CN101929970A - 接触热阻测试方法及测试设备 - Google Patents
接触热阻测试方法及测试设备 Download PDFInfo
- Publication number
- CN101929970A CN101929970A CN 201010229963 CN201010229963A CN101929970A CN 101929970 A CN101929970 A CN 101929970A CN 201010229963 CN201010229963 CN 201010229963 CN 201010229963 A CN201010229963 A CN 201010229963A CN 101929970 A CN101929970 A CN 101929970A
- Authority
- CN
- China
- Prior art keywords
- sample
- temperature
- test point
- test
- samples
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Investigating Or Analyzing Materials Using Thermal Means (AREA)
Abstract
本发明公开了一种接触热阻测试方法,属于测试技术领域,通过测试试样和设备的准备、对试样加热采集试样测试点温度、计算相邻试样在接触界面处的平均温度,对试样接触界面进行温度补偿;根据相邻试样接触界面处的温度降和试样的轴向热流,计算接触热导和接触热阻。根据试验需要,可以调整加热装置的加热温度或应力加载装置的加载应力,测试不同温度和应力条件下的接触热阻。本发明提供的测试方法可以测试试样在热应力和压应力同时作用下的接触热阻,并且方法简单易于实现。
Description
技术领域
本发明属于测试技术领域,具体涉及一种接触热阻测试方法及设备,适用于在不同温度和加载应力范围内进行接触热阻的测试,尤其具备高温、高接触应力条件下的接触热阻测试条件。
背景技术
当两个物体表面相互接触时,不论表面多么光滑,总存在微观的不完全接触点。物体的接触表面是由分散细小的接触点组成的,这些接触点之间被大的空隙隔离开,这些空隙中可能是真空,也可能充满导热介质。因此,在接触面处除了固有的热阻之外,还存在额外的传热阻力——接触热阻。接触热阻在很多工程应用中是一个重要的参数。现在接触热阻的研究主要集中在理论分析和计算方法的研究方面,即通过建立数学模型,运用计算机模拟的方式预测接触热阻,然后通过与文献中的试验数据进行比较,再判断模型的可靠性。目前的主要计算方法有:有限元法、蒙特卡罗随机点法、分子动力学法等。但这些方法参数较多、误差较大,在工程上并不实用。
发明内容
本发明为了解决现有技术中单纯依托理论和模拟计算进行接触热阻测试存在的问题,提供一种接触热阻工程试验测试方法及其设备,所述的测试方法采用多根材料试样与一个热流计形成一个轴向热流通道,分别采集轴向热流传输方向多测试点温度,同时采用多层隔热材料和界面温度补偿技术降低热量横向散失现象对接触热阻测试的影响,根据采集的测试点温度实现接触热阻的测试。
本发明提供的接触热阻测试方法通过如下步骤实现:
第一步,测试试样和设备的准备。
加工至少三个试样,包括一个热流计试样和两个测试试样,将三个试样竖直同轴夹装在底端加热装置和顶端应力加载装置之间,所述的试样上设置有热电偶,热电偶与数据采集系统连接,用于测试试样的轴向温度。
第二步,对试样加热,采集试样测试点温度。
对试样加热,试样温度达到稳定后开始采集测试温度。所述的测试温度包括每个试样上的测试点的测试点温度Ti,i=1,……n,n为试样上测试点数目。所述的测试点温度Ti通过在试样上均布的测试点热电偶进行采集。所述测试点热电偶的探头均布置在试样的中轴线上,保证测温的准确性。
例如试样上测试点之间的距离满足如下关系:试样长度为l,相邻两个测试点之间的轴向距离相等,每个试样上从下端面到上端面之间设置n个测试点,测试点之间的距离为l/n,第一个测试点距离下端面的距离等于第n个测试点距离上端面的距离,并且两个距离之和等于相邻两个测试点之间的距离。
热电偶连接数据采集系统,当数据采集系统上计算机显示试样上每个测试点的温度变化在0.5℃以内时,即可认为温度是稳定的。
第三步,相邻试样在接触界面处的平均温度。
将试样上每一个测试点上的温度进行采集和存储,并通过计算机绘制测试点处的温度变化曲线。
每两个相邻试样上,距离接触界面最近的两个热电偶的温度为Tn和Tn+1,则每两个试样接触界面处的平均温度ΔT′为:
根据试样接触界面处的平均温度调节补偿加热装置的加热温度,使补偿加热器在接触界面处的径向平面内加热,保证接触界面处一直维持ΔT′。
第五步,通过外推温度梯度确定相邻试样接触界面处的温度降ΔT:
其中,l为试样长度,n为每个试样上测试点个数,从下到上将每个试样上的测试点顺次编号,则T1、Tn、Tn+1、T2n分别第一个被测试样第1个、第n个测试点的温度、第二个被测试样第n+1和第2n个测试点的温度。
第六步,根据所选热流计来确定试样的轴向热流。
忽略试样的横向热流损失,以金属铜作为热流计,制备成与试样同样尺寸的热流计试样,则轴向热流为:
其中λT为铜的热导率;T1、Tn为热流计试样上第一个测试点与第n个测试点的温度;m为热流计试样上第一个测试点与第n个测试点之间的距离。
第七步,计算接触热导和接触热阻。
根据第五步中的轴向热流,得到试验中的接触热导hC如下:
根据每两个试样接触界面处的温度降ΔT计算接触热阻RC。
所述的接触热阻RC为:
其中q为轴向热流。
根据试验需要,可以调整加热装置的加热温度或应力加载装置的加载应力,重复第一步到第六步可以测试不同温度和应力条件下的接触热阻。
本发明的优点在于:
(1)本发明采用的加热装置中的加热块为高温材料,应力加载装置可以提供500MPa的界面接触应力,因此本发明提供的设备能够进行高温、高接触应力下的接触热阻测试试验,并且能够连续按要求改变热端温度(≤1000℃)和调整加载应力(≤500MPa)。
(2)通过可控硅调压器控制加热丝的功率控制热端所需温度,通过多层隔热材料和界面温度补偿避免横向热流损失,并采用冷却装置使得测试试样的热端和冷却端形成极大温差,实现了热流轴向的一维传递。
(3)本发明提供的设备能够对多通道的监测点温度同时进行检测和记录,并进行分析和统计,因而提高了工作效率,避免了循环记录各通道所带来的误差。
(4)本发明提供的测试方法可以测试试样在热应力和压应力同时作用下的接触热阻,并且方法简单易于实现。
附图说明
图1为本发明提供的接触热阻测试设备整体结构示意图;
图2为本发明中试样上热电偶的布局图;
图2a为本发明中稳定支撑架的结构示意图;
图3为本发明中顶板减重结构示意图;
图4a为本发明中冷却水箱的主视剖视图;
图4b为本发明中冷却水箱的俯视图;
图5a为本发明中加热装置结构示意图;
图5b为本发明中加热装置的圆筒形加热筒结构示意图;
图5c为本发明中加热块的结构示意图;
图6为本发明中补偿加热装置的结构示意图;
图6a为补偿加热装置中固定支架的仰视图;
图6b为补偿加热装置中固定支架的主视图。
具体实施方式
下面结合附图和实施例对本发明进行详细说明。
本发明提供一种接触热阻测试方法,该测试方法利用热流在不同材料界面间传递的温度变化的特性来检测界面接触热阻,因而此种方法采用比较简单、可靠、测量精度较高、易于操作的测试设备就可以。但因测温元件与周围介质需要进行充分的热交换,需要一定的时间才能达到热平衡,所以达到稳态后的数据才是可信的。基于上述因素,本发明提供的接触热阻测试方法具体通过如下步骤实现:
第一步,测试试样和设备的准备。
加工至少三个试样,包括一个热流计试样和两个测试试样,将三个试样竖直同轴夹装在底端加热装置和顶端应力加载装置之间,所述的试样上设置有热电偶,热电偶与数据采集系统连接,用于测试和采集试样的轴向温度。
第二步,对试样加热和加载压应力,采集试样测试点温度。
通过加热装置对试样加热,并对试样施加压应力,3~4个小时后,待试样温度达到稳定后开始采集测试温度。所述的测试温度包括每个试样上n个测试点的测试点温度Tii=1,……n,n为试样上测试点数目。所述的测试点温度Ti通过在试样上均布的测试点热电偶进行采集,所述的测试点热电偶的探头均布置在试样的中轴线上,保证测温的准确性。
例如试样上测试点之间的距离满足如下关系:试样长度为l,相邻两个测试点之间的轴向距离相等,每个试样上从下端面到上端面之间设置n个测试点,测试点之间的距离为l/n,第一个测试点距离下端面的距离等于第n个测试点距离上端面的距离,并且两个距离之和等于相邻两个测试点之间的距离。测试试样竖直同轴,测试点从下到上均匀布置,顺序编号。
热电偶连接数据采集系统,当数据采集系统上计算机显示试样上每个测试点的温度变化在0.5度以内时,即可认为轴向热流传输已达到稳态。
第三步,相邻试样在接触界面处的平均温度。
将试样上每一个测试点上的温度进行采集和存储,并通过计算机绘制测试点处的温度变化曲线。
每两个相邻试样上,距离接触界面最近的两个测试点热电偶的温度为Tn和Tn+1,则下方试样的第n个测试点温度Tn和相邻的上方试样的第1个测试点温度Tn+1的平均值就是两试样接触界面处的平均温度,则接触界面处的平均温度ΔT′为:
第四步,对试样接触界面进行温度补偿。
将接触界面处的平均温度ΔT′作为相邻两试样之间的理论传导温度,对试样接触界面进行温度补偿,采用补偿加热装置保证试样的接触界面处保持理论传导温度ΔT′。
第五步,通过外推温度梯度确定相邻试样接触界面处的温度降ΔT:
其中,l为试样长度,n为每个试样上测试点个数,T1、Tn、Tn+1、T2n分别第一被测试样第1个、第n个测试点的温度、相邻的第二个被测试样第n+1和第2n个测试点的温度。
第六步,根据所选热流计来确定试样的轴向热流。
忽略试样的横向热流损失,以金属铜作为热流计,制备成与试样同样尺寸的热流计试样,则轴向热流为:
其中λT为铜的热导率;T1、Tn为热流计试样上第一个测试点与第n个测试点的温度;m为热流计试样上第一个测试点与第n个测试点之间的距离。
第七步,计算接触热导和接触热阻。
根据第六步中的轴向热流,得到试验中的接触热导hC如下:
根据每两个试样接触界面处的温度降ΔT计算接触热阻RC。
所述的接触热阻RC为:
其中q为轴向热流。
根据试验需要,可以调整加热温度或加载应力,重复第一步到第六步可以测试不同温度和应力条件下的接触热阻。
本发明还提供一种接触热阻测试设备,如图1所示,所述的测试设备主要包括支架1、顶板2、底板3、应力加载装置4、数据采集系统6和加热装置7,还包括一个冷却装置5。所述顶板2和底板3分别通过四组螺母8水平固定在四根支架1上,并且顶板2位于底板3的上方。底板3和顶板2之间的空间由下至上依次设置加热装置7、试样9、冷却装置5和应力加载装置4。所述应力加载装置4固定在顶板2中心位置,应力加载装置4的力传导杆穿过冷却装置5与试样9的顶端接触,用于为试样9顶端加载应力。所述底板3设置加热装置7,用于为试样9加热。
所述的试样9的数量至少三个,竖直轴向排列,并且其中一个试样9作为热流计试样,其余为待测接触热阻的材料试样。如图2所示,每个试样9的中轴线上布置4个测试点热电偶10(如镍铬镍硅热电偶),测试点热电偶10作为温度传感器用于实时测量沿着试样9轴向上的温度分布,测试点热电偶10的探头设置在试样9的竖直中轴线上,测试点热电偶10的尾线连接数据采集系统6,如图1,数据采集系统6采集的温度数据通过计算机601进行存储并绘制温度变化曲线,显示给操作者,便于操作者监测和控制接触热阻测试过程。
每个试样9上热电偶探头之间的距离关系如下:相邻热电偶之间的轴向距离相等;每个试样的长度为l,每个试样上从下端面到上端面依次布置n个热电偶,则热电偶之间的距离为l/n,并且第一个热电偶距离下端面的距离等于第n个热电偶距离上端面的距离,均为l/2n。
本发明中选用已知热传导系数的材料如铜作为热流计,来测试试样的轴向热流q。热流计做成与试样9一样的尺寸,作为其中的一个热流计试样,测试时,所述的热流计试样布置在测试试样的最顶端与应力加载装置4的力传导杆接触,或者最底端与加热装置7直接接触,保证待测接触热阻的合金材料试样之间接触形成接触界面901,本发明提供的测试设备就是用于测试相接触的两试样之间的接触界面901处的接触热阻。
所述的测试点热电偶10采用K型的镍铬镍硅热电偶,能够测0~1300℃的温度范围。本发明采用测试点热电偶10的探头排布方式如图2所示,探头设置在试样9的竖直中轴线上。试样长度为60mm,每个试样9上测试点热电偶10的探头距离上下端面7.5mm,相互之间间隔15mm,一共布置四个热电偶。在试样9上布置测试点热电偶10的探头孔必须小心的加工,因为探头孔间距的微小的误差即可以带来温度梯度的较大的误差,进而得出接触热阻较大的不确定度。
由于测试点热电偶10和热电偶探头孔的加工均存在公差,在试样受热载过程中,试样会受热膨胀,一些测试点热电偶10将有可能从试样孔中脱落。为了固定测试点热电偶10,如图2所示,本发明中将所述的测试点热电偶10的尾线通过一个稳定支撑架11,如图2a所示,所述的稳定支撑架11上设置尾线孔11A,尾线孔11A的数量等于试样上测试点热电偶10的数量,每个测试点热电偶10的尾线都穿过尾线孔11A后与数据采集系统6连接,并且尾线是通过螺钉锁紧的方式固定在稳定支撑架11上,防止测试点热电偶10从试样9上脱落。
在所述应力加载装置4上连接有压力传感器401,如图1,压力传感器401与数据采集系统6中的计算机601连接,用于测量所加载压应力的大小,并将所测量的压应力数据记录和显示在数据采集系统6的计算机601上。通过调节四个螺母8推动顶板2,使得顶板2的高度可调,进而实现对应力加载装置4施加压力,应力加载装置4通过力传导杆将压力施加给试样9的顶端。由于所述力传导杆穿过冷却装置5的冷却水箱与试样接触。力传导杆给试样9传导施加压应力的同时,也将实现对试样9的顶端的冷却。
所述的顶板2的结构如图3所示,顶板2采用厚钢板+加强筋的结构,并且顶板2采用了减重结构来精简设备,测试点热电偶以及补偿加热装置等部件也可以更容易插入并且安全使用。在增大了顶板2的面积的同时,在顶板2上设置减重孔201来实现减重,减轻了加载装置的重量的同时也使得操作更方便。
所述的冷却装置5放置在试样9的顶端,如图4a、4b所示,所述的冷却装置5为一个冷却水箱结构,冷却水箱的中心设有中心通孔501,中心通孔501的内径稍大于力传导杆的外径,所述的中心通孔501具有内螺纹,冷却水箱通过所述内螺纹连接固定在应力加载装置4的力传导杆上。冷却水箱内部的冷却水的温度可以直接传导给力传导杆,通过力传导杆的温度降低来冷却试样9的上方冷端。冷却水箱内部设置有冷却通道502,冷却通道502为螺旋形围绕中心通孔501。冷却水从冷却水箱底部的冷却水入水口503进入冷却通道502,并从冷却水箱顶部的冷却水出水口504流出,如此循环,冷却水以一定的流速通过冷却水箱内部的冷却通道502,为力传导杆提供较低的恒定的温度,可以降低力传导杆的温度,进而冷却试样9的上方冷端。一般循环冷却水的温度维持在20℃~25℃即可。该种方式使得循环冷却水与试样冷端的接触面积最大,最大限度地提高了冷却效率。冷却水箱内部有上、中、下三层冷却通道502,并在层与层之间设置两个开口对角分布的隔板505,用以保证循环冷却水从底部流向顶部。循环冷却水将从下而上,防止了滞留。
试验中采用此种冷却方式发现,加热装置以最大的功率加热(220V/1500W)达到所需要的热端温度后,通过可控硅调压器12调低电压在90V-120V之间,约2-3个小时后,试样上的轴向热流达到了准稳态。
所述的加热装置7,如图5a所示,主要包括加热块701,加热块701可以直接连接可控硅调压器12,可控硅调压器12连接温控仪,为试样加热;也可以通过加热块701外圈的陶瓷(SiC)加热筒702或一侧开口的圆筒形加热器705连接可控硅调压器12,可控硅调压器12连接温控仪,为试样加热。当选用陶瓷加热筒702时,陶瓷加热筒702外周缠绕有加热丝703,加热丝703连接可控硅调压器12,可控硅调压器12连接温控仪12A,用于为加热丝703提供电源功率可控制的加热温度,为试样9加载温度。加热丝703的热量通过陶瓷加热筒702传递给加热块701,为试样9提供热源。陶瓷加热筒702的内径稍大于加热块701的外径,保证陶瓷加热筒702的热量能够全部传递给加热块701。
所述的一侧开口的圆筒形加热器705是如图5b所示的结构,即采用一侧开口的圆筒形加热器705为加热块701加热。所述圆筒形加热器705内径与加热块701外径紧密接触,进而可以增大加热效率,缩短加热时间。设计成一侧开口的结构,更加有利于圆筒形加热器705内壁与加热块701之间的紧密接触。所述圆筒形加热器705内壁上布置加热丝703,加热丝703的两端连接到可控硅调压器12,可控硅调压器12连接温控仪12A。
所述的加热块701结构如图5c所示,加热块701为圆柱体结构,圆柱体的上端面上设置有一个圆柱形凹槽701A,凹槽701A直径稍大于试样9直径,凹槽701A四周设置螺栓孔701D,在将试样9底端安装到凹槽701A内之后,用螺栓穿过螺栓孔701D将试样9底端顶紧,防止试样9底端相对于凹槽701A的移动,同时可以将加热块701的热量传递给试样9,一般螺栓孔701D设置四个。加热块701的底部有一个螺纹柱701B,该螺纹柱701B与耐火砖13上布置的金属板14之间螺纹连接,如图5a,连接金属板14使得加热块701的重心下降,稳固的位于耐火砖13的上表面。所述耐火砖13置于底板3上。所述的耐火砖13和金属板14都是起到固定加热块701的作用,同时耐火砖13也起到隔热和调整加热块701的位置平衡的作用。
在加热块701上凹槽701A的底部位置设置一个温度传感器701C,温度传感器701C通过圆筒形加热器705的开口部位或者通过陶瓷套筒702连接到温控仪12A,温度传感器701C将所测温度数据反馈到温控仪12A上,温控仪12A通过可控硅调压器12控制圆筒形加热器705上加热的通断,保证加热块701顶部位置始终保持恒定的温度将热量传递给测试试样9。
所述的四根支架1均具有外螺纹结构,八组螺母8可以单独调节。调节顶板2上固定的四组螺母8可以保证应力加载装置4提供竖直向下的力;调节底板3的四组螺母8,可以保证耐火砖13上的加热块701的轴线与地面垂直。
通常选取的加热丝703为铁铬铝加热丝,如0Cr21Al 16Nb。选取加热块701采用耐高温合金,如1Cr18Ni9Ti(600℃),或者选取K417合金钢(耐高温1000℃以上)。可以提供的最大功率为1500W。在所述陶瓷加热筒702的外侧还可以设置保温层704(避免加热丝与隔热材料直接接触发生反应),如图1所示,用于防止加热丝703和加热块701的热量散失。
在所述试样9的外周设置隔热层16,隔热层16由保温棉和珍珠岩组成,如图1,隔热层16设置在试样9和加热装置7的外周,用于防止试样表面热量横向散失,尽量保证试样9上的温度热量沿着试样9轴向上升,避免界面处热流的横向流失。
在接触热阻测试过程中,由于试样温度从下向上传递,在径向同一平面内存在着不同的温度,横向上的热流损失不可避免。根据传热的动力原理,两个平面的温差越大,则传热的动力就越大,当热流沿轴向方向最大化,达到热流一维传输的准稳态,此时才可以进行接触热阻的测试。为了尽量的减少横向热流损失,使得热流沿轴向传输,本发明还设置了补偿加热装置15。所述的补偿加热装置15包括两个热电偶15A和两个环形加热器15B,如图6所示,所述的环形加热器15B位于接触界面的径向平面内,分别距离接触界面50mm和60mm的位置,环形加热器15B上分别固定设置一个热电偶15A,热电偶1SA与温控仪12A相连,将环形加热器15B的温度反馈给温控仪12A,通过温控仪12A使试样接触界面的温度与环形加热器15B的温度一致,两材料接触界面横向等温,避免了热量的横向散失。试验过程中通过对相邻两个试样上最接近的两个测试点热电偶10所测温度作差并求平均,得到接触界面处的理论传导温度ΔT′,根据该理论传导温度ΔT′,调节温控仪12A的温度控制点,将环形加热器15B加热温度控制在所述的理论传导温度范围内,使得热流在试样接触界面处的轴向传输最大化,避免横向热流散失。
所述环形加热器15B通过固定支架15C固定在顶板2上,所述固定支架15C为倒“L”型,顶端设置两个螺纹孔150,如图6a所示,螺钉穿过所述螺纹孔150将固定支架15C固定在顶板2上;底端附近设置有槽形孔151,如图6b所示,环形加热器15B上有两个圆孔,用螺栓穿过所述圆孔将环形加热器15B固定在槽形孔151上,加工成槽形孔的目的是为了方便调节环形加热器15B在轴向上的位置,进而使得环形加热器15B的高度可调节。
本发明中的数据采集系统6将所采集的温度数据分为两部分,一部分是测试点热电偶10的所有温度数据,用于计算机绘制成温度变化曲线,检测试样加热温度的稳定变化,然后根据该采集的温度数据进行接触热阻的解算;另一部分是距离接触界面处最近的两个热电偶的温度数据,用于解算试样接触界面处的平均温度,以便于控制对于试样接触界面处的温度补偿。
本发明中的温控仪12A可以实现多路加热的单独控制和数据显示,本发明中选取的温控仪12A型号为XMZJ16-38K XLDS。
Claims (2)
1.一种接触热阻测试方法,其特征在于如下步骤:
第一步,测试试样和测试设备的准备;
第二步,对试样加热和加载压应力,采集试样测试点温度;
对试样加热,试样温度达到稳定后开始采集测试温度;所述的测试温度包括每个试样上n个测试点的测试点温度Ti i=1,……n,n为试样上测试点数目;
第二步,相邻试样在接触界面处的平均温度;
将试样上每一个测试点上的温度进行采集和存储,并通过计算机绘制测试点处的温度变化曲线;
每两个相邻试样上,距离接触界面最近的两个测试点的温度为Tn和Tn+1,则每两个试样接触界面处的平均温度ΔT′为:
第三步,根据试样接触界面处的平均温度对试样接触界面进行温度补偿;
根据试样接触界面处的平均温度,在接触界面处施加热载荷,保证接触界面处一直维持温度为ΔT′;
第四步,通过外推温度梯度确定相邻试样接触界面处的温度降ΔT:
其中,l为试样长度,n为每个试样上测试点个数,从下到上将每个试样上的测试点顺次编号,则T1、Tn、Tn+1、T2n分别为第一个被测试样第1个测试点、第n个测试点、第二个被测试样第n+1个和第2n个测试点的温度;
第五步,根据所选热流计来确定试样的轴向热流;
忽略试样的横向热流损失,将热流计制备成与试样同样尺寸的热流计试样,则轴向热流为:
其中λT为热流计的热导率;T1、TN为热流计试样上第一个测试点与第n个测试点的温度;m为热流计试样上第一个测试点与第n个测试点之间的距离;
第六步,计算接触热导和接触热阻;
根据第五步中的轴向热流,得到试验中的接触热导hC如下:
根据每两个试样接触界面处的温度降ΔT计算接触热阻RC,所述的接触热阻RC为:
其中q为轴向热流。
2.根据权利要求1所述的接触热阻测试方法,其特征在于:所述的第一步具体为:加工至少三个试样,包括一个热流计试样和两个测试试样,将三个试样竖直同轴夹装在底端加热装置和顶端应力加载装置之间,所述的试样上设置有热电偶,热电偶与数据采集系统连接,用于测试试样的轴向温度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102299630A CN101929970B (zh) | 2010-07-13 | 2010-07-13 | 接触热阻测试方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2010102299630A CN101929970B (zh) | 2010-07-13 | 2010-07-13 | 接触热阻测试方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101929970A true CN101929970A (zh) | 2010-12-29 |
CN101929970B CN101929970B (zh) | 2012-05-16 |
Family
ID=43369266
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2010102299630A Expired - Fee Related CN101929970B (zh) | 2010-07-13 | 2010-07-13 | 接触热阻测试方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101929970B (zh) |
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102141529A (zh) * | 2010-12-30 | 2011-08-03 | 西安交通大学 | 一种固定结合面真空接触热导测量装置 |
CN102768225A (zh) * | 2012-08-07 | 2012-11-07 | 南京理工大学 | 一种高精度热界面材料测试方法 |
CN102768224A (zh) * | 2012-08-07 | 2012-11-07 | 南京理工大学 | 正反双向热流法测固-固接触热阻的测试方法 |
CN102830134A (zh) * | 2012-08-07 | 2012-12-19 | 南京理工大学 | 上下恒温参数辨识法测热界面材料性能 |
CN103969283A (zh) * | 2014-05-20 | 2014-08-06 | 中国海洋石油总公司 | 热采工况下岩心性质的测试装置 |
CN105572162A (zh) * | 2015-12-17 | 2016-05-11 | 北京航空航天大学 | 具有补偿加热与隔热保温系统的接触热阻测试设备 |
CN105628730A (zh) * | 2015-12-17 | 2016-06-01 | 北京航空航天大学 | 具有稳定加热系统的接触热阻测试设备 |
CN106153672A (zh) * | 2016-06-08 | 2016-11-23 | 东南大学 | 基于一维导热原理的多孔粉末材料热导率测量装置及方法 |
CN107064214A (zh) * | 2017-06-15 | 2017-08-18 | 天津大学 | 一种固定结合面接触热阻的测量装置 |
CN107228878A (zh) * | 2017-06-15 | 2017-10-03 | 天津大学 | 一种固定结合面接触热阻的测量方法 |
CN107238628A (zh) * | 2017-06-26 | 2017-10-10 | 北京汽车研究总院有限公司 | 一种隔热性能试验设备 |
CN107576686A (zh) * | 2017-10-27 | 2018-01-12 | 江苏优为视界科技有限公司 | 一种导热介质材料导热能力测试装置及测试方法 |
CN107870179A (zh) * | 2017-12-15 | 2018-04-03 | 扬州大学 | 用于测量沥青混凝土接触热阻的方法 |
CN108445040A (zh) * | 2018-03-05 | 2018-08-24 | 大连海事大学 | 一种带有热膨胀修正的接触热阻测试方法 |
CN108931551A (zh) * | 2018-05-31 | 2018-12-04 | 重庆大学 | 一种固体表面结合部接触热导测量装置 |
CN109813753A (zh) * | 2019-03-28 | 2019-05-28 | 桂林电子科技大学 | 双向热流法测定界面接触热阻的高精度方法 |
CN109856183A (zh) * | 2019-03-25 | 2019-06-07 | 上海工程技术大学 | 一种金属型差压铸造固液界面换热系数的测定方法及装置 |
CN109991266A (zh) * | 2019-03-22 | 2019-07-09 | 上海工程技术大学 | 界面换热系数及材料热导率的激光加热测量装置及方法 |
CN110907286A (zh) * | 2019-11-20 | 2020-03-24 | 华南理工大学 | 一种大比例尺模型试验vhm组合荷载加载系统 |
CN113514492A (zh) * | 2021-06-02 | 2021-10-19 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 一种测量界面热阻的方法和装置 |
CN114384116A (zh) * | 2021-12-24 | 2022-04-22 | 大连理工大学 | 一种高温条件下的界面接触热阻高效测试装置及方法 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108195878A (zh) * | 2017-12-15 | 2018-06-22 | 北京长城华冠汽车科技股份有限公司 | 一种接触热阻的测试装置和方法 |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6142662A (en) * | 1998-06-16 | 2000-11-07 | New Jersey Institute Of Technology | Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance |
CN101126729A (zh) * | 2007-09-18 | 2008-02-20 | 南京航空航天大学 | 双热流计稳态法材料热导率测量方法 |
-
2010
- 2010-07-13 CN CN2010102299630A patent/CN101929970B/zh not_active Expired - Fee Related
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6142662A (en) * | 1998-06-16 | 2000-11-07 | New Jersey Institute Of Technology | Apparatus and method for simultaneously determining thermal conductivity and thermal contact resistance |
CN101126729A (zh) * | 2007-09-18 | 2008-02-20 | 南京航空航天大学 | 双热流计稳态法材料热导率测量方法 |
Cited By (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102141529B (zh) * | 2010-12-30 | 2013-04-17 | 西安交通大学 | 一种固定结合面真空接触热导测量装置 |
CN102141529A (zh) * | 2010-12-30 | 2011-08-03 | 西安交通大学 | 一种固定结合面真空接触热导测量装置 |
CN102768224B (zh) * | 2012-08-07 | 2014-04-16 | 南京理工大学 | 正反双向热流法测固-固接触热阻的测试方法 |
CN102830134A (zh) * | 2012-08-07 | 2012-12-19 | 南京理工大学 | 上下恒温参数辨识法测热界面材料性能 |
CN102768224A (zh) * | 2012-08-07 | 2012-11-07 | 南京理工大学 | 正反双向热流法测固-固接触热阻的测试方法 |
CN102768225B (zh) * | 2012-08-07 | 2014-04-02 | 南京理工大学 | 一种高精度热界面材料测试方法 |
CN102768225A (zh) * | 2012-08-07 | 2012-11-07 | 南京理工大学 | 一种高精度热界面材料测试方法 |
CN103969283A (zh) * | 2014-05-20 | 2014-08-06 | 中国海洋石油总公司 | 热采工况下岩心性质的测试装置 |
CN105628730B (zh) * | 2015-12-17 | 2019-01-18 | 北京航空航天大学 | 具有稳定加热系统的接触热阻测试设备 |
CN105572162A (zh) * | 2015-12-17 | 2016-05-11 | 北京航空航天大学 | 具有补偿加热与隔热保温系统的接触热阻测试设备 |
CN105628730A (zh) * | 2015-12-17 | 2016-06-01 | 北京航空航天大学 | 具有稳定加热系统的接触热阻测试设备 |
CN106153672A (zh) * | 2016-06-08 | 2016-11-23 | 东南大学 | 基于一维导热原理的多孔粉末材料热导率测量装置及方法 |
CN107064214A (zh) * | 2017-06-15 | 2017-08-18 | 天津大学 | 一种固定结合面接触热阻的测量装置 |
CN107228878A (zh) * | 2017-06-15 | 2017-10-03 | 天津大学 | 一种固定结合面接触热阻的测量方法 |
CN107238628A (zh) * | 2017-06-26 | 2017-10-10 | 北京汽车研究总院有限公司 | 一种隔热性能试验设备 |
CN107576686A (zh) * | 2017-10-27 | 2018-01-12 | 江苏优为视界科技有限公司 | 一种导热介质材料导热能力测试装置及测试方法 |
CN107576686B (zh) * | 2017-10-27 | 2024-06-18 | 拉梵尼(江苏)智能科技有限公司 | 一种导热介质材料导热能力测试装置及测试方法 |
CN107870179A (zh) * | 2017-12-15 | 2018-04-03 | 扬州大学 | 用于测量沥青混凝土接触热阻的方法 |
CN108445040A (zh) * | 2018-03-05 | 2018-08-24 | 大连海事大学 | 一种带有热膨胀修正的接触热阻测试方法 |
CN108445040B (zh) * | 2018-03-05 | 2021-06-15 | 大连海事大学 | 一种带有热膨胀修正的接触热阻测试方法 |
CN108931551A (zh) * | 2018-05-31 | 2018-12-04 | 重庆大学 | 一种固体表面结合部接触热导测量装置 |
CN109991266A (zh) * | 2019-03-22 | 2019-07-09 | 上海工程技术大学 | 界面换热系数及材料热导率的激光加热测量装置及方法 |
CN109856183B (zh) * | 2019-03-25 | 2021-12-17 | 上海工程技术大学 | 一种金属型差压铸造固液界面换热系数的测定方法及装置 |
CN109856183A (zh) * | 2019-03-25 | 2019-06-07 | 上海工程技术大学 | 一种金属型差压铸造固液界面换热系数的测定方法及装置 |
CN109813753A (zh) * | 2019-03-28 | 2019-05-28 | 桂林电子科技大学 | 双向热流法测定界面接触热阻的高精度方法 |
CN109813753B (zh) * | 2019-03-28 | 2022-08-05 | 桂林电子科技大学 | 双向热流法测定界面接触热阻的高精度方法 |
CN110907286B (zh) * | 2019-11-20 | 2022-01-18 | 华南理工大学 | 一种大比例尺模型试验vhm组合荷载加载系统 |
CN110907286A (zh) * | 2019-11-20 | 2020-03-24 | 华南理工大学 | 一种大比例尺模型试验vhm组合荷载加载系统 |
CN113514492A (zh) * | 2021-06-02 | 2021-10-19 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 一种测量界面热阻的方法和装置 |
CN113514492B (zh) * | 2021-06-02 | 2023-09-01 | 中国电子产品可靠性与环境试验研究所((工业和信息化部电子第五研究所)(中国赛宝实验室)) | 一种测量界面热阻的方法和装置 |
CN114384116A (zh) * | 2021-12-24 | 2022-04-22 | 大连理工大学 | 一种高温条件下的界面接触热阻高效测试装置及方法 |
Also Published As
Publication number | Publication date |
---|---|
CN101929970B (zh) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101929970B (zh) | 接触热阻测试方法 | |
CN101929969B (zh) | 带有冷却装置的接触热阻测试设备 | |
CN101907590B (zh) | 一种接触热阻测试设备 | |
CN101915780B (zh) | 应用于高温高应力接触热阻测试的测试设备 | |
CN102012382B (zh) | 真空绝热板导热系数快速测试装置及其方法 | |
CN108007809B (zh) | 一种快速升温宽量程热重分析仪 | |
CN108007964A (zh) | 一种接触热阻测试装置及测试方法 | |
JP4866419B2 (ja) | 反応器のファウリングを測定し、そして検査する方法と装置 | |
CN103983660B (zh) | 一种室内岩样导热系数测试装置 | |
CN1877313B (zh) | 一种测量固体界面接触换热系数的方法和装置 | |
CN101915781B (zh) | 带有补偿加热装置的接触热阻测试设备 | |
CN110277179A (zh) | 一种板型燃料元件轴向和横向非均匀释热模拟试验装置 | |
CN108445040A (zh) | 一种带有热膨胀修正的接触热阻测试方法 | |
CN105572162A (zh) | 具有补偿加热与隔热保温系统的接触热阻测试设备 | |
CN105628730A (zh) | 具有稳定加热系统的接触热阻测试设备 | |
CN107764855A (zh) | 一种导热系数测量方法及装置 | |
CN205620336U (zh) | 一种基于保护热板法的用于多孔金属材料有效热导率的快速测定装置 | |
CN107831189A (zh) | 一种多功能淬火检测装置 | |
CN105606643A (zh) | 一种热电性能测量样品台及热电性能测量装置 | |
CN108195879A (zh) | 瞬态法测量材料导热系数及热扩散系数的方法 | |
CN203849193U (zh) | 一种室内岩样导热系数测试装置 | |
CN110618163A (zh) | 适用于热氧化结焦、及其油复合体导热系数的测量系统 | |
CN102192922A (zh) | 高温材料导热系数测量装置 | |
WO2021159696A1 (zh) | 缩尺天然气水合物藏物性表征装置及方法 | |
CN108426914A (zh) | 一种导热系数及比热容的测定仪器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120516 Termination date: 20120713 |