CN101935806A - 耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢 - Google Patents

耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢 Download PDF

Info

Publication number
CN101935806A
CN101935806A CN 201010279536 CN201010279536A CN101935806A CN 101935806 A CN101935806 A CN 101935806A CN 201010279536 CN201010279536 CN 201010279536 CN 201010279536 A CN201010279536 A CN 201010279536A CN 101935806 A CN101935806 A CN 101935806A
Authority
CN
China
Prior art keywords
steel
cold
delayed fracture
fracture resistance
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010279536
Other languages
English (en)
Other versions
CN101935806B (zh
Inventor
惠卫军
董瀚
张英建
时捷
王毛球
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Iron and Steel Research Institute
Original Assignee
Central Iron and Steel Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Iron and Steel Research Institute filed Critical Central Iron and Steel Research Institute
Priority to CN2010102795363A priority Critical patent/CN101935806B/zh
Publication of CN101935806A publication Critical patent/CN101935806A/zh
Application granted granted Critical
Publication of CN101935806B publication Critical patent/CN101935806B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

一种耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢,属于合金钢技术领域;适用于制作抗拉强度1000MPa以上的10.9级高强度螺栓。该钢的化学成分重量%为:C 0.06~0.15%,Si≤0.10%,Mn 1.80~2.40%,P≤0.010%,S≤0.008%,Cr 0.10~0.40%,B 0.0005~0.003%,V 0.05~0.15%,Ti 0.01~0.08%,RE0.005~0.03%,Al 0.01~0.05%,N 0.004~0.01%,余为Fe和其它不可避免的杂质,同时,V、Ti元素还需满足强化参数θ关系式:0.10≤V(%)+Ti(%)≤0.20;金相组织为粒状贝氏体。优点在于,不仅塑性和冷加工性能良好,而且,具有优异的耐延迟断裂性能,可用来制作10.9级耐延迟断裂高强度螺栓。

Description

耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢
技术领域
本发明属于合金钢技术领域,特别是提供了一种耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢,适用于制作抗拉强度1000MPa以上的10.9级高强度螺栓。
背景技术
高强度螺栓等紧固件应用广泛,但在传统中碳钢或中碳合金钢制造高强度螺栓的制造过程中,通常要进行至少一次软化或球化退火处理,不但周期长,而且能耗大。对此,人们开发了可省略软化或球化退火及调质处理的非调质钢线材,即通过控制轧制和控制冷却生产的线材,再通过一定量的冷变形产生加工硬化,使其强度进一步提高,在不经过调质处理的情况下,即能达到所要求的性能指标。
目前开发的一些冷作强化非调质钢线材,其组织多为铁素体+珠光体,经冷作强化后用来制作8.8级和9.8级高强度螺栓;而对于10.9级高强度螺栓用冷作强化非调质钢线材,其组织则基本为贝氏体,以获得所需的强度水平(惠卫军等.机械工程材料,2002,26(11):1-4,38;Boratto F et al. Wire J.Inter.,1992,(9):129-134)。对于高强度螺栓特别是10.9级及其以上级别的高强度螺栓,应特别重视其在实际服役环境中的耐延迟断裂性能。对于10.9级高强度螺栓用冷作强化非调质钢,在拉拔、冷镦等冷变形时往往产生大量的位错等缺陷,尽管经过适当时效处理后可使位错的密度降低和分布发生改变,但其对耐延迟断裂性能的影响不可忽视。
对于目前国际上开发的一些耐延迟断裂高强度螺栓用调质钢,其技术思路主要是多采用提高碳含量、提高或添加合金元素含量的途径来达到在强度提高的同时具有良好的耐延迟断裂性能,这往往恶化钢的冷加工性能,更重要的是,这些措施往往缺乏对可动位错抑制的考虑。文献(Boratto F et al. Wire J. Inter.,1992,(9):129-134)中介绍的一种10.9级螺栓用贝氏体钢,不但较高的Cr(0.60%)含量不仅对冷加工性能不利,而且缺乏对耐延迟断裂性能的考虑,限制了其适用范围。
发明内容
本发明的目的在于提供一种耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢,同时具有良好的塑性和冷加工性能,可用来制作10.9级高强度螺栓。
根据上述目的,本发明所采用的技术方案是:(1)复合加入微合金化元素V、Ti,利用控轧及控冷过程中析出的及形变后时效过程中析出的弥散、微细的V、Ti的碳氮化物,一方面起氢陷阱的作用,另一方面起钉扎可动位错的作用,从而改善钢的耐延迟断裂性能;(2)降低Si、P、S等元素含量,以降低钢中夹杂物数量和抑制时效处理时杂质元素的晶界偏聚,改善钢的冷加工性能和耐延迟断裂性能;(3)加入微量元素B,在提高钢的淬透性的同时,抑制杂质元素特别是P的晶界偏聚,改善钢的韧性和耐延迟断裂性能;(4)加入适量的稀土元素,对夹杂物进行变性和对氢起陷阱作用,进一步降低氢在晶界的偏聚和改善冷加工性能。
本发明钢的化学成分(重量%)如下:C 0.06~0.15%,Si≤0.10%,Mn 1.80~2.40%,P≤0.010%,S≤0.008%,Cr 0.10~0.40%,B 0.0005~0.003%,V 0.05~0.15%,Ti 0.01~0.08%,RE 0.005~0.03%,Al 0.01~0.05%,N 0.004~0.01%,余为Fe和其它不可避免的杂质,同时,V、Ti元素还需满足强化参数θ关系式:0.10≤V(%)+Ti(%)≤0.20。
各元素的作用及配比依据如下:
C:为了在热轧态及拉拔后获得所需的强度水平,C含量须在0.06%以上。但增加C含量对钢的塑、韧性,以及冷加工性能和耐延迟断裂性能将有较大的损害。此外,增加C含量,将使钢的连续冷却转变曲线,特别是贝氏体部分右移,不利于空冷时形成粒状贝氏体组织。因此,C含量应控制在0.15%以下。
Si:Si元素显著恶化钢的冷加工性能,同时还促进促进杂质元素P和S的晶界偏聚,对钢的耐延迟断裂性能有明显的恶化作用,因而控制其含量不超过0.10%。
Mn:除C以外,Mn是形成贝氏体组织最为有效的廉价合金元素,并起固溶强化作用。在C含量一定时,增加Mn含量,钢中贝氏体的数量随之增加,特别是在冷却速度较小的情况下,增加更为显著。Mn含量小于1.80%时不能够获得全贝氏体组织,但Mn含量超过2.40%时则上述作用饱和,且偏析严重,增加冶炼难度和成本,因而控制其含量在1.80~2.40%。
P:P能在钢液凝固时形成微观偏析,随后在高温加热时偏聚在晶界,使钢的脆性显著增大,从而增加钢的延迟断裂敏感性。此外,降低P含量可降低钢的变形抗力,所以控制P的含量在0.010%以下。
S:不可避免的不纯物,形成MnS夹杂和在晶界偏聚会恶化钢的冷加工性能和耐延迟断裂性能,降低钢中S含量可提高钢的变形能力和减少钢中的非金属夹杂物数量,同时还可减少S在晶界的偏聚而减轻晶界脆化,改善钢的冷加工性能、塑性和耐延迟断裂性能,因而控制其含量在0.008%以下。
Cr:Cr元素促进针状铁素体的形成,以获得具有良好韧性的低碳贝氏体组织,从而确保获得所需的强度和韧性,但含量过高会恶化钢的冷加工性能和增加成本,因而控制其含量在0.10~0.40%。
B:微量元素B可显著推迟铁素体开始析出线,增大获得空冷贝氏体的可能性。B还能够抑制杂质元素P的晶界偏聚,起净化晶界的作用,提高晶界强度,同时还能够抑制钢在高温加热时的氧化脱碳,因而改善钢的韧性和耐延迟断裂性能。为了上述作用,B含量需在0.0005%以上,但B含量超过0.003%时,过剩的B会形成粗大的BN,钢易产生热脆,影响热加工性能,并恶化钢的韧性和耐延迟断裂性能,因此控制其含量在0.0005~0.003%。
V:V在钢中形成细小的碳氮化钒,能够钉扎可动位错,起细化晶粒和析出强化的作用;还由于碳氮化钒具有较强的陷阱能,能够捕集氢使其均匀地分散在晶内,抑制氢的扩散,从而改善钢的耐延迟断裂性能。V含量小于0.05%难以起到上述作用,但含量超过0.15%则作用饱和,因此控制其含量在0.05~0.15%。
Ti:Ti固定钢中的N,抑制粗大BN的生成,确保B的上述良好作用。此外,Ti还起细化晶粒和析出强化的作用,弥散析出的Ti的碳氮化物是钢中陷阱能最高的氢陷阱,能够捕集氢使其均匀地分散在晶内,抑制氢的扩散,从而改善钢的耐延迟断裂性能。Ti含量小于0.01%起不到上述作用,但含量超过0.08%则作用饱和,且易形成粗大的TiN反而恶化钢的冷加工性能和耐延迟断裂性能。
RE:RE具有脱氧脱硫和对非金属夹杂物变性处理的作用,改善钢的冷加工性能。此外,还能够有效地捕集氢,减少氢和其它有害元素在晶界上的偏聚,降低氢的渗透扩散,可进一步降低钢的延迟断裂的敏感性。RE含量小于0.005%起不到上述作用,但含量超过0.03%,则由于夹杂物增多,反而恶化钢的冷加工性能和耐延迟断裂性能,因而控制其含量在0.005~0.03%。
Al:能够有效地脱氧、固定N和细化晶粒,含量小于0.005%起不到上述作用,但含量超过0.05%则作用饱和,且形成的粗大A1N夹杂会恶化钢的韧性和冷加工性能。
N:N能够和Al等形成细小的氮化物以细化晶粒,但过量的N会偏聚于晶界和形成粗大的夹杂物,所以其含量应控制在0.004~0.01%。
此外,为了进一步获得优异的耐延迟断裂性能,通过大量研究分析发现,V、Ti两个元素还需进行合适的复合添加,即其含量还需满足强化参数θ关系式:0.10≤V(%)+Ti(%)≤0.20。当θ值小于0.10时,尽管单个V、Ti元素的含量可能均在上述最适范围内,仍不能够获得优异的耐延迟断裂性能;当θ值大于0.20时,则作用饱和,且提高钢的成本。
本发明钢可采用电弧炉或转炉+炉外精炼冶炼,浇铸成钢锭或连铸成坯,然后轧制成棒线材等产品。本发明钢线材在轧态具有一定的强度和良好的冷加工性,随后再通过一定量的冷变形产生加工硬化,使其强度进一步提高,在不经过调质处理的情况下,即能达到10.9级螺栓所要求的性能指标。
本发明与现有技术相比,本发明钢不仅塑性和冷加工性能良好,经过合适的冷作强化和低温时效处理后,具有优异的耐延迟断裂性能,可用来制作10.9级高强度螺栓。
具体实施方式
根据上述所设计的化学成分范围,在50kg真空感应炉上冶炼了4炉本发明钢和5炉对比钢,其具体化学成分如表1所示。其中炉号1~4#为本发明钢,炉号5~9#为对比钢。钢水浇铸成锭,并经锻造制成棒材。部分棒材随后进行不同减面率的拉拔,并进行时效处理。从轧材和拉拔材上取样加工成标准室温拉伸试样(l0=5d0,d0=5mm)、缺口拉伸延迟断裂试样(直径d=5mm,缺口处dN=3mm,缺口60°±2°/0.15R±0.025)和冷变形试样(直径d=10mm,高度h=20mm)。
试样在室温下进行拉伸、冲击、缺口拉伸延迟断裂和冷变形等试验。延迟断裂实验溶液为pH=3.5±0.5的Walpote缓蚀液(16.4克无水醋酸钠+15.4毫升一级品浓盐酸+1000毫升脱离子水或蒸馏水)。如σf为发生断裂的最小应力,σn为在规定的截止时间100小时内不发生断裂的最大应力,则定义缺口拉伸临界应力σc为:σc=1/2(σfn),为使测得的与实际值相差小于10%,要求σfn≤0.2σc。将一系列冷变形试样进行冷镦实验,求出不发生开裂的临界变形量。所得结果列入了表2。
从表2可以看出,本发明钢在轧态的抗拉强度均在750MPa以上,断面收缩率均在65%以上;本发明钢经适当的拉拔和稳定化时效处理后,均可获得1000MPa级以上的抗拉强度,具有良好的塑性和优异的冷加工性能(以冷变形时的临界压缩变形量表征),即满足10.9级螺栓的强度和冷加工性的要求,同时具有优异的耐延迟断裂性能;而对比钢经拉拔和时效处理后,尽管有的强度满足10.9级螺栓的要求,但冷加工性和耐延迟断裂性能差,或由于软相铁素体的存在,强度不满足10.9级螺栓的要求。
表1本发明实施例和对比钢的化学成分(重量%)
Figure BSA00000266754100041
表2本发明实施例和对比钢的金相组织、强度、塑性、耐延迟断裂性能及冶加工性能的比较

Claims (1)

1.一种耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢,其特征在于,化学成分重量%为:C 0.06~0.15%,Si≤0.10%,Mn1.80~2.40%,P≤0.010%,S≤0.008%,Cr 0.10~0.40%,B 0.0005~0.003%,V 0.05~0.15%,Ti 0.01~0.08%,RE 0.005~0.03%,Al0.01~0.05%,N 0.004~0.01%,余量为Fe和其它不可避免的杂质,同时,V、Ti元素还需满足强化参数θ关系式:0.10≤V(%)+Ti(%)≤0.20;金相组织为粒状贝氏体。
CN2010102795363A 2010-09-10 2010-09-10 耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢 Active CN101935806B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102795363A CN101935806B (zh) 2010-09-10 2010-09-10 耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102795363A CN101935806B (zh) 2010-09-10 2010-09-10 耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢

Publications (2)

Publication Number Publication Date
CN101935806A true CN101935806A (zh) 2011-01-05
CN101935806B CN101935806B (zh) 2011-10-26

Family

ID=43389365

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102795363A Active CN101935806B (zh) 2010-09-10 2010-09-10 耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢

Country Status (1)

Country Link
CN (1) CN101935806B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952626A (zh) * 2014-05-12 2014-07-30 安徽工业大学 一种贝氏体非调质紧固件用钢性能的调控方法
TWI484045B (zh) * 2012-03-26 2015-05-11 Kobe Steel Ltd 耐延遲破壞性優良之加硼高強度螺栓用鋼及高強度螺栓
JP6645638B1 (ja) * 2018-10-30 2020-02-14 Jfeスチール株式会社 ボルト用鋼
WO2020090149A1 (ja) * 2018-10-30 2020-05-07 Jfeスチール株式会社 ボルト用鋼及びその製造方法
CN112522610A (zh) * 2020-11-18 2021-03-19 北京交通大学 控制V-Ti复合型贝氏体非调质钢组织及其制作方法
CN115418590A (zh) * 2022-08-31 2022-12-02 马鞍山钢铁股份有限公司 一种具有良好耐蚀性的高强韧性风电螺栓用非调质钢及其生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131334C (zh) * 2000-04-17 2003-12-17 冶金工业部钢铁研究总院 耐延迟断裂性能优良的高强度螺栓钢
CN1210430C (zh) * 2003-08-01 2005-07-13 清华大学 中低碳锰系空冷贝氏体钢
JP2008284610A (ja) * 2007-04-20 2008-11-27 Nippon Steel Corp 高強度部品の製造方法および高強度部品
CN101597716A (zh) * 2009-07-10 2009-12-09 钢铁研究总院 一种低碳贝氏体型冷作强化非调质钢

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1131334C (zh) * 2000-04-17 2003-12-17 冶金工业部钢铁研究总院 耐延迟断裂性能优良的高强度螺栓钢
CN1210430C (zh) * 2003-08-01 2005-07-13 清华大学 中低碳锰系空冷贝氏体钢
JP2008284610A (ja) * 2007-04-20 2008-11-27 Nippon Steel Corp 高強度部品の製造方法および高強度部品
CN101597716A (zh) * 2009-07-10 2009-12-09 钢铁研究总院 一种低碳贝氏体型冷作强化非调质钢

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《特殊钢》 20100831 计芳芳,惠卫军等 碳含量对贝氏体型冷作强化非调质钢的组织和力学性能的影响 68-70 1 第31卷, 第4期 2 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI484045B (zh) * 2012-03-26 2015-05-11 Kobe Steel Ltd 耐延遲破壞性優良之加硼高強度螺栓用鋼及高強度螺栓
US9845519B2 (en) 2012-03-26 2017-12-19 Kobe Steel, Ltd. Boron-added high strength steel for bolt and high strength bolt having excellent delayed fracture resistance
CN103952626A (zh) * 2014-05-12 2014-07-30 安徽工业大学 一种贝氏体非调质紧固件用钢性能的调控方法
JP6645638B1 (ja) * 2018-10-30 2020-02-14 Jfeスチール株式会社 ボルト用鋼
WO2020090149A1 (ja) * 2018-10-30 2020-05-07 Jfeスチール株式会社 ボルト用鋼及びその製造方法
CN112522610A (zh) * 2020-11-18 2021-03-19 北京交通大学 控制V-Ti复合型贝氏体非调质钢组织及其制作方法
CN112522610B (zh) * 2020-11-18 2022-03-25 北京交通大学 控制V-Ti复合型贝氏体非调质钢组织及其制作方法
CN115418590A (zh) * 2022-08-31 2022-12-02 马鞍山钢铁股份有限公司 一种具有良好耐蚀性的高强韧性风电螺栓用非调质钢及其生产方法
CN115418590B (zh) * 2022-08-31 2023-08-29 马鞍山钢铁股份有限公司 一种具有良好耐蚀性的高强韧性风电螺栓用非调质钢及其生产方法

Also Published As

Publication number Publication date
CN101935806B (zh) 2011-10-26

Similar Documents

Publication Publication Date Title
CN106661705B (zh) 渗碳合金钢及其制备方法和应用
CN101935809B (zh) 高性能稀土双相不锈钢合金材料及其制备方法
CN101671792B (zh) 弹簧钢及其制备方法
CN101892424B (zh) 一种胀断连杆用中碳非调质钢
CN101348884B (zh) 一种440MPa含铌高强IF钢及其制备方法
CN101270453B (zh) 一种超高强度热成型马氏体钢
CN101935806B (zh) 耐延迟断裂性能优良的低碳贝氏体型冷作强化非调质钢
CN102400053B (zh) 屈服强度460MPa级建筑结构用钢板及其制造方法
CN102071368A (zh) 低成本锻造用中碳非调质钢
CN101824581B (zh) 一种屈服强度450MPa级高强耐候钢板及其生产方法
CN103938070B (zh) 一种钢板及其制备方法
CN102839329A (zh) 一种抗拉强度450MPa级冷轧双相钢钢板及其制备方法
CN103556047A (zh) 一种450MPa级抗氢致开裂压力容器用钢板及其生产方法
CN103305762A (zh) 一种抗拉强度400MPa级冷轧双相钢板及其制备方法
CN104498821A (zh) 汽车用中锰高强钢及其生产方法
CN101880826A (zh) 紧固件用非调质贝氏体冷镦钢及其制造方法
CN110423954A (zh) 1400MPa级耐延迟断裂高强度螺栓钢及制造方法
CN102605246A (zh) 一种低应变时效敏感性焊接结构用钢及其生产方法
CN115612929A (zh) 一种稠油热采井用石油套管及其制备方法
CN1131334C (zh) 耐延迟断裂性能优良的高强度螺栓钢
CN102732778B (zh) 一种340MPa级深冲用高强度冷轧钢板及其生产方法
CN1266298C (zh) 耐延迟断裂和冷加工性能优良的高强度螺栓钢
CN103422027B (zh) 一种经济型低屈服点钢及其生产方法
CN102839319B (zh) 1100MPa级高强度钢及其生产方法
CN101597716A (zh) 一种低碳贝氏体型冷作强化非调质钢

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20110105

Assignee: Jiangsu Changqiang Iron & Steel Co., Ltd.

Assignor: Central Iron & Steel Research Institute

Contract record no.: 2013320000265

Denomination of invention: Low-carbon bainitic cold-work-strengthened non-quenched and tempered steel with excellent delayed fracture resistance

Granted publication date: 20111026

License type: Exclusive License

Record date: 20130326

LICC Enforcement, change and cancellation of record of contracts on the licence for exploitation of a patent or utility model