折射率改变,影响光在纤芯的传输,我们利用光功率计就可检测到输出光强的大小。在湿度逐渐增大时溶液的折射率也相应的增大,其实验结果如表一。
表一湿度与损耗的变化关系
  湿度(%RH)   20   40   60   70   80   90
  损耗(dB/cm)   0.451   0.908   1.969   7.923   13.901   73.378
本发明装置能够实现测湿的关键为:选用光子晶体光纤要经过光纤拉锥,拉锥后光子晶体光纤直径变为30μm,并且拉锥后束腰为5mm。再在空气孔中灌注湿度敏感型溶液,我们选用的湿度敏感型液体为溶胶-凝胶法配置的水凝胶,在相对湿度从0到100%RH变化过程中,湿敏材料的折射率亦相应地从1.367增大到1.431,总的变化量达到0.064,呈现出良好的湿敏特性。

Claims (1)

1.一种基于拉锥及灌注型光子晶体光纤的湿度传感器,包括光源(1)、单模光纤(2)、光纤准直器(3)、光子晶体光纤(4)、光功率计(5)和V型槽(6),其特征在于:将包层中有6个直径为30μm空气孔的125μm的光子晶体光纤拉锥成直径为30μm,束腰为5mm,并灌注湿度敏感型溶液后固定于V型槽上,处理后的光子晶体光纤的两端分别放光纤准直器,一端的光纤准直器通过单模光纤与光源连接,另一端的光纤准直器通过单模光纤与光功率计连接。
CN2010102116589A 2010-06-29 2010-06-29 一种基于拉锥及灌注型光子晶体光纤的湿度传感器 Expired - Fee Related CN101936897B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102116589A CN101936897B (zh) 2010-06-29 2010-06-29 一种基于拉锥及灌注型光子晶体光纤的湿度传感器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102116589A CN101936897B (zh) 2010-06-29 2010-06-29 一种基于拉锥及灌注型光子晶体光纤的湿度传感器

Publications (2)

Publication Number Publication Date
CN101936897A CN101936897A (zh) 2011-01-05
CN101936897B true CN101936897B (zh) 2012-04-25

Family

ID=43390342

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102116589A Expired - Fee Related CN101936897B (zh) 2010-06-29 2010-06-29 一种基于拉锥及灌注型光子晶体光纤的湿度传感器

Country Status (1)

Country Link
CN (1) CN101936897B (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102175645B (zh) * 2011-01-21 2013-05-08 中国计量学院 一种基于偏振光检测的高灵敏光子晶体光纤折射率传感器
CN102226762B (zh) * 2011-04-08 2013-01-09 中国计量学院 一种基于空芯带隙型光子晶体光纤带隙移动的挥发性有机物传感器
CN102419221A (zh) * 2011-09-07 2012-04-18 南京大学 非偏振干涉高灵敏度光子晶体光纤温度传感器及制法
CN102749304B (zh) * 2012-06-20 2015-01-14 南京大学(苏州)高新技术研究院 高灵敏度光子晶体光纤折射率传感器及制法
CN102778729B (zh) * 2012-07-31 2014-10-22 清华大学 高光束质量信号光光纤合束器及其制作方法
CN106053350A (zh) * 2016-05-09 2016-10-26 暨南大学 一种基于二硫化钨的微纳光纤湿度传感器及其制备方法
CN108872150A (zh) * 2017-05-12 2018-11-23 武汉工程大学 一种双波长增益竞争折射率测量装置
CN108827374A (zh) * 2018-04-16 2018-11-16 北京工业大学 一种串联式氢气氧气浓度和温湿度同时测量系统
CN109540179B (zh) * 2018-12-21 2024-05-17 南京信息工程大学 基于表面等离子体共振的光纤锥形传感探头及其制作方法
CN111208087B (zh) * 2020-02-27 2023-07-21 西安石油大学 一种基于粗锥的光纤湿度传感器及其工作原理和制备方法
CN114994829B (zh) * 2022-06-15 2023-05-09 南京信息工程大学 一种新型高双折射低色散光子晶体光纤

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003827A1 (ja) * 2003-07-01 2005-01-13 Hitachi Cable, Ltd. 光ファイバ、光ファイバの接続方法及び光コネクタ
CN101614661A (zh) * 2009-07-24 2009-12-30 重庆大学 基于法布里-珀罗干涉仪的微探针型湿度计及其制作方法
CN201788148U (zh) * 2010-06-29 2011-04-06 中国计量学院 一种基于拉锥及灌注型光子晶体光纤的湿度传感器

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050080875A (ko) * 2004-02-11 2005-08-18 삼성전자주식회사 광자결정 광섬유용 모재의 제조방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003827A1 (ja) * 2003-07-01 2005-01-13 Hitachi Cable, Ltd. 光ファイバ、光ファイバの接続方法及び光コネクタ
CN101614661A (zh) * 2009-07-24 2009-12-30 重庆大学 基于法布里-珀罗干涉仪的微探针型湿度计及其制作方法
CN201788148U (zh) * 2010-06-29 2011-04-06 中国计量学院 一种基于拉锥及灌注型光子晶体光纤的湿度传感器

Also Published As

Publication number Publication date
CN101936897A (zh) 2011-01-05

Similar Documents

Publication Publication Date Title
CN101936897B (zh) 一种基于拉锥及灌注型光子晶体光纤的湿度传感器
Butt et al. Silicon on silicon dioxide slot waveguide evanescent field gas absorption sensor
Xia et al. Novel optical fiber humidity sensor based on a no-core fiber structure
Mathew et al. A fiber bend based humidity sensor with a wide linear range and fast measurement speed
CN204613104U (zh) 一种基于错位熔接的光纤湿度传感器
Azab et al. Multi-functional optical sensor based on plasmonic photonic liquid crystal fibers
CN201859117U (zh) 一种基于多模干涉sms光纤结构的湿度传感器
CN202126393U (zh) 一种基于拉锥及灌注型光子晶体光纤的折射率传感器
CN205655942U (zh) 一种应变和温度同时测量的光纤传感器
Zhang et al. Simultaneous measurement of temperature and curvature based on hollow annular core fiber
CN109632133A (zh) 一种基于光纤的温度测量装置及方法
CN201788148U (zh) 一种基于拉锥及灌注型光子晶体光纤的湿度传感器
CN207964137U (zh) 一种基于飞秒激光微加工的m-z应力传感器
CN102175645B (zh) 一种基于偏振光检测的高灵敏光子晶体光纤折射率传感器
Sinchenko et al. The effect of the cladding refractive index on an optical fiber evanescent-wave sensor
CN106768049A (zh) 一种基于马赫‑曾德干涉仪的温度与折射率同步测量的光纤传感器
CN203224440U (zh) 一种基于多模干涉msm结构的湿度传感器
Wang et al. High-sensitive Mach-Zehnder interferometer for humidity measurements based on concatenating single-mode concave cone and core-offset
CN205067340U (zh) 一种检测环境湿度的传感系统
Zhao et al. Curvature monitoring of power grid wires based on anti-resonant reflecting guidance in hollow core fibers
CN101852656B (zh) 基于部分灌注型HiBi-PCF-FLM的温度传感器
CN105181170A (zh) 一种基于腐蚀处理的光子晶体光纤马赫-曾德干涉仪的温度传感器
CN104297210A (zh) 一种基于核聚糖涂层的马赫-曾德湿度传感器
Wang et al. A high sensitivity refractive index sensor based on photonic crystal fibre Mach–Zehnder interferometer
CN102147362B (zh) 一种基于锥形腐蚀的温度自补偿fbg折射率传感器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120425

Termination date: 20130629