CN101918832A - 鉴定安全的nmda受体拮抗剂的方法 - Google Patents

鉴定安全的nmda受体拮抗剂的方法 Download PDF

Info

Publication number
CN101918832A
CN101918832A CN2008801240927A CN200880124092A CN101918832A CN 101918832 A CN101918832 A CN 101918832A CN 2008801240927 A CN2008801240927 A CN 2008801240927A CN 200880124092 A CN200880124092 A CN 200880124092A CN 101918832 A CN101918832 A CN 101918832A
Authority
CN
China
Prior art keywords
compound
usefulness
pain
cell
test
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN2008801240927A
Other languages
English (en)
Inventor
雷蒙德·J·丁格尔丹
斯蒂芬·F·特雷纳利斯
D·C·廖塔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Emory University
Original Assignee
Emory University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emory University filed Critical Emory University
Publication of CN101918832A publication Critical patent/CN101918832A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/5005Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
    • G01N33/5008Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
    • G01N33/502Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing non-proliferative effects
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/04Centrally acting analgesics, e.g. opioids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/08Antiepileptics; Anticonvulsants
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/14Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
    • A61P25/16Anti-Parkinson drugs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2333/00Assays involving biological materials from specific organisms or of a specific nature
    • G01N2333/435Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
    • G01N2333/705Assays involving receptors, cell surface antigens or cell surface determinants
    • G01N2333/70571Assays involving receptors, cell surface antigens or cell surface determinants for neuromediators, e.g. serotonin receptor, dopamine receptor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2835Movement disorders, e.g. Parkinson, Huntington, Tourette
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2842Pain, e.g. neuropathic pain, psychogenic pain
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2857Seizure disorders; Epilepsy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/28Neurological disorders
    • G01N2800/2871Cerebrovascular disorders, e.g. stroke, cerebral infarct, cerebral haemorrhage, transient ischemic event

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Neurology (AREA)
  • Immunology (AREA)
  • Urology & Nephrology (AREA)
  • Neurosurgery (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Pain & Pain Management (AREA)
  • Biochemistry (AREA)
  • Analytical Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Vascular Medicine (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Psychology (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

本发明提供了鉴定用于治疗或预防降低受侵袭组织区pH的功能障碍的化合物的方法,该方法包括评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的pH下相比该化合物的效能差异,或效能增强。效能增强的评估可包括测量在生理性pH下和功能障碍诱发的pH下化合物的IC50(“效能增强”)直至随着新试验的加入效能增强的95%置信区间不改变15%以上,其中所述测量重复至少5次。该方法可用于选择安全的NMDA受体拮抗剂以治疗或预防降低受侵袭组织区pH的人类功能障碍。此类功能障碍包括,但不限于,神经性疼痛、缺血、帕金森病、癫痫和创伤性脑损伤。

Description

鉴定安全的NMDA受体拮抗剂的方法
相关申请的交叉引用
本申请要求于2007年11月6日申请的题目为“Methods of Identifying Safe NMDAR Antagonists(鉴定安全的NMDAR拮抗剂的方法)”的美国临时申请60/985,922和也于2007年11月6日申请的题目为“Methods of Identifying Safe NMDAR Antagonists to Treat Neruopathic Pain(鉴定安全的NMDAR拮抗剂以治疗神经性疼痛的方法)”的美国临时申请60/985,924的优先权,两件申请的全部公开内容通过引用合并于此。
技术领域
本发明属于用于选择安全的和有效的pH依赖性N-甲基D-天冬氨酸受体拮抗剂的改良方法的领域,所述受体拮抗剂在pH降低事件之前、之中或之后被用作最小化或预防组织损害的手段。
背景技术
神经细胞或神经元,将信号从环境传递至中枢神经系统(CNS),CNS的不同区之间,并且从CNS返回至其他器官(即,末梢)。此信号传递主要由称为神经递质的小分子介导。通常,神经递质可分类为兴奋性或抑制性。兴奋性神经递质增加信号接收(即,突触后)神经元的活性(例如,放电速率),而抑制性神经递质则减少其活性。神经元在其识别、整合和传递由神经递质传输的信号的能力方面有所不同。例如,一些神经元持续地以特定的速率放电,并且由此可响应于环境改变而兴奋或抑制。其他神经元在缺少外界刺激时正常地处于静息状态。因此,其活动的任何改变必需以兴奋的形式发生。结果,神经元的兴奋在控制大脑功能方面具有至关重要的作用。在支配正常大脑功能的众多分子中,谷氨酸盐(也称为谷氨酸)是最重要的分子之一。关于其功能的研究已经在理解大脑如何工作方面取得了显著的进展。仅在过去二十年中才认识到谷氨酸作为重要的信号传导分子的重要性。
谷氨酸是一种氨基酸。谷氨酸,与其他氨基酸一样,以相对高的浓度广泛地存在于大脑中。因此,研究者最初认为谷氨酸主要是与神经元信号传递无关的许多细胞反应的中间代谢产物,并且因此不将其在神经元中的存在解释为作为神经递质的潜在地位的证据。首次指出谷氨酸在大脑中的兴奋性功能出现在二十世纪五十年代,然而,这些发现最初没有被理会,因为谷氨酸应用于神经元几乎在被检查的每个脑区均引起了兴奋反应,表明该兴奋不是特异性反应。后来科学家才认识到观察到的谷氨酸的效应实际上是有效的,因为这些效应可被归结于在CNS中存在的兴奋性受体的激活。在二十世纪七十年代和八十年代中,研究人员鉴定了特异性的谷氨酸受体,即,神经元表面上的蛋白质,这些蛋白质特异性地结合由其他神经元分泌的谷氨酸,并由此启动导致突触后神经元兴奋的事件。这些谷氨酸受体的鉴定强调了谷氨酸作为兴奋性神经递质的重要性。
在过去10年中,我们对谷氨酸能突触的了解已经得到了极大的进步,主要是通过将分子生物学技术应用于谷氨酸受体和转运体的研究。现在知道有三个家族的具有固有的阳离子可通透通道的亲离子受体,N-甲基-D-天冬氨酸(NMDA),α-氨基-3-羟基-5-甲基-4-异噁唑丙酸(AMPA)和红藻氨酸受体(kainate receptors)。还有三组促代谢型G蛋白偶联的谷氨酸受体(mGluR),它们通过作用于膜离子通道和诸如二酰甘油和cAMP的第二信使的G蛋白亚单位来改变神经元和神经胶质细胞的兴奋性。另外,在大脑中还有两种神经胶质细胞谷氨酸转运体和三种神经元转运体。
谷氨酸对于正常的大脑功能是必不可少的。谷氨酸在认知、运动功能、突触可塑性、学习和记忆的控制中具有主要的作用。高水平的内源性谷氨酸,通过其对NMDA、AMPA或mGluR1受体的过度激活,可促进脑损害。与过量谷氨酸或兴奋性中毒相关的脑损害的实例见于癫痫持续状态、脑缺血和创伤性脑损伤后。兴奋性中毒(例如,由谷氨酸受体的过度激活引起的毒性)也促进了如帕金森病、阿尔茨海默病、肌萎缩侧索硬化和亨廷顿舞蹈症的功能障碍中的慢性神经退行性变。在脑缺血和创伤性脑损伤的动物模型中,NMDA和AMPA受体拮抗剂避免了急性脑损伤和迟发性行为缺陷。可对作用于谷氨酸能传递的药物发生反应的其他临床病症包括癫痫、遗忘症、焦虑症、痛觉过敏和精神病(Meldrum BS.J Nutr.2000 Apr;130(4S Suppl):1007S-15S)。
NMDA受体拮抗剂
谷氨酸门控离子通道的NMDA亚型介导中枢神经系统中神经元之间的兴奋性突触传递(Dingledine等人,(1999),Pharmacological Reviews 51:7-61)。NMDA受体由NR1、NR2(A,B,C和D)、和NR3(A和B)亚单位组成,它们决定了天然NMDA受体的功能特性。NR1亚蛋白单独表达不产生功能受体;需要一种或多种NR2亚单位的共同表达来形成功能性通道。除了谷氨酸以外,NMDA受体需要协同激动剂(co-agonist)甘氨酸结合,从而使受体发挥功能。在NR1亚单位上发现有甘氨酸结合位点,而在NR2亚单位上发现有谷氨酸结合位点。NR3亚单位也结合甘氨酸。NR2B亚单位也具有精胺样聚胺的结合位点,精胺样聚胺是调节NMDA受体的功能的调控分子。在静息膜电位下,NMDA受体主要是无活性的。这是由镁离子电压依从性地封闭通道孔,阻止了通过该孔的离子流而引起的。去极化解除了通道的封闭并允许激活的NMDA受体携带离子电流跨越突触后膜。NMDA受体对钙离子以及其他离子是可通透的。NMDA受体受许多内源性和外源性化合物的调控。同样,钠、钾和钙离子不仅通过NMDA受体通道,而且还调节NMDA受体的活性。锌通过含NR2A的受体以非竞争性的、高亲和性和非电压依从性的方式阻断NMDA流。还已证明聚胺不能直接地激活NMDA受体,而是发挥增强或抑制谷氨酸介导反应的作用。
卒中和脑创伤的动物模型证实从受侵袭的神经元释放的谷氨酸可过度刺激NMDA受体,其再导致神经元死亡。因此,阻断NMDA受体的化合物已经被考虑为用于治疗卒中或头部损伤的候选物。近年来动物研究已经确认NMDA受体作为在卒中、脑和脊髓创伤以及涉及脑缺血的相关环境中用于神经保护的靶标。NMDA受体阻断剂在卒中和创伤性脑损伤的试验模型中有效地限制了损害脑组织的体积(Choi,D.(1998),Mount Sinai J Med 65:133-138;Dirnagle等人,(1999)Tr.Neurosci.22:391-397;Obrenovitch,T.P.和Urenjak,J.(1997)J Neurotrauma 14:677)。
在卒中的早期临床试验中已经测试了许多NMDA受体拮抗剂。卒中是在美国导致死亡的第三大病因并且是成人残疾的最常见病因。当脑血管关闭,阻碍了至一部分大脑的血流时发生缺血性卒中。目前仅有的被批准的卒中疗法,组织型纤溶酶原激活物(″TPA″),是促进血管内血栓分解的一种溶栓剂。已经对神经保护剂产生了与溶栓治疗一样多的兴趣(http://www.emedicine.com/neuro/topic488.htm,Lutsep & Clark″Neuroprotective Agents in Stroke″,2004年4月30日),然而,其还未被批准用于人类治疗。
最常研究的急性卒中神经保护剂阻断N-甲基-D-天冬氨酸(NMDA)受体。右啡烷,一种NMDA通道阻断剂和一种镇咳剂的结构类似物,是在人卒中患者中研究的首批NMDA拮抗剂之一。不幸的是,右啡烷导致幻觉和躁动以及低血压,限制了其应用(Afters等人,Stroke(1995)26:254-258)。塞福太(Selfotel),一种竞争性NMDA拮抗剂,显示了在治疗患者内的死亡率高于安慰剂治疗组的趋势,并且因此,早早地就停止了临床试验。另一NMDA受体拮抗剂,盐酸阿替加奈(Cerestat)的临床试验也因为关于效益-风险比的问题而终止了。在避免这些不良反应的尝试中,开发了作用于受体的甘氨酸位点的间接NMDA受体拮抗剂。这些药剂阻止甘氨酸结合,其再阻止谷氨酸激活该受体。早期临床研究表明在这些甘氨酸位点NMDA拮抗剂中较少地发生拟精神病副作用。一项采用药剂GV150526的大型1367名患者的功效临床试验在2000年完成。尽管据报道该药物是安全的并且是耐受良好的,但在3个月的观察指标的任一项中都没有观察到改善(http://www.emedicine.com/neuro/topic488.htm,Lutsep & Clark ″Neuroprotective Agents in Stroke″,2004年4月30日)。
癫痫一直被认为是谷氨酸受体拮抗剂的潜在治疗靶标。实际上,普通的抗惊厥剂丙戊酸盐以治疗性浓度就可部分地通过阻断AMP A受体而充当抗惊厥剂。NMDA受体拮抗剂已知是癫痫的许多试验模型中的抗惊厥剂(Bradford(1995)Progress in Neurobiology 47:477-511;McNamara,J.O.(2001)Drugs effective in the therapy of the epilepsies(有效治疗癫痫的药物)。见Goodman & Gliman′s:The pharmacological basis of therapeutics(治疗学的药理学基础)[J.G.Hardman和L.E.Limbird编辑]McGraw Hill,New York)。
NMDA受体拮抗剂在慢性疼痛的治疗中可能是有益的。慢性疼痛,诸如由于周围或中枢神经的损伤而引起的疼痛,常常证明是非常难以治疗的,甚至采用阿片类物质(opioids)也是如此。使用氯胺酮和金刚烷胺治疗慢性疼痛已证明是有益的,并且相信氯胺酮和金刚烷胺的镇痛作用是通过阻断NMDA受体介导的。几个病例报道已经指出金刚烷胺或氯胺酮的全身给药大大地减小了创伤诱发的神经性疼痛的强度。小规模双盲、随机化临床试验证实金刚烷胺可在癌症患者中显著地减少神经性疼痛(Pud等人,(1998),Pain 75:349-354),并且氯胺酮可在患有周围神经损伤(Felsby等人,(1996),Pain 64:283-291)、周围血管疾病(Perrson等人(1998),Acta Anaesthesiol Scand 42:750-758)的患者或肾脏供体(Stubhaug等人,(1997),Acta Anaesthesiol Scand 41:1124-1132)中减少疼痛。由反复针刺产生的“发条拧紧样疼痛(Wind-up pain)”也被大幅度地减少。这些发现表明NMDA受体拮抗剂的施用可防止由伤害性传入所引起的中枢敏化。
NMDA受体拮抗剂可有利于帕金森病的治疗(Blandini和Greenamyre(1998),Fundam Clin Pharmacol 12:4-12)。抗震颤麻痹药物,金刚烷胺,是一种NMDA受体通道阻断剂(Blanpied等人,(1997),J Neurophys 77:309-323)。由于功效有限,金刚烷胺很少单独使用。然而,小规模临床试验证明金刚烷胺的价值在于与L-DOPA的添加治疗。在这些患者中金刚烷胺将运动失调的严重性减少60%,而不减少L-DOPA本身的抗震颤麻痹作用(Verhagen Metman等人,(1998),Neurology 50:1323-1326)。同样,另一种NMDA受体拮抗剂,CP-101,606,在猴模型中有可能通过L-DOPA缓解帕金森病的症状(Steece-Collier等人,(2000)Exper.Neurol,163:239-243)。
NMDA受体拮抗剂另外可能有利于脑癌的治疗。快速生长的脑神经胶质瘤可通过分泌谷氨酸并过度激活NMDA受体而杀死邻近的神经元,使得即将死亡的神经元为生长的肿瘤腾出空间,并且可释放刺激肿瘤生长的细胞组分。研究显示NMDA受体拮抗剂可在体内以及一些体外模型中降低肿瘤生长的速度。(Takano,T.等人,(2001),Nature Medicine 7:1010-1015;Rothstein,J.D.和Bren,H.(2001)Nature Medicine 7:994-995;Rzeski,w.等人,(2001),Proc.Nat′l Acad.Sci98:6372)。
尽管NMDA受体拮抗剂可能用于治疗许多种非常具有挑战性的疾病,但目前剂量限制性副作用迄今已经阻碍了NMDA受体拮抗剂对这些病症的临床应用。最早的三代NMDA受体拮抗剂(通道阻断剂,谷氨酸或甘氨酸激动剂位点的竞争性阻断剂,和非竞争性变构拮抗剂)由于毒性副作用而已经证明不能临床应用,所述毒副作用诸如精神病症状和心血管作用。特别地,心血管副作用(低血压和高血压)在许多小规模的人体研究中已经成为最突出的和剂量限制性的。另外,NMDA拮抗剂的施用还可引起对记忆和注意力的不合乎需要的作用。此外,诸如氯胺酮的NMDA受体拮抗剂也可在既往有精神分裂症状的人中产生精神病状态(Krystal等人,(1994),Arch Gen Psychiatry 51:199-214)。另外,共济失调、认知缺陷、运动功能损害、躁动、意识错乱、眩晕和低体温所有都由NMDA拮抗剂的施用引起。因此,尽管谷氨酸拮抗剂具有治疗许多严重疾病的巨大潜力,但副作用的严重性导致许多人放弃了可开发耐受良好的NMDA受体拮抗剂的希望(Hoyte L.等人,(2004)″The Rise and Fall of NMDA Antagonists for Ischemic Stroke(NMDA拮抗剂用于缺血性卒中的兴衰)Current Molecular Medicine″4(2):131-136;Muir,K.W.和Lees,K.R.(1995)Stroke 26:503-513;Herrling,P.L.编辑,(1997)″Excitatory amino acid clinical results with antagonists(采用拮抗剂的兴奋性氨基酸临床结果)″Academic Press;Parsons等人,(1998)Drug News Perspective II:523 569)。
pH敏感性NMDA受体
在二十世纪八十年代后期,发现了NMDA受体的新特性,并且这些特性最近被利用来开发新型的NMDA拮抗剂。NMDA受体最普遍的亚型中的两种具有独特的特性,即在生理pH下通常被质子抑制约50%(Traynelis,S.F.和Cull-Candy,S.G.(1990)Nature 345:347)。质子对NMDA受体的抑制作用受NR2B亚单位和NR2A亚单位、以及NR1亚单位中的选择性外显子剪接的控制(Traynelis等人,(1998),JNeurosci 18:6163-6175)。
在哺乳动物脑中细胞外pH是高度动态的,并且影响许多生化过程和蛋白质的功能,包括谷氨酸受体功能。由于至少两种原因,NMDA受体的pH敏感性已经得到了越来越多的关注。首先,pH 7.4为质子抑制作用的IC50值使受体在生理pH下处于紧张性抑制(tonic inhibition)状态。其次,在突触传递、谷氨酸受体激活、谷氨酸受体摄取期间,以及缺血和癫痫发作期间CNS中的pH变化已经被广泛地报道(Siesjo,BK(1985),Progr Brain Res 63:121-154;Chesler,M(1990),Prog Neurobiol 34:401-427;Chesler和Kaila(1992),Trends Neurosci 15:396-402;Amato等人,(1994),J Neurophysiol 72:1686-1696)。与后面这些病理情况相关的酸化作用可抑制NMDA受体,其提供负反馈,使其对神经毒性(Kaku等人,(1993),Science 260:1516-1518;Munir和McGonigle(1995),J Neurosci15:7847-7860;Vornov等人,(1996),J Neurochem 67:2379-2389;Gray等人,(1997),J Neurosurg Anesthesiol 9:180-187;但参见O′Donnell和Bickler(1994),Stroke25:171-177;由Tombaugh和Sapolsky综述(1993),J Neurochem 61:793-803)和维持癫痫发作(Balestrino和Somjen(1988),J Physiol(Lond)396:247-266;Velisek等人,(1994),Exp Brain Res 101:44-52)的促进作用最小化。这些反馈抑制作用还可将NMDA受体激活对缺血细胞死亡的促进作用延缓至某时间点,在该时间点在谷氨酸从间质间隙被去除之前pH梯度已经恢复。谷氨酸摄取的pH敏感性与该后一种可能性相一致(Billups和Attwell(1996),Nature(Lond)379:171-173),此可增加NMDA受体拮抗剂用于,例如卒中的损伤后治疗的机会(Tombaugh和Sapolsky(1993),J Neurochem 61:793-803)。
某些疾病导致pH的大幅下降。例如,在卒中中,短暂性缺血导致在梗死的核心区域中pH下降至6.4-6.5,在该核心的周围区域中有中等程度的pH下降。半影区围绕核心并向外延伸,其遭受大量的神经元损失。此区中的pH下降至pH 6.9左右。诱发的pH下降在过量谷氨酸的存在时放大,并且在低血糖的状况下减弱(见,例如,Mutch & Hansen(1984)J Cereb Blood Flow Metab 4:17-27;Smith等人,(1986)J Cereb Blood Flow Metab 6:574-583;Nedergaard等人,(1991)Am J Physiol 260(Pt3):R581-588;Katsura等人,(1992a)Euro J Neursci 4:166-176;以及Katsura & Siesjo(1998)″Acid base metabolism in ischemia″in pH and Brain function(pH和脑功能章节中的“缺血中的酸碱代谢”)(Kaila & Ransom编辑)Wiley-Liss,New York)。
除了缺血以外,易于用NMDA拮抗剂治疗的其中在正常和异常状况下pH改变的情况有许多其他的实例。通常,由于质子的调节以及代谢物的主动和被动运动,组织细胞外pH典型地比脑脊液更为酸性。已知细胞外pH中发生动态活动依赖性多相酸碱变化已经有几乎二十年了。已经在大量标本和脑区中描述有这些变化。它们涉及多种分子机制,包括代谢改变、乳酸分泌、通过阴离子通道的碳酸氢盐外流、Na+/H+和Ca2+/H+交换、和从酸化小泡中的质子释放。它们依赖于细胞外缓冲系统,在哺乳动物脑中该缓冲系统主要依靠碳酸氢盐。因此,观察到的pH变化的大小经常取决于CNS组织迅速地互换碳酸氢盐-CO2的能力。因此执行此功能的酶(碳酸酐酶)在设定可达到的pH变化水平时是有帮助的。
神经性疼痛与脊髓中的pH变化有关。例如,对从大鼠幼崽中分离的脊髓单次电刺激产生0.05pH单位的碱移,并且在10Hz刺激后产生0.1pH单位的碱移。在停止刺激后发生酸化作用,并且动物越年长,此酸化作用越大(Jendelova &Sykova(1991)Glia 4:56-63)。另外,30-40Hz刺激青蛙背根在体内产生短暂的细胞外酸化,在下段背角中达到0.25pH单位减少的最大升限。细胞外pH变化随着刺激强度和频率的增加而增加(Chvatal等人,(1988)Physiol Bohemoslov 37:203-212)。此外,在成年大鼠脊髓中高频率(10-100Hz)神经刺激在体内产生细胞外pH的三相碱-酸-碱移(Sykova等人,(1992)Can J Physiol Pharmacol 70:增刊S301-309)。另外,已经显示施加于大鼠后爪的急性伤害性刺激(夹、压、热)在体内下段背角(III-VII层)中产生短暂的0.01-0.05pH单位的酸化。周围神经化学或热损伤产生延长的2小时的0.05-0.1pH单位的间质pH下降。高频率神经刺激产生pH碱移,紧接着是主要的0.2pH单位酸移(Sykova & Svoboda(1990)Brain Res 512:181-189)。因此,疼痛纤维的放电增加可导致脊髓背角的pH下降(酸化)。此酸化可导致该区中pH依赖性阻断剂的功效增加,使其能用于治疗慢性神经损伤或慢性疼痛综合征。
丘脑底神经元(Subthalamic neuron)在帕金森病中是活动过度的,并且这样会导致较低的局部pH。这样较低的pH将增加pH敏感性拮抗剂在该区中的功效。在脑区中神经元电活动和细胞外pH之间有相关性,电活动导致酸化。脑片的高频刺激得到初步的酸化,紧接着是碱化,然后是缓慢的酸化(见,例如,Chesler(1990)Prog Neurobiol 34:401-427,Chesler & Kaila(1992)Tr Neurosci 15:396-402,和Kaila & Chesler(1998)″Activity evoked changes in extracellular pH″in pH and Brain function(pH和脑功能章节中的“电活动诱发细胞外pH变化”)(Kaila和Ransom编辑).Wiley-Liss,New York)。
酸化还发生在癫痫发作期间。NMDA拮抗剂是抗惊厥剂,并且因此癫痫代表了这样一种靶标,其中pH敏感性NMDA拮抗剂可有效地充当抗惊厥剂,同时在癫痫发作的空间和时间范围之外保持不活动状态。大量标本中的脑电癫痫发作变化(Electrographic seizures)已经显示导致了细胞外pH的变化。例如,在电或化学诱发的癫痫发作期间,在猫齿状突或大鼠海马CA1或海马齿中可出现直至0.2-0.36的pH下降。这是一个被广泛公认的发现,并在许多标本中被复制(Siesjo等人,(1985)J Cereb Blood Flow Metab 5:47-57;Balestrino & Somjen(1988)J Physiol 396:247-266;以及Xiong & Stringer(2000)J Neurophysiol 83:3519-3524)。
另外,其他类型的脑损伤可导致酸化。“扩散性抑制”是用来描述在脑组织经受多次创伤性损伤后发生的无脑电活动(electrical inactivity)的缓慢移动波的术语。扩散性抑制可发生在脑震荡或偏头痛期间。随着扩散性抑制而发生酸性pH变化。随着通过例如,通气过度,总二氧化碳含量减少(低碳酸血症)可发生全身性碱中毒。随着在呼吸性窘迫或损害气体交换或肺功能的病症期间血液二氧化碳增加(高碳酸血症)可发生全身性酸中毒。糖尿病酮症酸中毒和乳酸性酸中毒代表了糖尿病最严重的急性并发症中的三种,并且可导致脑酸化。此外,在每1000名足月产儿中25名发生分娩期间的胎儿窒息。其涉及缺氧和脑损害,类似但不同于缺血。
直至1995年,还不了解NMDA受体的质子敏感性是否可被利用作为受体的小分子调控的靶标以开发治疗剂。Traynelis等人(1995 Science 268:873)首次报道小分子精胺可通过解除质子抑制而调节NMDA受体功能。精胺,一种聚胺,将质子感受器的pKa迁移至酸值,减少了生理性pH下的紧张性抑制程度,出现功能的增强(Traynelis等人,(1995),Science 268:873-876;Kumamoto,E(1996),Magnes Res 9(4):317-327)。
在1998年,确定苯乙醇胺NMDA拮抗剂的作用机制涉及质子感受器。艾芬地尔(ifenprodil)和CP-101,606增加受体对质子的敏感性,由此增强质子抑制。通过将用于NMDA受体的质子阻滞的pKa迁移至较为碱性的值,艾芬地尔结合导致在生理性pH下较大部分的受体被质子化,并且由此被抑制。另外,当在大鼠大脑皮质的原代培养物中的NMDA诱发的兴奋性中毒体外模型中检测时,发现艾芬地尔在较低pH(6.5)下比较高pH(7.5)下更为有效。作者推测可生成背景依赖性阻断剂(context-dependent blocker)用于治疗卒中,其在生理性pH下是无活性的,但在缺血期间发生的较低pH值下是有活性的(Mott等人,1998 Nature Neuroscience 1:659)。
艾芬地尔在局灶性脑缺血的动物模型中具有神经保护作用(Gotti等人,(1988),J Pharmacol Exp Ther 247:1211-1221;Dogan等人,(1997),J Neurosurg87(6):921-926)。艾芬地尔已经显示在大脑中动脉闭塞后的哺乳动物中具有神经保护作用。Dogan等人报道在大鼠中梗死体积减少22%,而Gotti等人报道在大鼠中在测试的最高剂量下梗死体积减少42%。Gotti等人还报道SL 82.0715,一种艾芬地尔衍生物,在猫和大鼠中在测试的最高剂量下产生的梗死体积减少36-48%。不幸的是,艾芬地尔及其几种类似物,包括依利罗地(eliprodil)和氟哌啶醇(haloperidol)(Lynch和Gallagher(1996),J Pharmacol Exp Ther 279:154-161;Brimecombe等人,(1998),J Pharmacol Exp Ther 286(2):627-634),除了NMDA受体以外还阻断某些血清素受体和钙通道,限制了它们的临床应用(Fletcher等人,(1995),Br J Pharmacol 116(7):2791-2800;McCool和Lovinger(1995),Neuropharmacology 34:621-629;Barann等人,(1998),Naunyn Schmiedebergs Arch Pharmacol 358:145-152)。另外,依利罗地,一种艾芬地尔类似物,通过抑制IKr而延长心脏复极化(Lengyel等人,(2004)Br J Pharmacol.Aug 9[Epub ahead of print(印刷前的电子版)]),并且艾芬地尔和某些类似物还可抑制钙通道(Biton等人,(1994),Eur J Pharmacol 257:297-301;Biton等人,(1995),Eur J Pharmacol294:91-100;Bath等人,(1996),Eur J Pharmacol 299:103-112)。艾芬地尔的几种更有选择性的衍生物正在被考虑用于临床开发,包括CPl01,606(Menniti等人,(1997),Eur J Pharmacol 331:117-126)、Ro 25-6981(Fischer等人,(1997),J Pharmacol Exp Ther 283:1285-1292)和Ro 8-4304(Kew等人,(1998),Br J Pharmacol 123:463-472)。
除了这些变构调节剂以外,其他NMDA拮抗剂已经显示在局灶性缺血的动物模型中产生神经保护作用(Gill等人,(1994)Cerebrovascular and Brain Metabolism Reviews 6:225-256)。这些NMDA拮抗剂分为三种功能类型:谷氨酸结合位点的竞争性阻断剂,甘氨酸结合位点的竞争性阻断剂和通道阻断剂,它们在人体中产生毒性副作用或显示有限的功效。
(i)谷氨酸位点的竞争性NMDA拮抗剂,诸如,塞福太(selfotel)、D-CPPene(SDZ EAA 494)和AR-R15896AR(ARL 15896AR),引起毒副作用包括,躁动、幻觉、意识错乱和木僵(Davis等人,(2000),Stroke 31(2):347-354;Diener等人,(2002),J Neurol 249(5):561-568);偏执和谵妄(Grotta等人,(1995),J Intern Med237:89-94);拟精神病样症状(Loscher等人,(1998),Neurosci Lett 240(1):33-36);治疗比差(Dawson等人,(2001),Brain Res 892(2):344-350);苯丙胺样刻板行为(Potschka等人,(1999),Eur J Pharmacol 374(2):175-187)。
(ii)甘氨酸位点拮抗剂,诸如HA-966、L-701,324、d-环丝氨酸、CGP-40116和ACEA 1021产生毒副作用,包括明显的记忆障碍和运动功能障碍(Wlaz,P(1998),Brain Res Bull 46(6):535-540)。
(iii)NMDA受体通道阻断剂,包括MK-801和氯胺酮,可产生毒副作用,诸如精神病样(Hoffman,DC(1992),J Neural Transm Gen Sect 89:1-10);认知缺陷(自由回忆、再认记忆和注意力的减退;Malhotra等人,(1996),Neuropsychopharmacology 14:301-307);精神分裂症样症状(Krystal等人,(1994),Arch Gen Psychiatry 51:199-214;Lahti等人,(2001),Neuropsychopharmacology25:455-467)。
埃默里大学(Emory University)的WO 02/072542描述了一类pH-依赖性NMDA受体拮抗剂,其在体外使用卵细胞测定法测试并在癫痫的试验模型中显示pH敏感性。然而,使用爪蟾卵母细胞的体外数据在对所选择的化合物测量的IC50方面变化很大,限制了最佳或先导化合物的准确选择。另外,由于这些测定限于基于细胞的筛选,因此它们缺少这样的能力,即,评估在体内受侵袭缺血组织中是否存在充分大的pH下降,从而观察由pH依赖性拮抗剂所引起的实质作用。此外,因为缺血是一种独特的具有核心和周围损害的基于组织的体内疾病,人们不知道在核心外离多远pH依赖性NMDA拮抗剂将是有效的,假定pH下降从梗死的核心放射状地减小。最后,假定NMDA受体拮抗剂已知诱导精神病和其他改变意识的副作用,不知道缺血性pH下降所导致的增强的神经保护活性是否足以观察到pH敏感性NMDA受体拮抗剂的治标效应(palliative effect)和避免与NMDA受体相关的副作用两者。
埃默里大学(Emory University)的WO 06/023957描述了鉴定能用于治疗缺血性损伤的化合物的方法,所述方法通过:(i)通过重复效能增强试验直至随着新试验的加入95%置信区间不改变10%以上,来评估在表达NR1/NR2A NMDA受体和/或NR1/NR2B NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下该化合物相比的效能增强;(ii)在短暂性局灶性缺血的动物模型中测试该化合物并通过重复该试验直至随着新试验的加入95%置信区间不改变10%以上来测量该化合物对梗死体积的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)梗死体积减少至少30%的化合物。
总之,为了选择可在人体中被耐受的适当的NMDA受体拮抗剂,药物必须不显著地影响谷氨酸神经传递的正常功能,仍能在病理状况期间提供对谷氨酸系统的有效阻滞,从而避免毒副作用。预测证明在体外在较低pH下与NMDA受体具有较高亲和力的pH依赖性选择性NMDA拮抗剂是否也将在体内显示充足的反应以提供商品化药物一直是具有挑战性的。尽管已经开发了pH依赖性NMDA受体拮抗剂,但这些药物的适当特性仍未被确定以准确地建立选择用于人体临床应用的药物的成功参数。
因此本发明的一个目的是提供用于选择pH依赖性N-甲基D-天冬氨酸受体拮抗剂的改良方法,所述受体拮抗剂在pH降低事件之前、之中或之后被使用,从而最小化或预防人体中的组织损害。
本发明的具体目的是提供鉴定活性化合物的方法,该化合物能用于治疗或预防神经性疼痛或缺血性损伤。
本发明的进一步方面是提供能用于治疗或预防病理性pH降低事件的化合物、组合物和方法。
发明概述
描述了一种鉴定用于治疗或预防降低受侵袭组织区pH的功能障碍以获得较佳的人体临床效果的改良的NMDA受体拮抗剂的改良方法。具体地,该方法使用表达人NMDA受体的细胞以在体外评估化合物的pH效能增强,即,在生理性pH下与病理性pH下相比化合物的抑制NMDA受体激活的功效差异。与先前已知的技术相比,该方法鉴定具有较好的安全性和有效性的化合物。
本发明人意外地发现与使用表达来自其他哺乳动物的NMDA受体的细胞相比,在表达人NMDA受体的细胞中评估pH效能增强提供了一种用于选择有效和安全的NMDA受体拮抗剂的改良方法。具体地,获自非人NMDA受体诸如大鼠NMDA受体的pH效能增强,不能可靠地预测获自人NMDA受体的pH效能增强。NMDA受体拮抗剂的安全性源自缺少化合物在生理性pH下的功效。因此,理想的化合物是在生理性pH下具有非常低的功效,但在具有较低的pH的病理状况中高度有效的那些化合物。
本文提供的方法可用于选择安全的NMDA受体拮抗剂以治疗或预防使受侵袭组织区内pH降低的人体功能障碍。此类功能障碍包括,但不限于,神经性疼痛、缺血、帕金森病、癫痫和创伤性脑损伤。
在一个实施方案中,提供了一种方法以鉴定能用于治疗或预防使受侵袭组织区内pH降低的功能障碍的化合物,所述方法包括在表达人NMDA受体的细胞中评估在生理性pH下与功能障碍诱发的pH下相比该化合物的效能差异(例如,在生理性pH下的IC50/在功能障碍诱发的低pH下的IC50)。效能增强的评估可包括测量在生理性pH下和功能障碍诱发的pH下化合物的IC50(“效能增强”)直至随着新试验的力入所述效能增强的95%置信区间不改变15%以上,其中所述测量重复至少5次。
在某些实施方案中,该方法进一步包括鉴定在这些细胞中的效能增强为至少5的化合物。在某些实施方案中,该化合物在这些细胞中的效能增强比在表达非人NMDA受体的细胞中测试时相同化合物的效能增强至少多2、或至少多3、或至少多4、或至少多5、或至少多6、或至少多7、或至少多8、或至少多9、或至少多10。在具体的实施方案中,该化合物的效能增强比在表达非人NMDA受体的细胞中测试时相同化合物的效能增强多100以下或多50以下。在具体的实施方案中,非人NMDA受体是大鼠NMDA受体。
在一个非限制性的实施方案中,受侵袭组织选自脑组织、被缺血损害的组织、受疼痛侵袭的组织、尤其是受神经性疼痛侵袭的组织,和受创伤性脑损伤侵袭的组织。
在一个实施方案中,随着新试验的加入95%置信区间不改变10%以上,8%以上,5%以上,4%以上,3%以上或2%以上。
在另一实施方案中,效能增强试验重复5次,至少6次,至少7次,至少8次,至少9次,或至少10次。
在本发明的另一个方面,鉴定能用于治疗或预防受侵袭组织区中的疼痛障碍的化合物的方法包括:(i)评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的pH下相比化合物抑制人NMDA受体时的效能;(ii)在体内测试所述化合物,并测量所述化合物对痛阈的作用;以及(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
在某些实施方案中,效能增强可如下测量:测量在生理性pH下和功能障碍诱发的pH下化合物的IC50(“效能增强”)直至随着新试验的加入所述效能增强的95%置信区间不改变15%以上,其中所述测量重复至少5次。在某些实施方案中,效能增强测量至少12次。在某些其他的实施方案中,测量痛阈直至随着新试验的加入95%置信区间不改变5%以上。在具体的实施方案中,痛阈测量至少12次。
在一个子实施方案中,随着新试验的加入步骤(i)中获得的效能增强的95%置信区间不改变15%以上,10%以上,8%以上,5%以上,4%以上,3%以上或2%以上。
在另一个子实施方案中,步骤(i)的效能增强试验重复5次,至少6次,至少7次,至少8次,至少9次,或至少10次。
痛阈可在疼痛的动物模型中,尤其是在神经性疼痛的动物模型中测量。在一个子实施方案中,随着新试验的加入,步骤(ii)中获得的痛阈的95%置信区间不改变15%以上,10%以上,8%以上,5%以上,4%以上,3%以上或2%以上。在一个具体的子实施方案中,步骤(ii)中获得的95%置信区间不改变5%以上。
在任一项前述实施方案的一个子实施方案中,功能障碍降低受侵袭组织中的pH。在某些实施方案中,降低受侵袭组织区pH的功能障碍是疼痛障碍,并且具体地可以是神经性疼痛。
在一个实施方案中,鉴定能用于治疗或预防神经性疼痛的化合物的方法包括:(i)通过将效能增强试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下相比所述化合物的效能增强;(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过将所述试验重复至少12次并且直至随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
在进一步的实施方案中,该化合物显示根据步骤(i)为至少6、7、8、9、10、15或20的效能增强以及根据步骤(ii)痛阈增加至少2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍。
此外提供了通过施用根据本文所述的过程或方法选择的化合物来减缓与pH下降相关的缺血性或兴奋性毒性级联反应的进展的方法。另外,提供了通过施用根据本文所述的过程或方法选择的化合物来减少与pH下降相关的梗死体积的方法。此外,提供了通过施用根据本文所述的过程或方法选择的化合物来减少与pH下降相关的细胞死亡的方法。还进一步提供了通过施用根据本文所述的过程或方法选择的化合物来减少与pH下降相关的缺血事件所相关的行为缺陷的方法。
在本发明的其他方面中,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗患有缺血性损伤的患者或预防或治疗与缺血性损伤相关的神经元毒性的方法。另外,提供了通过施用根据本文所述的过程或方法选择的化合物来治疗下列疾病或神经学病症的方法,所述疾病或神经学病症包括,但不限于:帕金森病,慢性神经损伤,慢性疼痛综合症,诸如但不限于糖尿病神经病变,缺血,短暂或永久性血管闭塞后的缺血,癫痫发作,“扩散性抑制”,低碳酸血症,高碳酸血症,糖尿病酮症酸中毒,胎儿窒息,心脏搭桥手术后认知缺陷,蛛网膜下腔出血后血管痉挛,脊髓损伤,创伤性脑外伤,癫痫持续状态,癫痫,缺氧,围产期缺氧,脑震荡,偏头痛,低碳酸血症,通气过度,乳酸性酸中毒,分娩期间胎儿窒息,脑神经胶质瘤,和/或视网膜病变。此外,根据本文所述的方法或过程选择的化合物例如,在具有缺血事件易感体质诸如遗传素质的患者中,或在显示血管痉挛的患者中,或在已经经历心脏搭桥手术的患者中,可预防性地应用以防止或避免这些疾病或神经学病症。
附图说明
图1是在C57B1/6小鼠中在短暂性或永久性局灶性缺血事件后,对于NMDA受体拮抗剂的选择和对照治疗,在pH 6.9下与在7.6下相比的体外效能增强相对于组织梗死体积减少的比较图。药物经脑室内应用(ICV;0.5mM 1微升;实心正方形)或通过腹膜内注射(IP,实心圆;NP93-4,30mg/kg;NP93-5,10-30mg/kg;NP93-40,10-30mg/kg;NP93-8,30mg/kg;NP93-31,3mg/kg)给药。误差棒为SEM。药物治疗的动物中的梗死体积直接测量并表示为载体注射的对照小鼠的梗死体积的百分比。空心符号显示如文献中所述通过施用CNS1102(CN,阿替加奈(aptiganel)或Cerestat,Dawson等人,2001)、右美沙芬(dextromethorphan)(DM,Steinberg等人,1995)、右啡烷(dextrorphan)(DX;Steinberg等人,1995)、左美沙芬(levomethorphan)(LM;Steinberg等人,1995)、(S)氯胺酮(KT;Proescholdt等人,2001)、美金刚(memantine)(MM;Culmsee等人,2004)、艾芬地尔(IF,Dawson等人,2001)、CP101,606(CP;Yang等人,2003)、AP7(Swan和Meldrum,1990)、塞福太(CGS19755,Dawson等人,2001)、(R)HA966(HA;Dawson等人,2001)、瑞马西胺(remacemide)(RE,Dawson等人,2001)、氟哌啶醇(O′Neill等人,1998)、7-Cl-犬尿喹啉酸(7-Cl-kynurenic acid)(CK,Wood等人,1992)和MK801的立体异构体(+MK或-MK;Dravid等人)所引起的梗死体积减少。对于除氯胺酮和7-Cl-犬尿喹啉酸以外的所有化合物由梗死体积的比率计算梗死的减少百分比,对于氯胺酮和7-Cl-犬尿喹啉酸,测量神经元密度的减少百分比。对于艾芬地尔和CP101,606的pH增强从文献中确定(Mort等人,1998)。对于除竞争性拮抗剂以外的所有其他化合物,如本文所述计算在pH 6.9下与在pH 7.6下相比抑制含NR1/NR2B的NMDA受体的效能增强,而竞争性拮抗剂在2个试验中进行评价(见下面的表3)。落在灰色阴影区域中的药物是具有较佳的体内安全性和有效性潜力的那些药物。
图2是当测试药物经脑室内应用(ICV;实心正方形)时,所选择的化合物在pH 6.9下与在pH 7.6下相比的体外效能增强相对于组织梗死体积保护作用的比较图。灰色阴影区域表示限定经鉴定的用于较佳的药物性能的标准的边界范围的区域。
图3是当测试药物通过腹膜内注射应用(IP,实心圆)时,所选择的化合物在pH 6.9下与在pH 7.6下相比的体外效能增强相对于组织梗死体积保护作用的比较。灰色阴影区域表示限定经鉴定的用于较佳的药物性能的标准的边界范围的区域。
图4是所选择的化合物在pH 6.9下与在pH 7.6下相比的体外效能增强的比较。灰色阴影区域表示限定经鉴定的用于较佳的药物性能的标准的边界范围的区域。右侧图板显示对NR1/NR2A的比较,左侧图板显示对NR1/NR2B的比较。
图5图示化合物93-31和(+)MK-801对大鼠的自主活动的作用,该行为以在熟悉1小时后的2小时时段期间通过计算机计数的光束中断进行定量。自主活动指数是在试验期间光束中断的总数除以1000。
图6图示在神经性疼痛的动物模型中显示主要的异常性疼痛的损伤爪。载体组中的动物在整个研究持续时间内均显示显著的机械性异常性疼痛。显示的是用载体治疗的动物的损伤爪和正常爪中von Frey阈值的均数±SEM(n=10)。在所有时间点时各爪之间的差异均是显著的(曼-惠特尼检验(Mann-Whitney test))。
图7显示,化合物93-31(经腹腔注射给药)显示对正常爪没有作用。显示的是用经腹腔注射给药的载体、加巴喷丁或30和100mg/kg剂量的化合物93-31治疗的动物的正常爪中von Frey阈值的均数±SEM(n=10-12)。
图8显示,化合物93-97(i.p.)显示对正常爪没有作用。NeurOp 93-97不改变正常爪中的von Frey阈值。显示的是用经腹腔注射给药的载体、加巴喷丁或30和100mg/kg剂量的93-97治疗的动物的正常爪中von Frey阈值的均数±SEM(n=10-12)。
图9图示经腹腔注射给药的化合物93-31(100mg/kg)减轻大鼠脊神经结扎(SNL)模型中的机械性异常性疼痛。用化合物93-31(100mg/kg i.p.)的治疗在给药后30和60min时产生了可观察到的镇痛作用。在研究的任何时间点时,30mg/kg的化合物93-31以及30和100mg/kg的93-97均没有镇痛作用。在本研究中的载体组的统计学分析表明在基线和在60、120和240分钟时间点之间von Frey阈值没有显著差异(弗里德曼双向方差分析(Friedman two-way ANOVA))。
图10显示经腹腔注射给药的化合物93-31(100mg/kg)减轻SNL大鼠中的机械性异常性疼痛。化合物93-31测试化合物的腹腔注射给药(100mg/kg)减少了机械性异常性疼痛。显示的是用经腹腔注射给药的载体、加巴喷丁(参考化合物)或30和100mg/kg剂量的化合物93-31治疗的动物的损伤爪中von Frey阈值的均数±SEM(n=10-12)。事后分析(Post-hoc analysis)(Dunn′s检验(Dunn′s test))显示在30和60分钟时化合物93-31(100mg/kg)和载体组之间显著的两两差异(p<0.01)。加巴喷丁在60、120和240分钟时的作用也是显著的(分别为p<0.001,p<0.01和p<0.01)。
图11是在啮齿类动物脊神经结扎模型中在pH 6.9下与在pH 7.6下相比的体外效能增强相对于痛阈增加倍数的比较。如本文所述对各种化合物测定效能增强。在化合物93-31给药后测量痛阈。对于IF(艾芬地尔,De Vry等人,Eur JPharmacol 491:137-148,2004)、K(氯胺酮,Chaplan等人,JPET 280:829-838 1997)、CP(CP101,606,Boyce等人,Neduropharmacol 38:611-623,1999)、MK(MK801,Chaplan等人,JPET 280:829-838 1997)、D(右啡烷,Chaplan等人,JPET280:829-8381997)、DM(右美沙芬,Chaplan等人,JPET 280:829-838 1997)和M(美金刚,Chaplan等人,JPET 280:829-838 1997)的痛阈值以前有报道。灰色阴影区域表示限定经鉴定的用于较佳的药物性能的标准的边界范围的区域。
详述
本发明提供了一种选择用于治疗或预防降低受侵袭组织区pH的功能障碍以获得较佳的人体临床效果的安全和有效的NMDA受体拮抗剂的改良方法。该方法已经通过使用表达人NMDA受体的细胞从而在体外评估化合物的pH效能增强而实现。本发明人意外地发现对于本文所述的方法,在表达人NMDA受体的细胞中评估pH效能增强是一种选择安全的NMDA受体拮抗剂的改良方法,并且表达其他哺乳动物NMDA受体的细胞不能产生等效的结果。本文提供的方法可用于选择安全的NMDA受体拮抗剂以治疗或预防使受侵袭组织区内pH降低的人体功能障碍,并且在具体实施方案中可用于包括神经性疼痛、缺血、帕金森病、癫痫和创伤性脑损伤的功能障碍。
在一个实施方案中,提供了一种方法以鉴定能用于治疗或预防使受侵袭组织区内pH降低的功能障碍的化合物,所述方法包括在表达人NMDA受体的细胞中评估在生理性pH下与功能障碍诱发的pH下相比该化合物的效能差异(例如,在生理性pH下的IC50/在功能障碍诱发的低pH下的IC50)。效能增强的评估可包括测量在生理性pH下和功能障碍诱发的pH下化合物的IC50(“效能增强”)直至随着新试验的加入所述效能增强的95%置信区间不改变15%以上,其中所述测量重复至少5次。
在一个子实施方案中,随着新试验的加入95%置信区间不改变10%以上,8%以上,5%以上,4%以上,3%以上或2%以上。
在另一子实施方案中,效能增强试验重复5次,至少6次,至少7次,至少8次,至少9次,或至少10次。
在本发明的另一个方面,鉴定能用于治疗或预防受侵袭组织区中的疼痛障碍的化合物的方法包括:(i)评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的pH下相比化合物抑制人NMDA受体时的效能;(ii)在体内测试所述化合物,并测量所述化合物对痛阈的作用;以及(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
在本发明的另一个方面,一种鉴定能用于治疗或预防使受侵袭组织区内pH降低的功能障碍的化合物的方法包括:(i)通过将效能增强试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下相比所述化合物的效能增强;(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过将所述试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来测量所述化合物对痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
在一个子实施方案中,随着新试验的加入步骤(i)中获得的95%置信区间不改变15%,10%以上,8%以上,5%以上,4%以上,3%以上或2%以上。
在另一子实施方案中,步骤(i)的效能增强试验重复5次,至少6次,至少7次,至少8次,至少9次,或至少10次。
在一个子实施方案中,随着新试验的加入步骤(ii)中获得的的95%置信区间不改变15%,10%以上,8%以上,5%以上,4%以上,3%以上或2%以上。在一个具体的子实施方案中,步骤(ii)中获得的95%置信区间不改变5%以上。
在另一子实施方案中,步骤(ii)的效能增强试验重复5次,至少6次,至少7次,至少8次,至少9次,至少10次,至少11次,至少12次,至少13次,至少14次,至少15次,至少16次,至少17次,至少18次,至少19次,或至少20次。在具体的子实施方案中,步骤(ii)的效能增强试验重复至少12次。
在任一项前述实施方案的一个子实施方案中,降低受侵袭组织区pH的功能障碍是神经性疼痛。
在一个实施方案中,一种鉴定能用于治疗或预防神经性疼痛的化合物的方法包括:(i)通过将效能增强试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下相比所述化合物的效能增强;(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过将所述试验重复至少12次并且直至随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
在任一项前述实施方案的一个子实施方案中,细胞可表达人NMDA受体的NR1亚单位和至少一种NR亚单位。在进一步的实施方案中,NR2亚单位可以是NR2B亚单位。在另一个实施方案中,NR2亚单位可以是NR2A亚单位。
在一个子实施方案中,生理性pH为约7.6。在本发明的另一个方面,通过本文所述的方法鉴定的化合物在具有由于病理状况引起的低于正常的pH的脑组织中具有较高的活性。在卒中期间由缺血组织或其他功能障碍产生的酸性环境被利用作为激活本文所述的神经保护剂的开关。以此方式,由于在未受侵袭组织处的药物是活性较低的,因此在该未受侵袭组织中的副作用被最小化。可改变区域pH的病症包括由卒中引起的缺氧、创伤性脑损伤、可在心脏手术期间发生的全心缺血、可在呼吸停止后发生的缺氧、子痫前期、脊髓创伤、癫痫、癫痫持续状态、神经性疼痛、炎性疼痛、慢性疼痛、血管性痴呆或神经胶质瘤。
在一个实施方案中,化合物的IC50值为0.01-10μM、0.01-9μM、0.01-8μM、0.01-7μM、0.01-6μM、0.01-5μM、0.01-4μM、0.01-3μM、0.01-2μM、0.01-1μM、0.05-7μM、0.05-6μM、0.05-5μM、0.05-4μM、0.05-3μM、0.05-2μM、0.05-1μM、0.05-0.5μM、0.1-7μM、0.1-6μM、0.1-5μM、0.1-4μM、0.1-3μM、0.1-2μM、0.1-1μM、0.1-0.5μM、0.1-0.4μM、0.1-0.3μM、或0.1-0.2μM。
在具体的实施方案中,当将生理性pH下的IC50与在患病的pH下的IC50相比时(即,(在生理性pH下的IC50/在降低的pH下的IC50)),化合物显示至少为2、至少为3、至少为4、至少为5、至少为6、至少为7、至少为8、至少为9、至少为10、至少为15或至少为20的效能增强。
在一个实施方案中,该化合物具有的IC50值为在约6-约9的pH下小于10μM。在一个实施方案中,该化合物具有的IC50值为在约6.9的pH下小于10μM。在另一个实施方案中,该化合物具有的IC50值为在约7.6的pH下小于10μM。在一个实施方案中,该化合物具有的IC50值为在生理性pH下小于10μM。在一个实施方案中,该化合物具有的IC50值为在患病的pH下小于10μM。
在一个实施方案中,该化合物在pH 6.9下的IC50值为0.01-10μM、0.01-9μM、0.01-8μM、0.01-7μM、0.01-6μM、0.01-5μM、0.01-4μM、0.01-3μM、0.01-2uM、0.01-1μM、0.05-7μM、0.05-6μM、0.05-5μM、0.05-4μM、0.05-3μM、0.05-2μM、0.05-1μM、0.05-0.5μM、0.1-7μM、0.1-6μM、0.1-5μM、0.1-4μM、0.1-3μM、0.1-2μM、0.1-1μM、0.1-0.5μM、0.1-0.4μM、0.1-0.3μM、或0.1-0.2μM,并且该化合物在pH 7.6下与在pH 6.9下的IC50值的比值大于1、2、3、4、5、6、7、8、9、10、15、20、25、30、40、50、60、70、80、90、或100。
在一个实施方案中,该化合物在pH 6.9下的IC50值为0.01-10μM、0.01-9μM、0.01-8μM、0.01-7μM、0.01-6μM、0.01-5μM、0.01-4μM、0.01-3μM、0.01-2μM、0.01-1μM、0.05-7μM、0.05-6μM、0.05-5μM、0.05-4μM、0.05-3μM、0.05-2μM、0.05-1μM、0.05-0.5μM、0.1-7μM、0.1-6μM、0.1-5μM、0.1-4μM、0.1-3μM、0.1-2μM、0.1-1μM、0.1-0.5μM、0.1-0.4μM、0.1-0.3μM、或0.1-0.2μM,并且该化合物在pH 7.6下与在pH 6.9下的IC50值的比值为1-100、2-100、3-100、4-100、5-100、6-100、7-100、8-100、9-100、10-100、15-100、20-100、25-100、30-100、40-100、50-100、60-100、70-100、80-100、或90-100。
在其他的实施方案中,该化合物在约7.6的pH下的IC50值为0.01-10μM、0.01-9μM、0.01-8μM、0.01-7μM、0.01-6μM、0.01-5μM、0.01-4u,M、0.01-3μM、0.01-2μM、0.01-1μM、0.05-7μM、0.05-6μM、0.05-5μM、0.05-4μM、0.05-3μM、0.05-2μM、0.05-1μM、0.05-0.5μM、0.1-7μM、0.1-6μM、0.1-5μM、0.1-4μM、0.1-3μM、0.1-2μM、0.1-1μM、0.1-0.5μM、0.1-0.4μM、0.1-0.3μM、或0.1-0.2μM。在这些实施方案的某些中,该化合物显示在pH 7.6下与在pH 6.9下的IC50值的比值为1-100、2-100、3-100、4-100、5-100、6-100、7-100、8-100、9-100、10-100、15-100、20-100、25-100、30-100、40-100、50-100、60-100、70-100、80-100、或90-100。在某些其他的实施方案中,该化合物显示的比值为小于10、或小于5、或4、3、2或1。
在另一个实施方案中,提供了一种选择显示如在下面的试验中测定的效能增强至少为5的化合物的方法,在所述试验中,如在表达人NMDA受体的细胞中所检测,通过将在生理性pH下的效能与在“功能障碍诱发的低pH”下的效能相比较(例如,在生理性pH下的IC50/在功能障碍诱发的低pH下的IC50),通过将该效能增强试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来评估该化合物的效能增强。在另一个优选的实施方案中,提供了一种选择下列的化合物的方法,或选择下列的化合物,即通过将该试验重复至少15次直至随着新试验的力入95%置信区间不改变15%以上来测定,显示在神经性疼痛的动物模型中测量的痛阈增加至少2倍的化合物。在另一个具体的实施方案中,“功能障碍诱发的低pH”可以与诸如卒中的缺血性障碍相关。
在一个实施方案中,根据本文所述的过程和方法选择的化合物是选择性NR1/NR2A人NMDA受体和/或NR1/NR2B人NMDA受体拮抗剂。在一个实施方案中,该化合物不是NMDA受体通道阻断剂。
在附加的实施方案中,化合物基本上不显示毒副作用,诸如,例如,运动功能障碍、认知障碍和心脏毒性。另外地或可选地,该化合物具有的治疗指数等于或大于至少2:1。在进一步附加或可选的实施方案中,该化合物与NMDA受体结合的选择性比与任何其他的谷氨酸受体的结合高至少10倍。在一个实施方案中,卵母细胞用来测定效能增强。在另一个实施方案中,大脑中动脉闭塞模型用作例如,诸如小鼠的啮齿类动物的短暂性局灶性缺血动物模型。
在进一步的实施方案中,该化合物显示根据步骤(i)至少为6、7、8、9、10、15或20的效能增强和根据步骤(ii)至少2倍、3倍、4倍、5倍、6倍、7倍、8倍、9倍、10倍的痛阈增加。
此外提供了通过施用根据本文所述的过程或方法选择的化合物来减缓与pH下降相关的缺血性或兴奋性毒性级联反应的进展的方法。另外,提供了通过施用根据本文所述的过程或方法选择的化合物来减少与pH下降相关的梗死体积的方法。此外,提供了通过施用根据本文所述的过程或方法选择的化合物来减少与pH下降相关的细胞死亡的方法。还进一步提供了通过施用根据本文所述的过程或方法选择的化合物来减少与pH下降相关的缺血事件所相关的行为缺陷的方法。
在本发明的其他方面中,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗患有缺血性损伤的患者或预防或治疗与缺血性损伤相关的神经元毒性的方法。另外,提供了通过施用根据本文所述的过程或方法选择的化合物来治疗下列疾病或神经学病症的方法,所述疾病或神经学病症包括,但不限于:帕金森病,慢性神经损伤,慢性疼痛综合症,诸如但不限于糖尿病神经病变,缺血,短暂或永久性血管闭塞后的缺血,癫痫发作,“扩散性抑制”,低碳酸血症,高碳酸血症,糖尿病酮症酸中毒,胎儿窒息,心脏搭桥手术后认知缺陷,蛛网膜下腔出血后血管痉挛,脊髓损伤,创伤性脑外伤,癫痫持续状态,癫痫,缺氧,围产期缺氧,脑震荡,偏头痛,低碳酸血症,通气过度,乳酸性酸中毒,分娩期间胎儿窒息,脑神经胶质瘤,和/或视网膜病变。此外,根据本文所述的方法或过程选择的化合物例如,在具有缺血事件易感体质诸如遗传素质的患者中,或在显示血管痉挛的患者中,或在已经经历心脏搭桥手术的患者中,可预防性地应用以防止或避免这些疾病或神经学病症。
效能增强的评估
术语“卵母细胞”描述的是为卵子发生的最终产物的成熟动物卵子,并且其还是分别形成卵原细胞、初级卵母细胞和次级卵母细胞的前体。
“转染”是指DNA导入至宿主细胞中。在自然情况下细胞不摄取DNA。因此,利用多种技术“窍门”来促进基因转移。对于本领域普通技术人员来说,大量的转染方法是已知的,例如,CaPO4法、基于脂质的方法和电穿孔法。(J.Sambrook,E.Fritsch,T.Maniatis,Molecular Cloning:A Laboratory Manual(分子克隆:实验室指南),Cold Spring Laboratory Press,1989)。
NMDA受体在细胞中的表达
在本发明的主要方面,在表达至少一种人NMDA受体的细胞中测定化合物的效能增强。在一个实施方案中,细胞可内源性地表达人NMDA受体。可内源性地表达NMDA受体的细胞包括,但不限于:干细胞、P19细胞、神经上皮细胞、神经内皮细胞、多巴胺能黑质神经元、星形胶质细胞、大细胞神经内分泌细胞、视上核神经元、小脑神经元、脑干细胞、间脑神经元、中脑神经元、后脑神经元、脊髓运动神经元、脊髓中间神经元、背侧角神经元、皮质神经元、小脑颗粒细胞、海马神经元、隔神经元(septum neuron)、尾状细胞、壳核细胞、纹状体细胞、嗅球细胞、丘脑细胞、CA1区锥体细胞、基底神经节细胞、大鼠视皮层的第1V层神经元、体感皮层神经元、卵母细胞、胎盘细胞和胰腺细胞。
在另一个实施方案中,细胞可被遗传修饰以表达人NMDA受体。在一个具体的实施方案中,卵母细胞可被遗传修饰以表达人NMDA受体。可使用如本领域技术人员已知的任何合适的卵母细胞,但不限于蛙卵母细胞,诸如爪蟾卵母细胞,包括,但不限于光滑爪蟾(Xenopus laevis)、热带爪蟾(Xenopus tropicalis)、Xenopus muelleri、Xenopus wittei、Xenopus gilli、和非洲爪蟾(Xenopus borealis)。在一个实施方案中,卵母细胞可以根据本领域技术人员所知晓的任何技术从动物的卵巢中分离。
在其他的实施方案中,任何合适的细胞类型,包括原代细胞系,可被遗传修饰以表达人NMDA受体,包括,但不限于:中国仓鼠卵巢(CHO)细胞、HEK肾细胞、细菌细胞、大肠杆菌细胞、酵母细胞、神经元细胞、心脏细胞、肺细胞、胃细胞、脾细胞、胰腺细胞、肾细胞、肝细胞、肠细胞、皮肤细胞、毛细胞、下丘脑细胞、垂体细胞、上皮细胞、成纤维细胞、神经细胞、角质形成细胞、造血细胞、黑色素细胞、软骨细胞、淋巴细胞(B和T)、巨噬细胞、单核细胞、单个核细胞、心肌细胞、其他肌肉细胞、卵丘细胞、表皮细胞、内皮细胞、胰岛细胞、血细胞、血前体细胞、骨细胞、骨前体细胞、神经元干细胞、原始干细胞(primordial stem cell)、肝细胞、角质形成细胞、脐静脉内皮细胞、主动脉内皮细胞、微血管内皮细胞、成纤维细胞、肝星形细胞、主动脉平滑肌细胞、心肌细胞、神经元、枯否细胞、平滑肌细胞、许旺细胞和上皮细胞、红细胞、血小板、中性粒细胞、淋巴细胞、单核细胞、嗜酸性粒细胞、嗜碱性粒细胞、脂肪细胞、软骨细胞、胰岛细胞、甲状腺细胞、甲状旁腺细胞、腮腺细胞、肿瘤细胞、神经胶质细胞、星形胶质细胞、红细胞、白细胞、巨噬细胞、上皮细胞、体细胞、垂体细胞、肾上腺细胞、毛细胞、膀胱细胞、肾细胞、视网膜细胞、视杆细胞、视锥细胞、心脏细胞、起搏细胞、脾细胞、抗原呈递细胞、记忆细胞、T细胞、B细胞、浆细胞、肌细胞、卵巢细胞、子宫细胞、前列腺细胞、阴道上皮细胞、精子细胞、睾丸细胞、生殖细胞、卵细胞、莱迪希细胞(leydig cell)、管周细胞、支持细胞(Sertoli cell)、黄体细胞、宫颈细胞、子宫内膜细胞、乳腺细胞、卵泡细胞、粘液细胞、纤毛细胞、非角化上皮细胞、角化上皮细胞、肺细胞、杯状细胞、柱状上皮细胞、鳞状上皮细胞、胚胎干细胞、骨细胞、成骨细胞和破骨细胞。
在另一个实施方案中,细胞可被遗传修饰以表达选择的人NMDA受体亚单位。NMDA受体由NR1、NR2(A,B,C和D)、和NR3(A和B)亚单位组成,它们决定了天然NMDA受体的功能特性。NMDA受体是由NR1与NR2和/或NR3亚单位组成的杂聚蛋白。编码来自人的任意一种NMDA受体亚单位的DNA可用来遗传修饰细胞。表1提供了人NMDA受体亚单位的GenEMBL登录号。
表1
  NMDA受体亚单位  种属:GenEMBL登录号
  NR1  人:X58633
  NR2A  人:U09002
  NR2B  人:U28861a
  NR2D  人:U77783
  NR3A  人:AF416558
例如,mRNA可从cDNA模板合成,然后被注射入细胞中。可选地,编码受体亚单位的cDNA在被插入至细胞中前可被插入至构建体或载体中。可用来使DNA构建体或载体进入至宿主细胞中的技术包括磷酸钙/DNA共沉淀、将DNA微注射入核中、电穿孔、细菌与完整细胞的原生质体融合、转染或本领域技术人员知晓的任何其他技术。DNA可以是线性的或环状的、松弛DNA或超螺旋DNA。对于转染哺乳动物细胞的各种技术,参见,例如,Keown等人,Methods in Enzymology Vol.185,pp.527-537(1990)。
构建体或载体可根据本领域中已知的方法进行制备。构建体可使用细菌载体制备,所述细菌载体包括原核复制系统,例如,可被大肠杆菌识别的起始点,在各个阶段构建体都可被克隆和分析。还可采用选择性标记。一旦完成含有构建体的载体,其可被进一步操作,诸如通过细菌序列的缺失、线性化、在同源序列中引入短缺失。在最终的操作后,构建体可被引入至细胞中。
本发明进一步包括重组构建体,该重组构建体包含如上所述的一种或多种序列。构建体可以是载体的形式,诸如质粒或病毒载体,其中可以正向或反向地插入本发明的序列。构建体还可包含调控序列,包括,例如,可操作地与序列连接的启动子。大量合适的载体和启动子是本领域技术人员所公知的,并且是市售的。下面的载体作为实例提供:pBs、pQE-9(Qiagen)、phagescript、PsiX174、pBluescript SK、pBsKS、pBSSK、pGEM、pNH8a、pNH16a、pNH18a、pNH46a(Stratagene);pTrc99A、pKK223-3、pKK233-3、pDR540、pRIT5(Pharmacia)。真核:pCiNeo、pWLneo、pSv2cat、pOG44、pXTl、pSG(Stratagene)pSVK3、pBPv、pMSG、pSVL(Pharmiacia)。还可使用任何其他的质粒和载体,只要它们在宿主中可复制并能存活。本领域中已知的载体和市售的那些载体(及其变体或衍生物)可根据本发明用于改造以包含一个或多个用于本发明的方法中的重组位点。这些载体可获自,例如,Vector Laboratories Inc.、Invitrogen、Promega、Novagen、NEB、Clontech、Boehringer Mannheim、Pharmacia、EpiCenter、OriGenes Technologies Inc.、Stratagene、PerkinElmer、Pharmingen、和Research Genetics。其他目的载体包括真核表达载体诸如pFastBac、pFastBacHT、pFastBacDUAL、pSFV和pTet-Splice(Invitrogen)、pEUK-Cl、pPUR、pMAM、pMAMneo、pBI101、pBI121、pDR2、pCMVEBNA、和pYACneo(Clontech)、pSVK3、pSVL、pMSG、pCH110、和pKK232-8(Pharmacia、Inc.)、p3′SS、pXT1、pSG5、pPbac、pMbac、pMC1neo和pOG44(Stratagene、Inc.),和pYES2、pAC360、pBlueBacHis A、B和C、pVL1392、pBlueBacIII、pCDM8、pcDNA1、pZeoSV、pcDNA3pREP4、pCEP4和pEBVHis(Invitrogen,Corp.)以及它们的变体或衍生物。
适合用于本发明中的其他载体包括pUC18、pUC19、pBlueScript、pSPORT、粘粒、噬菌粒、YAC′s(酵母人工染色体)、BAC′s(细菌人工染色体)、PI(大肠杆菌噬菌体)、pQE70、pQE60、pQE9(quagan)、pBS载体、PhageScript载体、BlueScript载体、pNH8A、pNH16A、pNH18A、pNH46A(Stratagene)、pcDNA3(Invitrogen)、pGEX、pTrsfus、pTrc99A、pET-5、pET-9、pKK223-3、pKK233-3、pDR540、pRIT5(Pharmacia)、pSPORT1、pSPORT2、pCMVSPORT2.0和pSV-SPORT1(Invitrogen)和它们的变体或衍生物。还可使用病毒载体,诸如慢病毒载体(参见,例如,WO 03/059923;Tiscornia等人,PNAS 100:1844-1848(2003))。其他目的载体包括获自Invitrogen的pTrxFus、pThioHis、pLEX、pTrcHis、pTrcHis2、pRSET、pBlueBacHis2、pcDNA3.1/His、pcDNA3.1(-)/Myc-His、pSecTag、pEBVHis、pPIC9K、pPIC3.5K、pAO815、pPICZ、pPICZA、pPICZB、pPICZC、pGAPZA、pGAPZB、pGAPZC、pBlueBac4.5、pBlueBacHis2、pMe1Bac、PSinRep5、pSinHis、pIND、pIND(SP1)、pVgRXR、pcDNA2.1、pYES2、pZErO1.1、pZErO-2.1、pCR-Blunt、pSE280、pSE380、pSE420、pVL1392、pVL1393、pCDM8、pcDNA1.1、pcDNA1.1/Amp、pcDNA3.1、pcDNA3.1/Zeo、pSe、SV2、pRc/CMV2、pRc/RSV、pREP4、pREP7、pREP8、pREP9、pREP 10、pCEP4、pEBVHis、pCR3.1、pCR2.1、pCR3.1-Uni和pCRBac;获自Pharmacia的λExCell、λgt11、pTrc99A、pKK223-3、pGEX-1λT、pGEX-2T、pGEX-2TK、pGEX-4T-1、pGEX-4T-2、pGEX-4T-3、pGEX-3X、pGEX-5X-1、pGEX-5X-2、pGEX-5X-3、pEZZ18、pRIT2T、pMC1871、pSVK3、pSVL、pMSG、pCH110、pKK232-8、pSL1180、pNEO和pUC4K;获自Novagen的pSCREEN-1b(+)、pT7Blue(R)、pT7Blue-2、pCITE-4abc(+)、pOCUS-2、pTAg、pET-32LIC、pET-30LIC、pBAC-2cp LIC、pBACgus-2cp LIC、pT7Blue-2LIC、pT7B1ue-2、λSCREEN-1、λBlueSTAR、pET-3abcd、pET-7abc、pET9abcd、pET11abcd、pET12abc、pET-14b、pET-15b、pET-16b、pET-17b-pET-17xb、pET-19b、pET-20b(+)、pET-21abcd(+)、pET-22b(+)、pET-23abcd(+)、pET-24abcd(+)、pET-25b(+)、pET-26b(+)、pET-27b(+)、pET-28abc(+)、pET-29abc(+)、pET-30abc(+)、pET-31b(+)、pET-32abc(+)、pET-33b(+)、pBAC-1、pBACgus-1、pBAC4x-1、pBACgus4x-1、pBAC-3cp、pBACgus-2cp、pBACsurf-1、plg、Signal plg、pYX、Selecta Vecta-Neo、Selecta Vecta-Hyg和Selecta Vecta-Gpt;获自Clontech的pLexA、pB42AD、pGBT9、pAS2-1、pGAD424、pACT2、pGAD GL、pGAD GH、pGAD10、pGilda、pEZM3、pEGFP、pEGFP-1、pEGFP-N、pEGFP-C、pEBFP、pGFPuv、pGFP、p6xHis-GFP、pSEAP2-基础、pSEAP2-对照、pSEAP2-启动子、pSEAP2-增强子、pβgal-基础、pβgal-对照、pβgal-启动子、pβgal-增强子、pCMV、pTet-Off、pTet-On、pTK-Hyg、pRetro-Off、pRetro-On、pIRES1neo、pIRES1hyg、pLXSN、pLNCX、pLAPSN、pMAMneo、pMAMneo-CAT、pMAMneo-LUC、pPUR、pSV2neo、pYEX4T-1/2/3、pYEX-S1、pBacPAK-His、PBacPAK8/9、PAcUW31、BacPAK6、pTrip1Ex、λgt10、λgt11、pWE15和λTriplEx;获自Stratagene的Lambda ZAP II、pBK-CMV、pBK-RSV、pBluescript II KS+/-、pBluescript II SK+/-、pAD-GAL4、pBD-GAL4Cam、pSurfscript、Lambda FIX II、Lambda DASH、Lambda EMBL3、Lambda EMBL4、SuperCos、pCR-Scrigt Amp、pCR-Script Cam、pCR-Script Direct、pBS+/-、pBC KS+/-、pBC SK+/-、Phagescript、pCAL-n-EK、pCAL-n、pCAL-c、pCAL-kc、pET-3abcd、pET-11abcd、pSPUTK、pESP-1、pCMVLacI、pOPRSVI/MCS、pOPI3CAT、pXT1、pSG5、pPbac、pMbac、pMC1neo、pMC1neo Poly A、pOG44、pOG45、pFRTβGAL、pNEOβGAL、pRS403、pRS404、pRS405、pRS406、pRS413、pRS414、pRS415和pRS416。
其他的载体包括,例如,pPC86、pDBLeu、pDBTrp、pPC97、p2.5、pGAD1-3、pGAD10、pACt、pACT2、pGADGL、pGADGH、pAS2-1、pGAD424、pGBT8、pGBT9、pGAD-GAL4、pLexA、pBD-GAL4、pHISi、pHISi-1、placZi、pB42AD、pDG202、pJK202、pJG4-5、pNLexA、pYESTrp和它们的变体或衍生物。
还可将选择性标记插入至载体中从而能够选择含有人NMDA受体亚单位的细胞。合适的选择性标记包括,但不限于:赋予在某些培养基基质上生长的能力的基因,诸如赋予在HAT培养基(次黄嘌呤、氨基蝶呤和胸苷)上生长的能力的tk基因(胸苷激酶)或hprt基因(次黄嘌呤磷酸核糖转移酶);允许在MAX培养基(霉酚酸、腺嘌呤和黄嘌呤)上生长的细菌gpt基因(鸟嘌呤/黄嘌呤磷酸核糖转移酶)。参见,例如,Song,K-Y.等人,Proc.Natl Acad.Sci.U.S.A.84:6820-6824(1987);Sambrook,J.等人,Molecular Cloning-A Laboratory Manual(分子克隆-实验室指南),Cold Spring Harbor Laboratory,Cold Spring Harbor,N.Y.(1989),第16章。选择性标记的其他实例包括:赋予对诸如抗生素的化合物的抗性的基因,赋予在选择的基质上生长的能力的基因,编码产生可检测信号诸如发光或荧光的蛋白质的基因,所述蛋白质诸如绿色荧光蛋白、增强型绿色荧光蛋白(eGFP)。许多此类标记是已知的并且是可获得的,包括,例如,抗生素抗性基因诸如新霉素抗性基因(neo)(Southern,P.和P.Berg,J.Mol.Appl.Genet.1:327-341(1982));和潮霉素抗性基因(hyg)(Nucleic Acids Research 11:6895-6911(1983),和TeRiele,H.等人,Nature 348:649-651(1990))。其他选择性标记基因包括:乙酰羟基酸合酶(AHAS)、碱性磷酸酶(AP)、β半乳糖苷酶(LacZ)、β葡萄糖醛酸苷酶(GUS)、氯霉素乙酰转移酶(CAT)、绿色荧光蛋白(GFP)、红色荧光蛋白(RFP)、黄色荧光蛋白(YFP)、青色荧光蛋白(CFP)、辣根过氧化物酶(HRP)、萤光素酶(Luc)、胭脂碱合酶、章鱼碱合酶(OCS)及其衍生物。可获得赋予对氨苄西林、博来霉素、氯霉素、庆大霉素、潮霉素、卡那霉素、林可霉素、甲氨蝶呤、草胺膦、嘌呤霉素和四环素的抗性的多种选择性标记。
掺入抗生素抗性基因和阴性选择因子的方法是本领域普通技术人员所熟悉的(参见,例如,WO 99/15650;美国专利号6,080,576;美国专利号6.136,566;Niwa等人,J.Biochem.113:343-349(1993);以及Yoshida,等人,Transgenic Research,4:277-287(1995))。
已经被成功转化以表达人NMDA受体的细胞可经功能分析或分子分析来确认。在一个实施方案中,其中已经插入人NMDA受体亚单位cRNA的诸如卵母细胞的细胞可经电生理记录来检测功能性人NMDA受体的存在。在另一个实施方案中,其中已经插入编码(多条)人NMDA受体亚单位基因的DNA和选择性标记基因的细胞可以随后生长在适当选择的培养基中,以鉴定提供适当整合的细胞。然后显示所需表型的这些细胞可进一步通过限制性分析、电泳、Southern分析、聚合酶链式反应或本领域公知的其他技术来分析。通过鉴定显示在靶基因位点处的适当插入物的片段,可鉴定其中已经发生同源重组从而使靶基因失活或另外地修饰靶基因的细胞。
效能增强试验
在本发明进一步的方面,表达人NMDA受体的细胞随后可用来测定特定化合物的效能增强,所述化合物如根据本文的方法和过程所述的化合物。
该化合物的效能增强可通过如下来测定:通过重复效能增强试验直至随着新试验的加入95%置信区间不改变15%以上,来检测在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下相比所述化合物的作用。在一个优选的实施方案中,提供了一种选择下列的化合物的方法或选择下列的化合物,即显示如在下面的试验中测定的效能增强至少为5的化合物,在所述试验中,如在表达人NMDA受体的细胞中所检测,通过将该效能增强试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来评估在生理性pH下与在功能障碍诱发的低pH下相比该化合物的效能增强。
“功能障碍诱发的低pH”被定义为在与本文所提到的任意一种功能障碍或疾病相关的pH下降。“功能障碍诱发的低pH”可以在约6.4至约7.1之间,通常为约6.4、6.5、6.6、6.7、6.8、6.9、7.0或7.1。生理性脑组织pH为约7.2至约7.8之间,通常为约7.2、7.3、7.4、7.5、7.6、7.7或7.8。在一个实施方案中,“功能障碍诱发的低pH”可与诸如卒中的缺血性障碍相关。
在一个实施方案中,功能障碍诱发的低pH为约6.9。在另一个实施方案中,功能障碍诱发的低pH为约6.7-约7.1。
在一个实施方案中,生理性pH为约7.6。在另一个实施方案中,生理性pH为约7.4-约7.8。
“效能增强”试验测定对于在生理性pH,诸如pH 7.6下,和缺血性或神经性疼痛pH,诸如pH 6.9下的化合物,导致NMDA通道功能的半最大抑制的化合物浓度(IC50值)。可使用本领域中公知的任何方法来测定化合物的IC50值。IC50值可表示为比值,并一起平均以测定IC50的均值偏移(mean shift)。在一个实施方案中,可使用双电极电压钳记录来测定化合物的IC50值。玻璃微电极可填充以氯化钾,使得电压电极含有的氯化钾浓度低于电流电极。细胞可置于小室内,并用生理溶液灌注。外部pH可被调节为缺血性或神经性疼痛pH,如pH 6.9或生理性pH,如pH 7.6。然后可通过以连续的方式应用最大有效浓度的谷氨酸和甘氨酸,然后应用谷氨酸/甘氨酸加可变浓度的测试化合物来获得剂量响应曲线。应用的拮抗剂的抑制水平可表示为初始谷氨酸响应的百分比。这些值可在细胞间一起进行平均,例如,在来自单只蛙的卵母细胞之间。在各个拮抗剂浓度下的平均响应百分比可通过逻辑方程(100-min)/(1+([conc]/IC50)nH)+min来拟合,其中min为在饱和拮抗剂时的剩余响应百分比,IC50是引起可达到的抑制作用的一半的拮抗剂浓度,nH是描述抑制性曲线的倾斜度的坡度因子。Min可被限制为大于或等于0。例如,对于使用已知通道阻断剂的试验,min可设为0。在生理学pH和缺血pH下获得的IC50值可表示为比值,并一起平均以测定IC50的均值偏移。在进一步的实施方案中,在生理学pH下与功能障碍诱发的低pH下相比,化合物可显示至少为6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或大于23的效能增强。
可重复效能增强试验直至随着新试验的加入95%置信区间不改变15%以上。在另一个实施方案中,可重复效能增强试验直至随着新试验的加入95%置信区间不改变约14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%或2%以上。在进一步的实施方案中,可重复效能增强试验直至随着新试验的加入96%、97%、98%或99%置信区间不改变约10%、9%、8%、7%、6%、5%、4%、3%或2%以上。
动物模型
在本发明的一个方面,提供了一种鉴定能用于治疗或预防使受侵袭组织区内pH降低的功能障碍的化学化合物的方法,包括:(i)通过重复效能增强试验直至随着新试验的加入95%置信区间不改变15%以上,来评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下相比所述化合物的效能增强;(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过重复所述试验直至随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对 痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。在一个实施方案中,候选药物必须满足或超过体内和体外标准,从而成为用于人的优良药物。
在一个优选的实施方案中,提供了一种选择下列的化合物的方法,或选择下列的化合物,即通过将该试验重复至少15次并且直至随着新试验的加入95%置信区间不改变15%以上来测定,显示在神经性疼痛的动物模型中测量的痛阈增加至少2倍的化合物。
神经性疼痛的动物模型
在本发明的一个方面,本文公开的化合物可用于治疗或预防疼痛,尤其是神经性疼痛和相关的功能障碍。
在本发明的一个方面,提供了一种通过下列方法鉴定能用于治疗哺乳动物,尤其是人中的神经性疼痛的化学化合物:(i)通过将效能增强试验重复至少5次使得随着新试验的加入95%置信区间不改变15%以上,来评估在细胞中在生理性pH下与“功能障碍诱发的低pH”下相比所述化合物的效能增强(例如,在生理性pH下的IC50/在“功能障碍诱发的低pH”下的IC50);(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过将所述试验重复至少12次使得随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
在某些实施方案中,候选药物必须满足或超过体内和体外标准两者,从而成为用于人的优异药物。在一个实施方案中,效能增强可在表达来源于人的谷氨酸受体的细胞中测定。在另一个实施方案中,效能增强可在表达至少一种来源于人的NMDA、AMPA和/或红藻氨酸受体的细胞中测定。在一个实施方案中,细胞可表达NMDA受体的NR1亚单位和至少一种NR2亚单位。在进一步的实施方案中,NR2亚单位可以是NR2B亚单位。在另一个实施方案中,NR2亚单位可以是NR2A亚单位。
在本发明的另一个更普遍的方面,提供了一种方法,其中选择以激活NMDA受体拮抗剂的方式治疗使pH降低的功能障碍的化合物,该化合物(i)显示如在下面的试验中测定至少为5的效能增强,在所述试验中,通过将该效能增强试验重复至少5次使得随着新试验的加入95%置信区间不改变15%以上,评估在生理性pH下与“功能障碍诱发的低pH”下相比该化合物的效能增强(例如,在生理性pH下的IC50/在“功能障碍诱发的低pH”下的IC50),而在细胞中检测该化合物的效能增强;和(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过将所述试验重复至少12次使得随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。在一个实施方案中,效能增强可在表达谷氨酸受体的细胞中测定。在另一个实施方案中,效能增强可在表达NMDA、AMPA和/或红藻氨酸受体的细胞中测定。在一个实施方案中,细胞可表达NMDA受体的NR1亚单位和至少一种NR2亚单位。在进一步的实施方案中,NR2亚单位可以是NR2B亚单位。在另一个实施方案中,NR2亚单位可以是NR2A亚单位。
在一个实施方案中,神经性疼痛的动物模型可选自下列的组,该组包括但不限于:慢性压迫性损伤模型、部分坐骨神经结扎模型、脊神经结扎模型或本领域技术人员已知的任何其他模型。在具体的实施方案中,脊神经结扎模型用作体内动物模型。
“痛阈”是体验到痛觉之前所需的刺激量的指标。在慢性神经性疼痛动物模型中,动物经受损伤并诱发慢性疼痛状态。然后可施加伤害性刺激并且可计算动物可耐受伤害性刺激而对其没有反应的时间量。例如,未受损伤的动物可暴露于冷表面20分钟,之后从该表面上撤走其爪,但在损伤后,诸如下面所述的神经性疼痛模型,动物可在仅1分钟后缩爪。伤害性刺激的实例包括,但不限于:热,冷,机械,诸如von Frey刺激,化学品等。
在一个实施方案中,慢性压迫性损伤模型(CCI,或Bennett模型)可用作神经性疼痛的动物模型(参见,例如,Bennett,Gary J.等人,Pain,1988,33,87-107)。在此模型中,动物,例如,大鼠的坐骨神经可有意地以下列的方式损伤,即发现诱发由患有神经性疼痛的人患者所报告的症状。具体地,坐骨神经可在腿中部腘窝中的神经三根分叉的近端处暴露。在该位置处,约7mm的神经轨迹线可与附着组织游离,并将四根结扎线松松地围绕其结扎,间距为约1-mm。在各只动物中,可在对侧进行相同的剥离而不结扎,使得各只动物可用作其自身对照。在结扎侧,受侵袭的后爪皮肤明确地发生痛觉过敏和痛觉超敏(即,经历由通常不引起疼痛反应的刺激所导致的疼痛),并且可能还是自发性疼痛的来源。为了测试痛觉过敏,伤害性刺激,诸如热,可从玻璃地板下方针对足后爪刺激,并且可测量缩爪的潜伏期(痛阈的标志)。在神经损伤侧上的响应往往具有异常的强度和持续时间,超过例如,30秒的抬爪,并且可伴有长时间的舔舐。正常响应是动物很少抬爪并且持续少于1秒或2秒。为了测试冷疼痛异常,动物可置于冷却的金属地板上,例如,温度为4℃。即使地板接触未结扎爪20分钟后,也不产生疼痛。可测量带有结扎的大鼠的神经损伤爪的缩回,例如,其可增加5倍以上,并且可测量持续时间,例如,其可增加2倍以上。使用此模型,可在不使用药物时计算痛阈,并且还可在施用本文所述的化合物后计算痛阈。
在另一个实施方案中,部分坐骨神经结扎模型(Seltzer模型)可用来测试神经性痛阈(参见,Seltzer,A.等人,Pain,1990,43,205-218)。在此模型中,在诸如大鼠的动物的大腿中高位的一半坐骨神经可被单侧结扎。手术后几小时内,和之后几个月,动物可形成同侧后爪的保护性行为,并经常舔舐它,表明有自发性疼痛的可能性。足的跖面可对非伤害性和伤害性刺激均等地感觉过敏。常用的伤害性刺激的测量方法可在暴露和不暴露于本发明的化合物的动物中测量。伤害性刺激可包括Von Frey毛发刺激、CO2激光热脉冲和针刺。响应于跖面处的反复Von Frey毛发刺激,可存在缩爪阈值的急剧下降。在手术侧的一系列该刺激后,轻触引起了厌恶反应,表明对触摸的异常疼痛。对CO2激光热脉冲的缩爪阈值也显著地降低。阈上伤害性热脉冲引起单侧过度反应,表明热痛觉过敏。针刺也可引起此过度反应(机械痛觉过敏)。使用此模型,可在不使用药物时计算痛阈,并且还可在施用本文所述的化合物后计算痛阈。
在另一个实施方案中,脊神经结扎模型(Chung模型)可用来测量神经性疼痛(参见Kim,S.H.和Chung,J.M.Neurosci.Lett.1991,134,131-134;Kim,S.H.和Chung,J.M.Pain,1992,50,355-363)。在此模型中,L5(或L5+L6)脊神经被扎紧,然后切断。手术操作使受侵袭足产生长期的对伤害性热的痛觉过敏和机械性异常疼痛。可测量受侵袭后爪的机械敏感性。在手术后第一天机械敏感性显著升高,其证据是对用von Frey丝施加于后爪的无害性机械刺激的缩足发生率增加。另外,还可看见在受侵袭足中存在自发性疼痛的行为体征。可在施用和不施用本发明的化合物时来测定该测量值,并且可计算痛阈。
在神经性疼痛的动物模型中测试化合物并在测量该化合物对痛阈的作用后,可选择导致痛阈至少增加2倍的化合物。在其他实施方案中,化合物可显示痛阈增加至少3、4、5、6、7、8、9、10、15、20或30倍。在进一步的实施方案中,试验可重复至少15次,并且直至随着新试验的加入95%置信区间不改变10%以上。可重复神经性疼痛试验直至随着新试验的加入95%置信区间不改变10%以上。在另一个实施方案中,可重复神经性疼痛试验直至随着新试验的加入95%置信区间不改变约9%、8%、7%、6%、5%、4%、3%或2%以上。在进一步的实施方案中,可重复神经性疼痛试验直至随着新试验的加入96%、97%、98%或99%置信区间不改变约10%、9%、8%、7%、6%、5%、4%、3%或2%以上。
其他神经性疼痛的动物模型包括,但不限于,保留神经损伤(spared nerve injury)模型(参见Decosterd & Woolf.Pain.2000Aug;87(2):149-58),在没有显性创伤(frank trauma)时由坐骨神经的局灶性炎症诱发的坐骨神经炎性神经痛(SIN),和/或注射化疗剂长春新碱后的周围神经疼痛模型(Aley等人,Neurosci1996;73:259-65)。其他的模型是本领域技术人员所已知的。还参见Zimmerman M.Eur J Pharmacol 2001;429:23-37;Shir等人,Neurosci Lett 1990;115:62-7.Wall等人,Pain 1979;7:103-11;DeLeo等人,Pain 1994;56:9-16;Courteix等人,Pain1994;57:153-60;Aley等人;Slart等人Pain 1997;69:119-25;Hargreaves等人,Pain1988;32:77-88。
短暂性局灶性缺血的体内模型
在本发明的一个方面,提供了一种鉴定能用于治疗人缺血性损伤的化学化合物的方法,该方法包括:(i)通过将效能增强试验重复至少5次使得随着新试验的加入95%置信区间不改变15%以上,来评估在表达人NMDA受体的细胞中在生理性pH下与“功能障碍诱发的低pH”下相比所述化合物的效能增强(例如,在生理性pH下的IC50/在“功能障碍诱发的低pH”下的IC50);(ii)在短暂性局灶性缺血的动物模型中测试所述化合物,并且通过将所述试验重复至少12次使得随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对梗死体积的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)梗死体积减少至少30%的化合物。根据本发明,候选药物必须满足或超过成为较佳的人用药物的体外和体内标准两者。在一个实施方案中,细胞可表达人NMDA受体的NR1亚单位和至少一种NR2亚单位。在进一步的实施方案中,NR2亚单位可以是NR2B亚单位。在另一个实施方案中,NR2亚单位可以是NR2A亚单位。
在本发明的另一个更普遍的方面,提供了一种方法,其中选择以激活人NMDA受体拮抗剂的方式治疗使pH降低的功能障碍的化合物,该化合物(i)显示如在下面的试验中测定至少为5的效能增强,在所述试验中,通过将该效能增强试验重复至少5次使得随着新试验的加入95%置信区间不改变15%以上,在细胞中检测在生理性pH下与“功能障碍诱发的低pH”下相比所评估的该化合物的效能增强;和(ii)如在局灶性缺血的动物模型中测量,通过将所述试验重复至少12次使得随着新试验的加入95%置信区间不改变5%以上来测定,显示梗死体积减少至少30%。在一个实施方案中,细胞可表达NMDA受体的NR1亚单位和至少一种NR2亚单位。在进一步的实施方案中,NR2亚单位可以是NR2B亚单位。在另一个实施方案中,NR2亚单位可以是NR2A亚单位。
在优选的实施方案中,提供了一种选择下列的化合物的方法,或选择下列的化合物,即通过将试验重复至少15次并且直至随着新试验的加入95%置信区间不改变10%以上来测定,显示在局灶性缺血的动物模型中测量的梗死体积减少至少30%的化合物。在另一个具体的实施方案中,“功能障碍诱发的低pH”可以与诸如卒中的缺血性障碍相关。在另一个实施方案中,大脑中动脉闭塞模型可用作例如,诸如小鼠的啮齿类动物的短暂性局灶性缺血的动物模型。
局灶性缺血性卒中可以是由至脑区的血供中断所引起的对脑的损害。局灶性缺血性卒中通常由“脑主动脉(main cerebral arteries)”(例如,大脑中动脉、大脑前动脉、大脑后动脉、颈内动脉、椎动脉或基底动脉)中的任意一条或多条的闭塞所引起,而非二级动脉或小动脉。动脉闭塞可以是单一的栓塞物或血栓。因此,如本文所定义的局灶性缺血性卒中区别于脑栓塞卒中模型(诸如在Bowes等人,Neurology 45:815-819(1995)中所记载的),在脑栓塞卒中模型中多个凝块微粒阻塞二级动脉或小动脉。
可在任意的哺乳动物中诱发局灶性缺血,所述哺乳动物包括,但不限于,啮齿类动物,小鼠,大鼠,兔和沙鼠(还参见Renolleau S,Stroke.1998 Jul;29(7):1454-60;Gotti,B.等人,Brain Res,1990,522,290-307)。例如,沙鼠已经广泛地被用作缺血性卒中的研究用试验模型,因为其脑血供仅由两条颈总动脉控制。此稀有特征在沙鼠中出现是因为它们具有不完善的大脑动脉环(Chandler等人,J.Pharmacol.Methods 14:137-146,1985;Finkelstein等人,Restor.Neurol.Neurosci.1:387-394,1990;Levine和Sohn,Arch.Pathol.87:315-317,1969;Kahn,Neurology22:510-515,1972)。
测试化合物可在动脉闭塞之前或之后施用于动物。在一个实施方案中,测试化合物可经腹膜内给药。在一个实施方案中,测试化合物可经脑室内给药。测试化合物可在动脉闭塞之前给药,例如,缺血事件前约10、20、30、40、50或60分钟。可选地,测试化合物可在动脉闭塞之后给药,例如缺血事件后,即,再灌注后约10、20、30、40、50、60、90或120分钟或约4、6、8或10小时或约1、2、3、4、5、6、7或8天。
化合物可保护缺血区中的细胞的证明可在动物模型中验证,在该动物模型中大脑中动脉(MCA)被试验性地闭塞,即,大脑中动脉闭塞(MCAO)模型。该动物模型在本领域中是公知的,其模拟诸如可在人受试者中发生的体内缺血事件。MCA的试验性闭塞导致很大的单侧缺血区,该缺血区典型地涉及基底神经节和额叶、顶叶和颞叶皮质区(Menzies等人,Neurosurgery 31,100-106(1992))。缺血性损害以MCA灌注部位处的较小核心开始,并随着时间变化而增长。围绕核心梗死的此半影区相信是由损害从核心向外传播至在闭塞期间仍由侧枝循环灌注的组织所引起的。当从动物中获得脑切片时可检查治疗剂对围绕缺血事件的核心的半影部的作用。MCA将血液供应至额叶、顶叶和颞叶的皮质表面以及基底神经节和内囊。在发生最大缺血效应的区域周围取脑切片。可在任何哺乳动物中诱发MCAO,所述哺乳动物包括,但不限于,小鼠、大鼠、兔和沙鼠(还参见Renolleau S,Stroke.1998 Jul;29(7):1454-60;Gotti,B.等人,Brain Res,1990,522,290-307)。MCA模型允许间接地测量缺血事件(即,左大脑中动脉的闭塞)后的神经元细胞死亡。在一个实施方案中,大脑中动脉的短暂性局灶性脑缺血可用来测试化合物。
短暂性局灶性脑缺血可通过腔内大脑中动脉(MCA)闭塞来诱发。可通过阻断动脉的任何方式,例如,采用缝合线,诸如单丝缝合线来实现闭塞。动物麻醉后,可将探针贴附在其头骨上以监测区域性脑血流的相对变化。这些变化可用激光多普勒流量计(Perimed)来监测。例如,在小鼠中,探针可贴附在前囟点后2mm和侧向4-6mm处。然后,可做切口以暴露MCA,并可将插入材料以闭塞MCA。例如,可将缝合线通过颈外动脉残端导入至颈内动脉中直至监测的血流停止。MCA闭塞一段时间后,诸如约30分钟、45分钟或60分钟后,可通过拉出阻断材料而恢复血流。
在另一个实施方案中,双侧颈动脉闭塞模型可用来证明化合物可保护缺血区中的细胞。动物可被麻醉并且在颈部腹侧做切口,并且可分离颈总动脉并完全闭塞持续一段时间,例如,5、10、15、20、30、45或60分钟。动脉可通过任何手段闭塞,例如,使用夹子,诸如微动脉瘤夹。然后可停止闭塞并可将切口缝合。在一个具体的实施方案中,可在沙鼠中进行双侧颈动脉闭塞。
手术后,使动物复苏。动物存活一段时间,例如,约12、24、36、48或72小时后,动物可被处死,并取出脑并切成例如,大约1、2、3、4、5或10mn切片。然后可通过用适当的染料,例如,PBS中的2%氯化2,3,5-三苯基四唑(TTC)对脑切片在37℃下进行染色约20分钟而识别梗死体积。然后可测量各切片的梗死面积并乘以切片厚度,从而得到该切片的梗死体积。还可将对侧与同侧半球切片体积的比乘以相应的梗死切片体积以对水肿进行校正。对于所有切片,可通过将梗死面积与切片厚度的乘积相加而确定梗死体积。
在短暂性局灶性缺血的动物模型中测试化合物并测量该化合物对梗死体积的作用后,可选择导致梗死体积减少至少30%的化合物。在附加的实施方案中,可选择导致梗死体积减少至少31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、65、70、75、80、85、90、95、97、99或100%的化合物。在进一步的实施方案中,在生理性pH下与缺血pH下相比(即,生理性pH/缺血性pH)化合物可显示至少5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、30、40或50的效能增强,以及梗死体积减少至少31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、65、70、75、80、85、90、95、97、99或100%,如图1中所示,独立地包括,这些数字的任意组合,其各个组合应认为被具体地公开了。在本发明的某些实施方案中,可对于效能增强和梗死体积试验计算均值,即所有观察值的总和除以观察值的数目,并且在生理性pH下与缺血pH下(即,生理性pH/缺血性pH)相比该化合物的均值可显示至少5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22或23的效能增强以及梗死体积减少至少31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、65、70、75、80或80%,如图1所示。
可重复梗死体积试验直至随着新试验的加入95%置信区间不改变10%以上。在另一个实施方案中,可重复梗死体积试验直至随着新试验的加入95%置信区间不改变约25%、24%、23%、22%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%或2%以上。在进一步的实施方案中,可重复梗死体积试验直至随着新试验的加入96%、97%、98%或99%置信区间不改变约25%、24%、23%、22%、21%、20%、19%、18%、17%、16%、15%、14%、13%、12%、11%、10%、9%、8%、7%、6%、5%、4%、3%或2%以上。
短暂性局灶性缺血的其他动物模型包括,但不限于动脉内注射微球或凝固的血液,大鼠的四血管闭塞,沙鼠的两血管闭塞,或光化学诱发的血块形成与溶解。这些模型是本领域技术人员所公知的。
化合物
在本发明的一个方面,由本文提供的过程所鉴定的化合物与人NMDA受体结合的选择性可以为与任何其他谷氨酸受体或如本文所述的其他受体结合的选择性的至少10倍。在进一步附加或可选的实施方案中,该化合物可具有等于或大于至少2∶1的治疗指数。
在其他实施方案中,该化合物与人NMDA受体结合的选择性可以为与任何其他谷氨酸受体结合的选择性的至少11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、78、85、90、95、100、125、150、175、200、300、400、500或1000倍,所述其他谷氨酸受体,例如,包括,但不限于下列的谷氨酸受体:AMPA GluR1(GenEMBL登记号X57497、XI7184、I57354)、AMPA GluR2(GenEMBL登记号X57498、M85035、A46056)、AMPA G1uR3(GenEMBL登记号M85036、X82068)、AMPA GluR4(GenEMBL登记号M36421、U16129)、红藻氨酸GluR5(GenEMBL登记号X66118、M83560、U16125)、红藻氨酸GluR6(GenEMBL登记号D10054、Z11715、U16126)、红藻氨酸GluR7(GenEMBL登记号M83552、U16127)、红藻氨酸KA-1(GenEMBL登记号X59996、S67803a)、红藻氨酸KA-2(GenEMBL登记号D10011、Z11581、S40369)、孤儿d1GRID1(GenEMBL登记号D10171、Z17238)、孤儿d2GRID2(GenEMBL登记号D13266、Z17239),和/或亲代谢性谷氨酸受体(mGluR),诸如1组mGluR,包括mGluR 1和mGluR 5,2组mGluR,包括mGluR 2和mGluR3,以及3组mGluR,包括mGluR 4、mGluR 6、mGluR 7和mGluR8。NMDA受体可由其亚单位的任意一种形成,包括但不限于NMDA NR1(染色体(人)9q34.3,小鼠的GenEMBL登记号:D10028,大鼠的GenEMBL登记号:X63255,人的GenEMBL登记号:X58633),NMDA NR2A(染色体(人):16p13.2,小鼠的GenEMBL登记号:D10217,大鼠的GenEMBL登记号:D13211,人的GenEMBL登记号:U09002);NMDA NR2B(染色体(人):12p12,小鼠的GenEMBL登记号:D10651′,大鼠的GenEMBL登记号:M91562,人的GenEMBL登记号:U28861α);NMDA NR2C(染色体(人)17q24-q25,小鼠的GenEMBL登记号:D10694,大鼠的GenEMBL登记号:D13212);NMDA NR2D(染色体(人)19q13.1qter,小鼠的GenEMBL登记号:D12822,大鼠的GenEMBL登记号:D13214,人的GenEMBL登记号:U77783);NMDA NR3A(大鼠的GenEMBL登记号:L34938和/或NMDANR3B。可选地,该化合物与人NMDA受体的选择性不大于上面列举的另一种谷氨酸受体的选择性或为后者的至少2、3、4、5、6、7、8或9倍。
另外地或可选地,该化合物与人NMDA受体结合的选择性为与另一种受体类型的选择性的至少10倍。在其他实施方案中,该化合物与人NMDA受体结合的选择性为与另一种受体类型的选择性的至少11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、78、85、90、95、100、125、150、175、200、300、400、500或1000倍,所述另一种受体类型,例如,包括,但不限于下列的受体:多巴胺受体,诸如D1、D2、D3、D4和D5多巴胺受体;阿片样受体,诸如mu阿片样受体,包括mu1和mu2;Δ阿片样受体,包括Δ1和A2,以及K阿片样受体,包括K1和K2;胆碱能受体,包括毒蕈碱和烟碱受体;肾上腺素能受体,包括肾上腺素受体和肾上腺素受体,GABA受体,包括GABA-A和GABA-B受体,或肽受体,诸如,但不限于下面表2中列举的肽的受体。可选地,该化合物与人NMDA受体的选择性不大于与上面列举的受体的选择性或为后者的至少2、3、4、5、6、7、8或9倍。
表2
  下丘脑激素类催产素加压素下丘脑释放和抑制激素促肾上腺皮质激素释放激素(CRH)生长激素释放激素(GHRH)促黄体激素释放激素(LHRH)生长抑素生长激素释放抑制激素促甲状腺激素释放激素(TRH)速激肽类神经激肽a(K物质)神经激肽b神经肽KP物质阿片样肽类β-内啡肽强啡肽蛋氨酸和亮氨酸脑啡肽NPY和相关肽类
  神经肽酪氨酸(NPY)胰多肽肽酪氨酸-酪氨酸(PYY)VIP-胰高血糖素家族糖原样肽1(GLP-1)肽组氨酸异亮氨酸(PHI)垂体腺苷酸环化酶激活肽(PACAP)血管活性肠肽(VIP)其他肽类脑利钠肽降钙素基因相关肽(CGRP)(a型和b型)胆囊收缩素(CCK)甘丙肽胰岛淀粉样多肽(IAPP)或胰淀素黑色素浓集激素(MCH)黑皮质素(ACTH,a-MSH)神经肽FF(F8Fa)神经降压肽甲状旁腺激素相关蛋白刺鼠基因相关蛋白(AgRP)可卡因和苯丙胺调节转录(CART)肽内吗啡肽-1和-25-HT-moduline降食欲素/食欲肽痛敏肽/孤啡肽FQ痛稳素催乳素释放肽分泌神经素Urocortin
在另一个实施方案中,该化合物与人NMDA受体结合的选择性可以为与5-羟色胺受体结合的选择性的至少10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、78、85、90、95、100、125、150、175、200、300、400、500或1000倍。可选地,该化合物对人NMDA受体的选择性不大于对5-羟色胺受体的选择性或为后者的至少2、3、4、5、6、7、8或9倍。5-羟色胺受体包括,但不限于,5HT1,包括SHT1A、5HT1B、5HT1D、5HT1E、和5HT1F;5HT2,包括5HT2A、5HT2B、和5HT2C;5HT3;5HT4;5HT5,包括5HT5a和5HT5B;5HT6和5HT7。在另一个实施方案中,该化合物与人NMDA受体结合的选择性可以为与组胺受体结合的选择性的至少10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、78、85、90、95、100、125、150、175、200、300、400、500或1000倍,所述组胺受体包括H1、H2、H3和H4组胺受体。可选地,该化合物对人NMDA受体的选择性不大于对组胺受体的选择性或为后者的至少2、3、4、5、6、7、8或9倍,所述组胺受体包括H1、H2、H3和H4组胺受体。在另一个实施方案中,该化合物与人NMDA受体结合的选择性可以为与钙通道结合的选择性的至少10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、45、50、55、60、65、70、75、78、85、90、95、100、125、150、175、200、300、400、500、或1000倍。
筛选化合物以测定药物与特定受体的亲和性是药物发现过程中的关键环节之一。测定受体选择性的过程可通过本领域技术人员所公知的任意方法来完成。筛选可用作大型化合物文库的首次筛选方法,或用作二次筛选从而对化合物与各种受体类型或亚型的亲和力进行排序。在一个实施方案中,此分析在高通量系统中完成,例如,滤板筛选系统(filter-plate screening system),诸如Millipore MultiscreenTMHTS滤板。
在一个实施方案中,可使用放射性配体结合测定法来测定对特定受体的受体选择性。在一个具体的实施方案中,可使用饱和结合测定法来测定测试化合物对特定受体的结合常数(Kd)。可根据本领域中已知的任何方法来进行饱和结合测定法。通常,饱和结合测定法可通过获得表达特定受体的细胞膜来进行。例如,细胞,诸如CHO细胞,可被转染以表达人NMDA受体,例如,NR1/NR2A或NR1/NR2B人NMDA受体。可选地,可使用内源性表达人NMDA受体,例如,NR1/NR2B或NR1/NR2A人NMDA受体的细胞。在一个实施方案中,可进行全细胞结合测定法。可选地,可从细胞分离膜,诸如,例如,通过将细胞溶解,然后使用离心来获得溶胞产物的膜级分,参见,例如,Laboratory method for isolation of cell membranes(分离细胞膜的实验室方法),A.Hubbard和Z.Cohn The Journal of Cell Biology(1975)以及Rogers等人,1991,J.Neuroscience:2713-2724。然后全细胞或细胞膜可与放射标记配体的系列稀释液孵育,上述放射标记配体即,测试化合物,例如,3H-标记的配体。孵育一段时间后,例如,至少1、2或3小时后,将膜洗涤几次,例如,5、10、15或20次。然后可加入闪烁液,并且可对细胞或可对细胞或膜的放射活性进行计数。还可在独立的试验中采用过量的未标记的竞争配体来测定非特异性结合。特异性结合可计算为从总活性中减去非特异性活性。然后可通过非线性回归和Scatchard分析,例如通过使用Prizm数据软件(www.Graphpad.com),通过将特异性结合与游离配体浓度进行拟合而测定结合常数(Kd)。另外,还可通过非线性回归和Scatchard分析,例如通过使用Prizm数据软件来计算结合位点的数目[最大结合容量(Bmax)]。
在另一个实施方案中,可进行放射性配体置换结合测定法来测定相对亲和力值(IC50)。如上所述,可使用表达特定受体的全细胞或分离的细胞膜。可通过使用常数放射性配体浓度和未标记的竞争配体的系列稀释液与不使用未标记配体的对照结合试验相比较(%对照)来测定抑制作用。可通过非线性回归,例如通过使用Prizm数据软件,拟合结合抑制值来测定相对亲和力值(IC50)。
在使受侵袭组织区中pH降低的功能障碍的治疗中已经为较佳的人体临床表现而选择下面的化合物。通过遵循本文大体上记载的原则,可选择满足新的参数的其他化合物。
在一个实施方案中,根据本文所述的过程和方法选择的化合物选自下列:
Figure BPA00001178509600421
Figure BPA00001178509600422
以及其药学可接受的盐、对映体、对映体混合物、和混合物。
立体化学
要理解的是,化合物的三维构型可在治疗用化合物的活性和/或适应性方面具有重要的作用。本文已经在试验中观察到使用本文所述的标准可选择化合物的两种对映体,或可选择一种,一种不选择。可推测地,在某些情况下,可使用所提供的标准选择两种对映体。
在另一个实施方案中,根据本文所述的过程和方法选择的化合物不是NMDA受体通道阻断剂,诸如,但不限于,FR 115427、NPS 1506、苯环利定(PCP)、瑞马西胺、TCP或EAA-090。在另一个实施方案中,根据本文所述的过程和方法选择的化合物不是NMDA受体谷氨酸位点拮抗剂,诸如,但不限于,CGP40116、D-CPPene、GPI3000(NPC 17742)、MDL 100,453或塞福太(CGS 19755)。在另一个实施方案中,根据本文所述的过程和方法选择的化合物不是NMDA受体甘氨酸位点拮抗剂,诸如,但不限于7-Cl-犬尿喹啉酸、HA966、MRZ 2/576、ZD9379、加维斯替奈(gavestinel)(GV150526)和利可替奈(licostinel)(ACEA 1021,5-硝基-6,7-二氯-1,4-二氢-2,3-喹喔啉二酮(quinoxalinedione))。
在另一个实施方案中,根据本文所述的过程和方法选择的化合物没有记载在PCT公布号WO 02/072542中。
副作用
在本文所述的方法和过程的附加的方面,该化合物基本上不显示毒副作用。使用人NMDA受体,而非其他非人物种,体内尤其是在人类患者中化合物的功效和效能增强可使用体外测定法来有效地评估,从而能够在化合物进入体内环境之前使毒副作用最小化。
毒副作用包括,但不限于,躁动、幻觉、意识错乱、木僵、偏执、谵妄、拟精神病样症状、旋转棒性能受损(rotarod impairment)、苯丙胺样刻板行为、刻板症、精神病记忆障碍、运动障碍、抗焦虑样效应、血压升高、血压下降、脉搏增强、脉搏减弱、血液学异常、心电图(ECG)异常、心脏毒性、心悸、运动刺激、精神运动性行为、情绪变化、短时记忆减退、长期记忆减退、觉醒、镇静、锥体外系副作用、室性心动过速、心肌复极化延长、共济失调、认知障碍和/或精神分裂症样症状。
此外,在另一个实施方案中,根据本文所述的过程和方法选择或鉴定的化合物基本上不具有与其他类型NMDA受体拮抗剂相关的副作用。在一个实施方案中,这些化合物基本上不显示与谷氨酸位点的NMDA拮抗剂相关的副作用,所述谷氨酸位点的NMDA拮抗剂诸如,塞福太、D-CPPene(SDZ EAA 494)和AR-R15896AR(ARL 15896AR),所述副作用包括,躁动、幻觉、意识错乱和木僵(Davis等人,(2000),Stroke 31(2):347-354;Diener等人,(2002),J Neurol249(5):561-568);偏执和谵妄(Grotta等人,(1995),J Intern Med 237:89-94);拟精神病样症状(Loscher等人,(1998),Neurosci Lett 240(1):33-36);治疗比低下(Dawson等人,(2001),Brain Res 892(2):344-350);苯丙胺样刻板行为(Potschka等人,(1999),Eur J Pharmacol 374(2):175-187)。在另一个实施方案中,这些化合物不显示与甘氨酸位点的NMDA拮抗剂相关的副作用,所述拮抗剂诸如HA-966、L-701,324、d-环丝氨酸、CGP-40116和ACEA 1021,所述副作用包括显著的记忆障碍和运动障碍(Wlaz,P(1998),Brain Res Bull 46(6):535-540)。还在进一步的实施方案中,这些化合物不显示NMDA受体通道阻断剂的副作用,所述阻断剂诸如MK-801和氯胺酮,所述副作用包括精神病样效应(Hoffman,DC(1992),J Neural Transm Gen Sect 89:1-10);认知障碍(自由回忆、再认记忆和注意力的减退;Malhotra等人,(1996),Neuropsychopharmacology 14:301-307);精神分裂症样症状(Krystal等人,(1994),Arch Gen Psychiatry 51:199-214;Lahti等人,(2001),Neuropsychopharmacology 25:455-467),以及活动过度和刻板行为增加(Ford等人(1989)Physiology and behavior 46:755-758。
在进一步附加或可选的实施方案中,该化合物具有等于或大于至少2∶1、至少3∶1、至少4∶1、至少5∶1、至少6∶1、至少7∶1、至少8∶1、至少9∶1、至少10∶1、至少15∶1、至少20∶1、至少25∶1、至少30∶1、至少40∶1、至少50∶1、至少75∶1、至少100∶1或至少1000∶1的治疗指数。治疗指数可定义为产生毒性或致死效应所需的剂量与产生非不良或治疗反应所需的剂量的比。其可以是半数有效剂量(50%群体以特定方式对药物反应时的剂量)和半数毒性剂量(50%的组显示药物的不良反应时的剂量)之间的关系。治疗指数越高,药物被认为更安全。其简单地指示,比起引起有益的效应,其将需要高得多的剂量来引起毒性反应。
化合物的副作用谱可通过本领域技术人员已知的任何方法来测定。在一个实施方案中,运动障碍可通过,例如,测量自主活动和/或旋转棒性能(rotorod performance)来测定。旋转棒试验涉及测量动物可在加速棒上逗留的持续时间。在另一个实施方案中,可例如,通过使用被动回避范式来评估记忆障碍;Sternberg记忆扫描和配对词用于短时记忆,或图片的延迟自由回忆用于长时记忆。在进一步的实施方案中,可例如,在高架十字迷宫试验(elevated plus maze task)中测量抗焦虑样效应。在其他的实施方案中,可监测心功能、测量血压和/或体温和/或进行心电图描记以检测副作用。在其他实施方案中,可例如,通过分析临界闪烁融合阈限(critical flicker fusion threshold),选择反应时间,和/或身体摆动(body sway)来测量精神运动功能和觉醒。在其他的实施方案中,使用,例如,自我评定来评估情绪。在进一步的实施方案中,例如,可使用PANSS、BPRS和CGI来评价精神分裂症症状,并且通过HAS和S/A评分来评估副作用。
疾病
在本发明的附加方面,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗或预防导致患者组织中pH变化或与pH变化相关的功能障碍的方法。根据本文所述的方法可治疗诱发低pH的任何疾病、病症或功能障碍。
此外提供了通过施用有效量的展示本文所述的特性的化合物来延缓与pH降低相关的缺血、缺氧或兴奋性毒性级联的进展的方法。另外,提供了通过施用展示本文所述的特性的化合物来减少与pH降低相关的梗死体积的方法。此外,提供了一种通过施用展示本文所述的特性的化合物来减少与pH降低相关的细胞死亡的方法。此外还提供了通过施用展示本文所述的特性的化合物来减少与pH降低相关的缺血事件所相关的行为缺陷的方法。
在一个实施方案中,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗患有缺血性损伤或低氧症的患者,或预防或治疗与缺血性损伤或低氧症相关的神经元毒性的方法。在一个具体的实施方案中,缺血性损伤可以是卒中。在其他的实施方案中,缺血性损伤可选自,但不限于,下列之一:创伤性脑损伤、搭桥手术后的认知缺陷、颈动脉血管成形术后的认知缺陷;和/或低体温停循环后的新生儿缺血。
在另一个具体的实施方案中,缺血性损伤可以是蛛网膜下腔出血后的血管痉挛。蛛网膜下腔出血指其中血液在蛛网膜(覆盖大脑的膜)下聚集的一种异常状况。此区,称为蛛网膜下腔,正常地含有脑脊液。血液在蛛网膜下腔的积累和由其引起的血管的血管痉挛可导致卒中、癫痫发作和其他并发症。本文所述的方法和化合物可用来治疗经历蛛网膜下腔出血的患者。在一个实施方案中,本文所述的方法和化合物可用来限制蛛网膜下腔出血的毒性作用,包括,例如,可由蛛网膜下腔引起的卒中和/或缺血。在具体的实施方案中,本文所述的方法和化合物可用来治疗患有创伤性蛛网膜下腔出血的患者。在一个实施方案上,创伤性蛛网膜下腔出血可由头部损伤而引起。在另一个实施方案中,患者可具有自发性蛛网膜下腔出血。
在另一个实施方案中,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗患有神经性疼痛或相关功能障碍的患者的方法。在某些实施方案中,神经性疼痛或相关功能障碍可选自下列的组,该组包括但不限于:糖尿病周围神经病变、带状疱疹后神经痛、复合性局部疼痛综合征、周围神经病、化疗诱发的神经性疼痛、癌症神经性疼痛、神经病性腰痛、HIV神经性疼痛、三叉神经痛和/或中枢性脑卒中后疼痛。
神经性疼痛可与异位生成的信号有关,并且经常缺少由周围或中枢神经系统中的病理过程引起的正在发生的伤害性事件。此功能障碍与常见的症状如异常疼痛、痛觉过敏、间歇性感觉异常和自发的烧灼、剧痛(shooting)、刺痛(stabbing)、阵发性或触电感、感觉异常、痛觉过度和/或感觉迟钝有关,其也可用本文所述的化合物和方法治疗。
此外,本文所述的化合物和方法可用来治疗由下列病理事件引起的神经性疼痛:周围或中枢神经系统病理事件,包括,但不限于创伤、缺血;感染或正在发生的代谢性或中毒性疾病、感染或内分泌紊乱,包括,但不限于,糖尿病、糖尿病神经病变、淀粉样变、淀粉样多神经病(原发性和家族性)、伴有单克隆蛋白的神经病、血管炎性神经病、HIV感染、带状疱疹和/或带状疱疹后神经痛;与格林-巴利综合征(Guillain-Barre syndrome)相关的神经病;与法布里病(Fabry′s disease)相关的神经病;由于解剖异常引起的卡压(entrapment);三叉神经痛和其他中枢神经系统神经痛;恶性肿瘤;炎性病症或自身免疫性疾病,包括,但不限于,脱髓鞘炎性疾病、风湿性关节炎、系统性红斑狼疮、干燥综合征(Sjogren′s syndrome);和隐原性病因,包括,但不限于特发性远端小纤维神经病变。可根据本文所述的方法和组合物治疗的神经性疼痛的其他病因包括,但不限于,暴露于毒素或药物(诸如砷、铊、乙醇、长春新碱、顺铂和双脱氧核苷类)、饮食或吸收异常、免疫球蛋白血症、遗传性异常和截肢术(包括乳房切除术)。神经性疼痛还可由神经纤维的压迫引起,诸如神经根病和腕管综合征。
在另一个实施方案中,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗患有脑肿瘤的患者的方法。在进一步的实施方案中,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗患有神经变性疾病的患者的方法。在一个实施方案中,神经变性疾病可以是帕金森病。在另一个实施方案中,神经变性疾病可以是阿尔茨海默病、亨廷顿病和/或肌萎缩侧索硬化。
此外,根据本文所述的方法或过程选择的化合物可预防性地使用以预防或避免此类疾病或神经学病症,如本文所述的那些。在一个实施方案中,具有缺血事件素质,诸如遗传素质的患者可预防性地使用本文所述的方法和化合物治疗。在另一个实施方案中,显示血管痉挛的患者可使用本文所述的方法和化合物预防性地治疗。在进一步的实施方案中,已经历心脏搭桥手术的患者可使用本文所述的方法和化合物预防性地治疗。
另外,提供了通过施用根据本文所述的方法或过程选择的化合物来治疗下列的疾病或神经学病症的方法,这些疾病或神经学病症包括,但不限于:慢性神经损伤,慢性疼痛综合症,诸如,但不限于糖尿病神经病变、缺血、短暂或永久性血管闭塞后的缺血、癫痫发作、扩散性抑制、下肢不宁综合征、低碳酸血症、高碳酸血症、糖尿病酮症酸中毒、胎儿窒息、脊髓损伤、创伤性脑损伤、癫痫持续状态、癫痫、缺氧、围产期缺氧、脑震荡、偏头痛、低碳酸血症、通气过度、乳酸性酸中毒、分娩过程中的胎儿窒息、脑神经胶质瘤和/或视网膜病变。
给药/制剂
患有本文所述的任意一种功能紊乱的宿主,包括哺乳动物,尤其是人,可通过如下方法治疗,即向该宿主施用有效量的本文所述的化合物,或其药学可接受的前药、酯和/或盐,任选地与药学可接受的载体或稀释剂组合。活性化合物可通过任何合适的途径给药,例如,经口、经胃肠外、静脉内、皮内、肌内、皮下、舌下、透皮、经支气管、经咽喉、鼻内、局部诸如借助于霜剂或软膏剂、经直肠、关节内、脑池内、鞘内、阴道内、腹膜内、眼内、吸入、经颊(bucally)或作为口腔或鼻腔喷雾给药。
本发明的化合物可以由无机酸或有机酸衍生的药学可接受的盐的形式给药。“药学可接受的盐”是指在合理的医学判断的范围内,适合用于与人和低等动物的组织接触而没有异常毒性、刺激性、过敏反应等并与合理的效益/风险比相称的那些盐。药学可接受的盐在本领域中是公知的。例如,P.H.Stahl,等人,在“Handbook of Pharmaceutical Salts:Properties,Selection,and Use(药物盐类手册:性质、选择和使用)”(Wiley VCH,Zurich,Switzerland:2002)中详细地记载了药学可接受的盐类。盐类可在本发明的化合物的最终分离和纯化期间原位制备或通过将游离碱官能团与适当的有机酸反应而独立地制备。代表性的酸加成盐包括,但不限于乙酸盐、己二酸盐、藻酸盐、柠檬酸盐、天冬氨酸盐、苯甲酸盐、苯磺酸盐、硫酸氢盐、丁酸盐、樟脑酸盐、樟脑磺酸盐、二葡萄糖酸盐、甘油磷酸盐、半硫酸盐、庚酸盐、己酸盐、延胡索酸盐、盐酸盐、氢溴酸盐、氢碘酸盐、2-羟基乙磺酸盐(羟乙基磺酸盐)、乳酸盐、马来酸盐、甲磺酸盐、烟酸盐、2-萘磺酸盐、草酸盐、双羟萘酸盐、果胶酸盐(pectinate)、过硫酸盐、3-苯基丙酸盐、苦味酸盐、新戊酸盐、丙酸盐、琥珀酸盐、酒石酸盐、硫氰酸盐、磷酸盐、谷氨酸盐、碳酸氢盐、对甲苯磺酸盐和十一酸盐。碱性含氮基团也可使用诸如下列的试剂季铵化:低级卤代烷基诸如甲基、乙基、丙基和丁基氯化物、溴化物和碘化物;二烷基硫酸盐如二甲基、二乙基、二丁基和二戊基硫酸盐;长链卤化物诸如癸基、月桂基、肉豆蔻基和硬脂酰基氯化物、溴化物和碘化物;芳烷基卤化物如苄基和苯乙基溴化物等。由此获得水溶性或油溶性或可分散产物。可采用来形成药学可接受的酸加成盐的酸的实例包括无机酸如盐酸、氢溴酸、硫酸和磷酸,以及有机酸如草酸、马来酸、琥珀酸和柠檬酸。
碱性加成盐可在本发明的化合物的最终分离和纯化期间通过将含羧酸的结构部分与适当的碱如药学可接受的金属阳离子的氢氧化物、碳酸盐或碳酸氢盐,或与氨水或有机伯胺、仲胺或叔胺反应而原位制备。药学可接受的盐类包括,但不限于,基于碱金属或碱土金属的阳离子诸如锂、钠、钾、镁和铝盐等,和无毒的季氨和胺阳离子包括铵、四甲基铵、四乙基铵、甲胺、二甲胺、三甲胺、三乙胺、二乙胺、乙胺等。其他能用于形成碱加成盐的代表性有机胺类包括乙二胺、乙醇胺、二乙醇胺、哌啶、哌嗪等。
也可使用本领域公知的标准方法来获得药学可接受的盐类,例如,通过将碱性化合物诸如胺与适当的酸充分地反应,得到生理学可接受的阴离子。还可制备羧酸的碱金属(例如,钠、钾或锂)或碱土金属(例如钙或镁)盐。
制剂可方便地以单位剂型的方式存在,并且可通过制药领域中公知的任意一种方法来制备。所有方法包括将化合物或其药学可接受的盐或其溶剂化物与构成一种或多种辅料化合物的载体缔合的步骤。通常,制剂通过将活性化合物与液体载体或磨碎的固体载体或两者均匀地和充分地缔合,并且若需要,然后将产品成形为所需制剂。
化合物或药学可接受的酯、盐、溶剂化物或前药可与不损害所需作用的其他活性物质,或与补充所需作用的物质混合。用于胃肠外、皮内、皮下或局部应用的溶液或悬浮液可包括,例如,下列的成分:无菌稀释液诸如注射用水、生理盐水、不挥发油、聚乙二醇、甘油、丙二醇或其他合成溶剂;抗菌剂,如苯甲醇或对羟基苯甲酸甲酯;抗氧化剂,如抗坏血酸或亚硫酸氢钠;螯合剂如乙二胺四乙酸;缓冲剂如乙酸盐、柠檬酸盐或磷酸盐和用于调节张力的试剂如氯化钠或葡萄糖。胃肠外制剂可包封在安瓿、一次性注射器或玻璃或塑料制成的多剂量小瓶中。静脉给药的优选载体是生理盐水或磷酸盐缓冲液(PBS)。
本发明的胃肠外注射用药物组合物包括药学可接受的无菌含水或非水溶液、分散液、悬浮液或乳液和用于复配成为无菌可注射溶液或分散液的无菌粉剂。适当的含水和非水的载体、稀释剂、溶剂或媒介物的实例包括水、乙醇、多元醇(丙二醇、聚乙二醇、甘油等),其适当的混合物,植物油(诸如橄榄油)和可注射有机酯诸如油酸乙酯。通过使用包衣诸如卵磷脂,在分散液的情况下通过保持所需的粒度,以及通过使用表面活性剂,可保持适当的流动性。
这些组合物还可含有辅剂,包括防腐剂、湿润剂、乳化剂和分散剂。可通过加入各种抗菌剂和抗真菌剂,例如,对羟基苯甲酸类、氯代丁醇、苯酚、山梨酸等来确保预防微生物的作用。还可能需要包含等渗剂,例如,糖类、氯化钠等。可通过使用延缓吸收剂,例如,单硬脂酸铝和明胶实现可注射药物形式的延长吸收。
在一些情况下,为了延长药物的作用,经常需要延缓药物从皮下或肌内注射液中的吸收。这可通过使用水溶性差的晶态或非晶态物质的液体悬浮液来实现。然后,药物的吸收速率取决于其溶出速率,而溶出速率可取决于晶体大小和晶型。可选地,经胃肠外给药的药物形式的延缓吸收通过将药物溶解或悬浮在油媒介物中来实现。
除了活性化合物以外,悬浮液可含有悬浮剂,诸如,例如,乙氧基化异硬脂醇、聚氧乙烯山梨醇和脱水山梨糖醇酯、微晶纤维素、偏氢氧化铝(aluminum metahydroxide)、膨润土、琼脂、黄蓍胶、以及它们的混合物。
除了惰性稀释剂以外,制剂组合物还可包含辅剂诸如润湿剂、乳化剂和悬浮剂、甜味剂、矫味剂、和香料。
活性化合物还可,采取微胶囊或纳米胶囊的形式,视情况而定,结合以一种或多种赋形剂。
可注射的储库(depot)形式通过将药物在生物可降解聚合物如聚乳酸-聚乙醇酸中形成药物的微囊体基质来制得。根据药物与聚合物的比率和所用特定聚合物的特性,可控制药物的释放速率。其他生物可降解聚合物的实例包括聚(原酸酯)和聚(酐)。储库注射剂还通过将药物包裹在与机体组织相容的脂质体或微乳液中来制备。
注射剂可被灭菌,例如,通过细菌截留滤器(bacterial-retaining filter)过滤,或通过以无菌固体组合物的形式加入灭菌剂,其可刚好在使用前溶解或分散在无菌水或其他无菌可注射介质中。注射剂,例如,无菌注射水性或油性悬浮液可根据已知技术使用适当的分散剂或湿润剂和悬浮剂配制。无菌注射剂还可以是在无毒的、胃肠外可接受的稀释剂或溶剂诸如1,3-丁二醇溶液中的无菌可注射溶液、悬浮液或乳液。在可采用的可接受的媒介物和溶剂中,有水,林格氏溶液,U.S.P.和等渗氯化钠溶液。另外,无菌的不挥发油常规地被用作溶剂或悬浮介质。对于此目的,可采用任何的无刺激性的不挥发油,包括合成的甘油单酯或甘油二酯。另外,诸如油酸的脂肪酸用于注射剂的制备中。
用于胃肠外(包括皮下、皮内、肌内、静脉内和关节内)给药的制剂包括水性的和非水性的无菌注射溶液,其可含有抗氧化剂、缓冲剂、抑菌剂和使该制剂与目标受者的血液等渗的溶质;以及水性和非水性无菌悬浮液,其可包括悬浮剂和增稠剂。制剂可置于单位剂量或多剂量容器,例如密封的安瓿和小瓶中,并且可储存在冷冻干燥的(冻干)条件,仅需要在使用之前立即加入无菌液体载体,例如,盐水、注射用水。临时注射溶液和悬浮液可由以前记载的类型的无菌粉剂、颗粒剂和片剂制备。
本发明的另一种配制方法涉及将本文所述的化合物与增强水溶性的聚合物缀合。适当的聚合物的实例包括但不限于聚乙二醇、聚-(d-谷氨酸)、聚-(l-谷氨酸)、聚-(l-谷氨酸)、聚-(d-天冬氨酸)、聚-(l-天冬氨酸)、聚-(l-天冬氨酸)及其共聚物。聚谷氨酸的分子量优选为约5,000-约100,000的分子量,更优选约20,000-80,000并且最优选约30,000-60,000的分子量。使用基本上如美国专利号5,977,163中所记载的实验方案,将聚合物经由酯键与本发明的埃博霉素(epothilone)的一个或多个羟基缀合,上述美国专利通过引用合并入本文中。优选的缀合位点包括对于本发明的21-羟基衍生物的碳-21上的羟基。其他的缀合位点包括但不限于碳3上的羟基和/或碳7上的羟基。
还在另一种配制方法中,本发明的化合物可与单克隆抗体缀合。此策略能够使本发明的化合物靶向特异性靶标。对于缀合抗体的设计和使用的通用方案记载在″Monoclonal Antibody-Based Therapy of Cancer(基于单克隆抗体的癌症治疗)″(Michael L.Grossbard编辑,(1998))中。
本发明的化合物通过任何适当的给药途径给药,例如,经口、经胃肠外、静脉内、皮内、肌内、皮下、舌下、透皮、经支气管、经咽喉、鼻内、局部诸如借助于霜剂或软膏剂、经直肠、关节内、脑池内、鞘内、阴道内、腹膜内、眼内、吸入、经颊(bucally)或作为口腔或鼻腔喷雾给药。然而,给药途径可根据糖尿病血管疾病或眼部炎症的状况和严重性而变化。施用于宿主或患者的化合物的准确量将由医生来负责。然而,采用的剂量将取决于许多因素,包括患者的年龄和性别、被治疗的具体病症及其严重性。
可与载体物质混合以产生单一剂型的活性化合物的量将根据被治疗的受试者和给药的具体模式而变化。例如,静脉内应用的制剂可包括的本发明的化合物的量为约1mg/mL-约25mg/mL,优选约5mg/mL-15mg/mL,以及更优选地约10mg/mL。根据本发明的组合物,典型地为约0.001mg/kg/天-约2500mg/kg/天的剂量范围。优选地,剂量范围为约0.1mg/kg/天-约1000mg/kg/天。更优选地,剂量范围为约0.1mg/kg/天-约500mg/kg/天,包括1mg/kg、2mg/kg、5mg/kg、10mg/kg、15mg/kg、20mg、kg、25mg/kg、30mg/kg、35mg/kg、40mg/kg、45mg/kg、50mg/kg、100mg/kg、200mg/kg、300mg/kg、400mg/kg、500mg/kg/天,和在此范围中给出的任何两个值之间的值。人的剂量范围通常为约0.005mg-100g/天。可选地,根据本发明的剂量范围如下,即,本发明的化合物的血液血清水平为约0.01μM-约100μM,优选约0.1μM-约100μM。根据本发明的血液血清水平的适当值包括但不限于约0.01μM、约0.1μM、约0.5μM、约1μM、约5μM、约10μM、约15μM、约20μM、约25μM、约30μM、约35μM、约40μM、约45μM、约50μM、约55μM、约60μM、约65μM、约70μM、约75μM、约80μM、约85μM、约90μM、约95μM和约100μM,以及落在这些值的任意两个值的范围内的任何血液血清水平(例如,约10μM-约60μM)。以离散单位提供的片剂或其他剂型形式可方便地包含一定量的本发明的一种或多种化合物,这些化合物在此剂量范围下,或这些范围之间的范围下是有效的。
本发明的化合物和制剂可以本领域中任何已知的标准剂型;以固体剂型,半固体剂型或液体剂型,以及这些剂型中各种剂型的子类来施用。
用于口服给药的固体剂型包括胶囊剂、小胶囊剂、片剂、丸剂、粉剂、锭剂和颗粒剂。在这类固体剂型中,活性化合物与下述物质混合:至少一种惰性、药物可接受的赋形剂或载体如柠檬酸钠或磷酸氢二钙;和/或(a)填充剂或增量剂例如淀粉、乳糖、蔗糖、葡萄糖、甘露糖和水杨酸;(b)粘合剂如羧甲基纤维素、藻酸盐、明胶、聚乙烯吡咯烷酮、蔗糖和阿拉伯胶,(c)湿润剂如甘油,(d)崩解剂如琼脂、碳酸钙、土豆淀粉或木薯淀粉、藻酸、某些硅酸盐、和碳酸钠,(,e)溶液阻滞剂例如石蜡,(f)吸收促进剂例如季铵化合物,(g)湿润剂例如鲸蜡醇和单硬脂酸甘油酯,(h)吸附剂例如高龄土和膨润土;和(i)润滑剂例如滑石、硬脂酸钙、硬脂酸镁、固体聚乙二醇、十二烷基硫酸钠,和它们的混合物。对于胶囊、片剂、和丸剂,这些剂量形式还可以包含缓冲剂。
相似类型的固体组分也可被用作采用如乳糖以及高分子量聚乙二醇等的赋形剂的软和硬明胶胶囊中的填充剂。
片剂、胶囊剂、丸剂和颗粒剂的固体剂型可用包衣物或外壳物例如肠溶衣或其它制药领域众所周知的包衣物来制备。它们可任选地含有遮光剂,并且还可以具有这样的组分,使得它们仅释放(多种)活性化合物,或优选地在某部分肠道内延迟地释放(多种)活性化合物。可使用的包埋组分的实例包括聚合物质和蜡类。
片剂可任选地与一种或多种辅助化合物一起通过压缩或模制而制成。压制片剂可通过将任选地与粘合剂、润滑剂、惰性稀释剂、润滑的表面活性或分散剂混合的,诸如粉剂或颗粒剂等的散粒形式的活性化合物,在适当的机器中压缩而制备。模制片剂可通过将用惰性液体稀释剂湿润的粉末状化合物的混合物在适当的机器中模制而制得。片剂可任选地被包被或刻痕,并且可被配制从而提供其中的活性化合物的缓慢或控制释放。
用于直肠或阴道给药的组合物优选地是栓剂,其可如下被制备:将本发明的化合物与适当的非刺激性赋形剂或载体如可可脂、聚乙二醇或栓剂蜡混合,所述栓剂蜡在环境温度下为固体但在体温下为液体并因此在直肠或阴道腔内熔化以释放活性化合物。
半液体剂型包括结构太软从而不能当作固体,但太稠又不能被当作液体的剂型。这些剂型包括霜剂、糊剂、软膏剂、凝胶、洗剂、和含有本发明的活性化合物的其他半固体乳剂。
用于口服给药的液体剂型包括药学可接受的乳剂、微乳剂、溶液剂、混悬剂、糖浆剂和酏剂。除了活性化合物以外,液体剂型可含有本领域中常用的惰性稀释剂诸如,例如,水或其他溶剂,增溶剂和乳化剂诸如乙醇、异丙醇、碳酸乙酯、乙酸乙酯、苯甲醇、苯甲酸苄酯、丙二醇、1,3-丁二醇、二甲基甲酰胺、油类(具体地,棉籽油、花生油、玉米油、胚油、橄榄油、蓖麻油和芝麻油)、甘油、四氢糠醇、聚乙二醇和山梨聚糖的脂肪酸酯,和它们的混合物。
含有本发明的化合物的制剂可通过诸如透皮贴剂的器械经皮肤给药。贴剂可由诸如聚丙烯酰胺、聚硅氧烷或两者的基质和半透膜制成,所述半透膜由适当的聚合物制成以控制物质向皮肤的递送速率。其他适当的透皮贴剂和构造记载在美国专利号5,296,222和5,271,940中,以及Satas,D.等人,″Handbook of Pressure Sensitive Adhesive Technology,2nd Ed.(压敏胶粘技术手册,第二版)″,Van Nostrand Reinhold,1989:25章,627-642页中。
粉剂和喷雾剂除本发明的化合物以外,可含有赋形剂诸如乳糖、滑石、硅酸、氢氧化铝、硅酸钙和聚酰胺粉末,或这些物质的混合物。喷雾剂可额外地含有惯用的抛射剂诸如氯氟代烃类。这些赋形剂记载在,例如,″Handbook of Pharmaceutical Excipients,3rd Ed.(药物赋形剂手册,第三版)″,A.H.Kibbe编辑(American Pharmaceutical Association and Pharmaceutical Press(美国药学协会和药物出版社),Washington,DC,2000),其全部内容通过引用包含在本文中。
在一个实施方案中,本发明的活性化合物与载体一起制备,所述载体避免该化合物从机体快速地清除或快速释放,诸如控制释放制剂,包括埋植剂和微胶囊递送系统。可使用生物可降解的、生物相容性聚合物,诸如乙烯乙酸乙烯酯、聚酐、聚乙醇酸、胶原、聚原酸酯和聚乳酸。制备此类制剂的方法对于本领域技术人员是显而易见的。
提供下面的实施例作为说明而并非限制。
实施例
实施例1:化合物93-4对于NMDA受体与其他谷氨酸受体的选择性
化合物93-4系列显示对NMDA受体是选择性的,其对注射AMPA受体和红藻氨酸受体亚单位的爪蟾卵母细胞没有作用。使用双电极电压钳,和与激动剂(谷氨酸用于AMPA受体,多摩酸(domoate)用于红藻氨酸受体)共同施用的3μM化合物93-4进行谷氨酸或多摩酸诱导的电流记录。未观察到激动剂诱导反应的减少,表明化合物93-4不抑制AMPA和红藻氨酸受体。另外,当受体由NR1/NR2B亚单位而非NR1/NR2A或NR1/NR2D受体组成时,3μM化合物93-4有效地抑制NMDA受体介导的电流。
实施例2:93系列化合物对大鼠的自主活动的作用
100-150g Sprague-Dawley大鼠在装有光学监视器的活动箱中熟悉1小时后,腹腔注射不同剂量的93-4、93-5、93-8、93-31、93-40、93-41,所述光学监视器用于将自主活动作为光束中断数进行定量。注射2小时后监测自主活动。MK801的两种立体异构体用作阳性对照。(+)MK801显示对自主活动具有常规的双相作用,自主活动初始增加,紧接着减少,反映有共济失调。该数据说明与媒介物注射的对照动物相比,在导致自主活动诱导方面(-)MK801的效力比(+)MK801小至少10倍。另外,3-300mg/kg 93-4、3-300mg/kg 93-5、30-300mg/kg93-8、3-300mg/kg 93-31(图5)、30mg/kg 93-40和30-300mg/kg 93-41对自主活动没有显著的作用。已知有神经保护作用的93系列化合物的剂量对自主活动没有作用。
实施例3:测定爪蟾卵母细胞中的pH依赖性效能偏移(potency shift)。
NMDA受体在爪蟾卵母细胞中的表达。根据生产厂商(Ambion:)的使用说明书从NMDA受体亚单位(NR1-1a,NR2B,NR2A)的线性化模板cDNA合成cRNA。使用的cDNA对应于GenBank编号U08261和U11418(NR1-1a)、AF001423和CD13211(NR2A)、U11419(NR2B)。简言之,cDNA用编码区下游的适当限制性酶线性化,纯化,并与RNA聚合酶和适当浓度的核糖核苷酸一起孵育。使用标准方法纯化体外转录的cRNA。通过凝胶电泳评价合成的cRNA的质量,并且通过光谱法和凝胶电泳估计数量。从用3-氨基-苯甲酸乙酯(1g/l)麻醉的较大的营养充足的健康光滑爪蟾的卵巢中手术取出V期和VI期卵母细胞。卵母细胞群与292U/ml Worthington(Freehold,NJ)IV型胶原酶或1.3mg/ml胶原酶(Life Technologies,Gaithersburg,MD;17018-029)在无Ca2+溶液中孵育2hr,所述无Ca2+溶液由(以mM计)115NaCl,2.5KCl,和10HEPES,pH 7.5组成,缓慢搅动以去除滤泡细胞层。然后卵母细胞在添加了1.8mM CaCl2的相同溶液中充分地洗涤,并保持在由下列物质(以mM计)组成并添加了100μg/ml庆大霉素、40μg/ml链霉素和50μg/ml青霉素的Barth′s溶液:88NaCl,1KCl,24NaHCO3,10HEPES,0.82MgSO4,0.33Ca(NO3)2,和0.91CaC12。将卵母细胞人工地去除滤泡膜,并在分离24h内注射50nl体积的5ng NR1亚单位和10ng NR2亚单位,并且在18℃下在Barth′s溶液中孵育3-7d。玻璃注射吸液管的尖端尺寸为10-20微米,并且回填以矿物油。
用于测试的pH依赖性NMDA受体拮抗剂的制备。NMDA受体拮抗剂典型地制成为100%DMSO中的20mM溶液,并保存在-20℃。该储备溶液连续地稀释(1/10v/v)为2mM,0.2mM,和0.02mM,均在100%DMSO中稀释。这些储备溶液随后在工作溶液中稀释为适当的浓度范围,工作溶液由90mM NaCl,3mM KCl,5mM HEPES,0.5mM BaCl2,10μM EDTA,100μM谷氨酸,50μM甘氨酸组成(视情况用NAOH或HCl调整pH为6.9或7.6)。测试的药物的浓度为0.01,0.03微摩尔(将0.02mM储备液稀释为适当的体积);0.1,0.3微摩尔(将0.2mM储备液稀释为适当的体积);1,3微摩尔(将2mM储备液稀释为适当的体积);和/或10,30,100微摩尔(将20mM储备液稀释为适当的体积)。
来自爪蟾卵母细胞的电压钳记录。在注射后2-7天进行双电极电压钳记录。卵母细胞置于带有单个灌注管道的双道(dual-track)有机玻璃记录室中,该室以Y-构型分开从而灌注两个卵母细胞。在室温下使用两个Warner OC725B双电极电压钳放大器,如生产厂商所推荐的方式排列,进行双重记录。玻璃微电极(1-10兆欧姆)充以300mM KCl(电压电极)或3M KCl(电流电极)。浴锅钳(bath clamp)横在置于记录室每一侧中的氯化银导线上相连通,假设记录室的两侧处于0mV的基准电位。卵母细胞用由下列物质组成的溶液灌注:(以mM计)90NaCl,1KCl,10HEPES,和0.5BaCl2,pH 7.3,并保持在-40mV。通过分别加入来自100和30mM储备溶液的适当体积而达到用于对照应用的谷氨酸(100微摩尔)加甘氨酸(50微摩尔)的最终浓度。另外,通过加入10mM EDTA的1∶1000稀释液获得10微摩尔的最终EDTA,以便螯合污染的二价离子诸如Zn2+。调节外部pH至6.9或7.6。通过以连续的方式应用最大浓度的谷氨酸和甘氨酸,然后应用谷氨酸/甘氨酸加变化浓度的拮抗剂,从而获得剂量响应曲线。以此方式获得由4-6个浓度组成的剂量响应曲线。在记录之前和之后测量-40mV下的基线泄漏电流,并且完整的记录线性地校正泄漏电流中的任何变化。在pH 7.6下谷氨酸诱发响应小于100nA或在pH 6.9下小于50nA的卵母细胞不包括在内。应用的拮抗剂的抑制水平表示为初始谷氨酸响应的百分比,并且在来自单只蛙的卵母细胞之间在一起进行平均。各个试验由在各个pH下来自3-10个获自单只蛙的卵母细胞的记录组成。在4-8个拮抗剂浓度的每一个下的平均响应百分比通过逻辑方程,(100-min)/(1+([conc]/IC50)nH)+min来进行拟合,其中min为在饱和拮抗剂时的剩余响应百分比,IC50是引起可达到的抑制作用的一半的拮抗剂浓度,并且nH是描述抑制性曲线的倾斜度的坡度因子。Min可被限制为大于或等于0。对于使用已知通道阻断剂的试验,min设为0。在pH 7.6和6.9下获得的IC50值可表示为比值,并一起平均以测定IC50的均值偏移。
实施例4:确定短暂性局灶性缺血的体内模型中的神经保护作用
短暂性局灶性缺血 短暂性局灶性脑缺血通过用单丝缝合线闭塞腔内大脑中动脉(MCA)来诱发。简言之,雄性C57BL/6小鼠(3-5月龄,The Jackson Laboratory)用98%O2中的2%异氟醚麻醉。用恒温毯将直肠温度控制在37℃(范围为36.5-37.5)。用激光多普勒流量计(Perimed)来监测区域性脑血流中的相对变化。为此,将探针直接粘在前囟点后2mm和侧向4-6mm头骨处。尖端被火焰烧成圆形的一根11-mm 5-0 Dermalon或Look(SP185)黑色尼龙不吸收性缝合线通过颈外动脉残端导入至左颈内动脉中直至监测的血流停止(在缝合线插入10.5-11mm处)。30-min MCA闭塞后,通过拉出缝合线而恢复血流。存活24小时后,取出大脑,并切成2mm切片。用PBS中的2%氯化2,3,5-三苯基四唑(TTC)在37℃下约20分钟识别病灶。使用NIH IMAGE(Scion Corporation,Beta 4.0.2release)测量各个切片的梗死面积,并乘以切片厚度,得到该切片的梗死体积。NIH IMAGE中的密度切片选择项用来基于测定为对侧未受损皮质的70%或75%的强度对图像进行分段。在所有动物中在整个分析期间保持此标准,并且仅将在此强度处的物体突出显示用于面积测量。如通过数字鉴别TTC染色中的阈值减少而鉴别的病灶的面积被人工地描出轮廓。对侧与同侧半球切片体积的比值乘以相应的梗死切片体积以校正水肿。对于所有切片,通过将梗死面积与切片厚度的乘积相加来确定梗死体积。在每次测量中包含至少12只动物。对于一些试验,通过对染色减少区手绘画圈来直接测量损害区。两种方法获得相同的结果。
pH依赖性NMDA受体拮抗剂的腹膜内给药。C57B1/6小鼠在MCA闭塞手术之前30min接受93-4,93-5,93-8,93-31,93-40的腹膜内(IP)注射。通过向0.5ml DMSO中加入30mg化合物,然后加入0.5ml 0.9%盐水并涡旋而制备50%DMSO中的30mg/ml储备溶液。
用于IP注射溶液的工作溶液为0.9%盐水(50%v/v DMSO)中3mg/ml,并且通过将0.2ml储备溶液转移至新管中,并加入0.9ml DMSO和0.9ml 0.9%盐水并涡旋而制备。3-30mg/kg的最终剂量施用于小鼠,注射体积根据动物重量和所需剂量而变化。
pH依赖性NMDA受体拮抗剂的脑室内给药。在独立的一组试验中,小鼠在手术前接受NMDA拮抗剂(93-5,93-97,93-31,93-41,93-43)或适当媒介物的小体积脑室内注射(ICV)。开始对所有药物制备100%DMSO中的20mM储备溶液。5微升此储备溶液转移至新管中,并对于药物93-41,93-43加入45微升DMSO并涡旋。随后加入150微升磷酸盐缓冲盐水(PBS,0.9%NaCl,pH 7.4,Sigma1000-3),得到25%(v/v)DMSO中的0.5mM药物溶液。对于所有其他药物,将5微升的20mM DMSO储备溶液转移至新管,并加入15μl DMSO并涡旋。向此溶液中加入180微升PBS,从而得到10%v/v DMSO中的0.5mM药物的工作溶液。对于媒介物,DMSO替换DMSO中的20mM药物。在MCA闭塞手术前30min,所有ICV注射液注入雄性C57BL/6小鼠(3-5月龄,The Jackson Laboratory)的右脑室内(前囟点后2mm和侧向1mm,针插入3mm)。在MCA闭塞手术后24h处死小鼠,并且如上所述鉴别病灶并分析。在颅底处出现超过~1mm的血凝块被鉴别为具有蛛网膜下腔出血的小鼠,并被剔除。
结果
化合物93-97、93-43、93-5、93-41和93-31
图2图示说明了在这些药剂ICV给药后,在pH 6.9下与在pH 7.6下相比化合物93-97、93-43、93-5、93-41和93-31的体外效能增强相对于组织梗死体积的比较。数据表示对于媒介物注射对照所测定的梗死体积的%,并且如上所述测量效能增强。灰色阴影区域表示限定较佳药物性能标准的经鉴定的边界范围的区域。落在该边界范围内的药物是具有在灰色封闭区内的均值(没有误差棒)的那些药物。
对于每种化合物,在如上所述短暂性局灶性缺血事件后,在C57B1/6小鼠中测量梗死体积。如上所述,化合物93-97、93-43、93-5、93-41和93-31经脑室内应用(ICV;实心圆)。误差棒为均值的标准误(SEM)。如本文所述,对表达NR1/NR2B受体的卵母细胞计算在pH 6.9下与pH 7.6下相比所述化合物93-5、93-31、93-41、93-43和93-97的效能增强。
化合物93-4、93-5、93-8、93-31、93-40、(-)MKS01知(+)MK801
图3图示说明了在pH 6.9下与在pH 7.6下相比化合物93-4、93-5、93-8、93-31、93-40的体外效能增强相对于组织梗死体积的比较。数据代表表示为媒介物注射的对照动物中的梗死体积的百分比的实际梗死体积,并且如上所述计算效能增强。灰色阴影区域表示限定较佳药物性能标准的经鉴定的边界范围的区域。落在该边界范围内的药物是具有灰色封闭区内的均值(没有误差棒)的那些药物。
对于每种化合物,在如上所述短暂性局灶性缺血事件后,在C57B 1/6小鼠中测量梗死体积。如上所述药物腹膜内注射(IP)应用。误差棒为SEM。从IP给药与配对的对照相比梗死体积的减小百分比推算梗死体积。其计算为在独立试验中药物诱发的对照梗死的百分比所表示的梗死体积和ICV试验的平均对照梗死体积(mm3)的积,后者显示为实线(虚线显示平均对照梗死+-SEM)。如本文所述对表达NR1/NR2B受体的卵母细胞计算在pH 6.9下相对于pH 7.6下相比所述化合物93-4、93-5、93-8、93-31和93-40,(+)MK801和(-)MK801的效能增强。
其他的化合物
图4比较了在pH 6.9下与在pH 7.6下相比已知化合物对NR1/NR2A和NR1/NR2B的体外效能增强相对于对照组织梗死体积百分比的变化。灰色阴影区域表示限定较佳药物性能标准的经鉴定的边界范围的区域。落在该边界范围内的药物是具有灰色封闭区内的均值(没有误差棒)的那些药物。
空心符号显示如文献中所述通过施用CNS1102(CN,阿替加奈(aptiganel)或Cerestat,Dawson等人,2001)、右美沙芬(dextromethorphan)(DM,Steinberg等人,1995)、右啡烷(dextrorphan)(DX;Steinberg等人,1995)、左美沙芬(levomethorphan)(LM;Steinberg等人,1995)、(S)氯胺酮(KT;Proescholdt等人,2001)、美金刚(memantine)(MM;Culmsee等人,2004)、艾芬地尔(IF,Dawson等人,2001)、CP101,606(CP;Yang等人,2003)、AP7(Swan和Meldrum,1990)、塞福太(CGS19755,Dawson等人,2001)、(R)HA966(HA;Dawson等人,2001)、瑞马西胺(remacemide)(RE,Dawson等人,2001)、氟哌啶醇(O′Neill等人,1998)、7-Cl-犬尿喹啉酸(7-Cl-kynurenic acid)(CK,Wood等人,1992)和MK801的立体异构体(+MK或-MK;Dravid等人)在各种啮齿类动物或兔缺血模型(参见下面的参考文献)中所引起的梗死体积减少。对于除氯胺酮和7-Cl-犬尿喹啉酸以外的所有化合物,由药物与对照的梗死体积比率计算梗死的减少百分比,对于氯胺酮和7-Cl-犬尿喹啉酸,测量药物引起的神经元密度减少百分比。
如上所述对表达NR1/NR2A或NR1/NR2B受体的卵母细胞计算在pH 6.9下与pH 7.6下相比所有化合物的效能增强(对于多次试验的总结参见表3和表4)。对于艾芬地尔(IF)和CP101,606(CP)的pH增强从文献中确定(Mott等人,1998)。
检验梗死体积的小鼠数目显示在表3中。对于对NR1-1a/NR2B受体的效能增强测量,使用的蛙的数目和在pH 6.9下和pH 7.6下在单一浓度下测试的卵母细胞的最大数目显示在表3中。对于在各个pH下IC50的测定,测试各种药物的多个浓度。对于对NR1-1a/NR2A受体的效能增强测量,使用的蛙的数目和在pH6.9下和pH 7.6下在单一浓度下测试的卵母细胞的最大数目显示在表4中。
表3:对于在图1、2、3、4中所示的来自NR1/NR2B的数据各个试验的重复次数。
Figure BPA00001178509600591
Figure BPA00001178509600601
表4:对于在图4中所示的来自NR1/NR2A的数据各个试验的重复次数。
Figure BPA00001178509600602
图1代表图2、3和4的合成结果。其图示了在测试的24种化合物中,有20种化合物(83%)落在本发明的区域(由阴影区域表示)之外,表明超过80%的测试化合物不能满足用于较佳的体内治疗的鉴定标准。灰色阴影区域表示限定较佳药物性能标准的经鉴定的边界范围的区域。落在该边界范围内的药物是具有灰色封闭区内的均值(没有误差棒)的那些药物。化合物93-4、93-5、93-41、93-31的均值落在NR1/NR2B的阴影区域内。(-)MK801和氯胺酮的均值落在NR1/NR2A的阴影区域内(图4)。
具体地,在图1中,在如上所述短暂性局灶性缺血事件后,在C57B1/6小鼠中对由符号指示的化合物测量梗死体积。如上所述,药物经脑室内应用(ICV;正方形)或通过腹膜内注射(IP;圆)应用。误差棒为SEM。IP给药与配对的对照相比,梗死体积直接测量为对照梗死体积的百分比。对照显示为实线(虚线显示平均对照梗死+-SEM)。空心符号显示如文献中所述通过施用CNS1102(CN,阿替加奈(aptiganel)或Cerestat,Dawson等人,2001)、右美沙芬(dextromethorphan)(DM,Steinberg等人,1995)、右啡烷(dextrorphan)(DX;Steinberg等人,1995)、左美沙芬(levomethorphan)(LM;Steinberg等人,1995),(S)氯胺酮(KT;Proescholdt等人,2001)、美金刚(memantine)(MM;Culmsee等人,2004)、艾芬地尔(IF,Dawson等人,2001)、CP101,606(CP;Yang等人,2003)、AP7(Swan和Meldrum,1990)、塞福太(CGS19755,Dawson等人,2001)、(R)HA966(HA;Dawson等人,2001)、瑞马西胺(remacemide)(RE,Dawson等人,2001)、氟哌啶醇(O′Neill等人,1998)、7-Cl-犬尿喹啉酸(7-Cl-kynurenic acid)(CK,Wood等人,1992)和MK801的立体异构体(+MK或-MK;Dravid等人)在各种啮齿类动物或兔缺血模型(参见下面的参考文南)中所引起的梗死体积减少。对于除氯胺酮和7-Cl-犬尿喹啉酸以外的所有化合物,由药物与对照的梗死体积比率计算梗死的减少百分比,对于氯胺酮和7-Cl-犬尿喹啉酸,测量药物引起的神经元密度减少百分比。
在图1中,如上所述还计算在pH 6.9下与7.6下相比93-4、93-5、93-8、93-31、93-40、93-43、93-97、(+)MK801、(-)MK801和所有其他的化合物的效能增强,观察的次数报告在表1和2中。对于艾芬地尔(IF)和CP101,606(CP)的pH增强从文献中确定(Mott等人,1998)。
实施例5:在神经性疼痛的体内模型中的评价
方法
动物:雄性Sprague-Dawley大鼠(Hsd:
Figure BPA00001178509600611
TM,Harlan,Indianapolis,Indiana,U.S.A.)每笼3只进行圈养,在手术日称重为100±10g,在测试日称重为250±10g。动物自由进食和饮水,并以12:12h昼/夜周期饲养。动物群体在21℃和60%湿度下饲养。所有试验根据国际疼痛研究学会的准则进行,并得到明尼苏达大学动物管理和使用委员会(University of Minnesota Animal Care and Use Committee)的比准。
药物和给药溶液:药物溶解在蒸馏水中的1%v/v DMSO和66%v/v PEG 400中。化合物经腹腔内(i.p.)途径给药。
慢性神经性疼痛的诱导:脊神经结扎(SNL)模型(Kim和Chung 1992Pain50:355-63.)用来诱导慢性神经性疼痛。动物用异氟醚麻醉,去除左L5横突,并且用6-0丝线紧紧地结扎L5和L6脊神经。然后用内缝合线和外U形钉闭合伤口。手术后10天去除缝合夹。
机械性异常疼痛测试:使用8个具有不同刚度(0.4,0.7,1.2,2.0,3.6,5.5,8.5,和15g)的Semmes-Weinstein丝(Stoelting,Wood Dale,IL,USA)根据上-下法(Chaplan,Bach等人,1994J Neurosci Methods 53:55-63)评价非伤害性机械敏感性的基线值和治疗后值。动物置于多孔的金属平台上,并在测试前使其适应其周围环境最小30分钟。对每个治疗组中的每只动物测定均值和均值的标准误(SEM)。由于该刺激通常被认为是不痛的,因此在此测试中显著的损伤诱导的响应性增加被看作是机械性异常疼痛的指标。
试验设计:分别在药物给药之前30min和24小时做von Frey基线测量。其他的yon Frey测量在30,60,120和240min时进行。测试的时间线总结在下面。试验组为:·媒介物(蒸馏水中的1%DMSO+66%PEG 400,i.p.,4ml/kg,n=10)·30mg/kg化合物93-31试验(i.p.,4ml/kg,n=10)·100mg/kg化合物93-31试验(i.p.,4ml/kg,n=10)·30mg/kg化合物93-97试验(i.p.,4ml/kg,n=10)·100mg/kg化合物93-97试验(i.p.,4ml/kg,n=10)·100mg/kg加巴喷丁(i.p.,4ml/kg,n=12)(大鼠总计:62)。
试验时间线
Figure BPA00001178509600631
设盲步骤:药物溶液由不进行行为测试的单独实验者来施用。
数据分析:使用PrismTM 4.01(GraphPad,San Diego,CA,USA)进行统计学分析。通过将在媒介物组内的对侧和同侧爪中观察的值进行比较来测定损伤爪的机械性异常疼痛。使用弗里德曼双向秩次方差分析(Friedman two-way analysis of variance by rank)检验媒介物组损伤爪值随时间变化的稳定性。通过进行Kruskal-Wallis单向秩次方差分析(Kruskal-Wallis one-way analysis of variance by rank),紧接着使用Dunn′s事后分析检验(Dunn′s post hoc test),在各个时间点分析药物作用。
结果
von Frey测试
在SNL手术后14天开始机械性异常疼痛(von Frey)的测试。在基线(药物给药前30分钟)和单次药物给药后30,60,120和240分钟时在损伤(同侧)和正常(对侧)爪上均进行测试。
在基线时,所有动物显示损伤爪中有机械性异常疼痛(表2)。在组间损害的水平相当,并且在整个研究期间损伤爪中的von Frey阈值与媒介物治疗组的正常爪中所观察到的阈值显著不同(图6)。图6显示,媒介物组中的动物在研究的整个持续时间内均显示显著的机械性异常疼痛。图示的为用媒介物治疗的动物的损伤爪和正常爪中的平均von Frey阈值±SEM(n=10)。在所有时间点时爪间的差异显著(曼-惠特尼检验(Mann-Whitney test))。化合物93-31和93-97对正常爪中测量的von Frey阈值没有作用(图7和8)。图7显示化合物93-31不改变正常爪中的von Frey阈值。图示的为用经腹腔内给药的媒介物、加巴喷丁或30和100mg/kg剂量的化合物93-31治疗的动物的正常爪中平均von Frey阈值±SEM(n=10-12)。图8显示化合物93-97不改变正常爪中的yon Frey阈值。图示的是为用经腹腔内给药的媒介物、加巴喷丁或30和100mg/kg剂量的93-37治疗的动物的正常爪中平均von Frey阈值±SEM(n=10-12)。
表2-损伤爪-von Frey阈值
  治疗(mg/kg)   n   基线   30min   60min   120min   240min
  媒介物   10   1.9±0.3   2.3±0.4   1.5±0.3   1.4±0.3   1.0±0.2
  93-31(30)   10   2.4±0.4   1.9±0.3   1.7±0.1   0.8±0.2   1.1±0.3
  93-31(100)   10   1.7±0.3   9.3±1.5   8.9±1.7   1.9±0.3   0.8±0.2
  93-37(30)   10   1.9±0.2   1.6±0.3   1.1±0.1   0.9±0.1   1.0±0.2
  93-37(100)   10   1.2±0.1   1.1±0.2   1.4±0.3   1.0±0.1   0.8±0.2
  加巴喷丁(100)   12   1.9±0.2   6.0±1.1   11.1±1.5   13.6±0.9   6.6±1.3
值为均值±SEM。
表3-损伤爪-统计学分析总结
  治疗(mg/kg)   n   基线   30min   60min   120min   240min
  媒介物   10   -   -   -   -   -
  93-31(30)   10   ns   ns   ns   ns   ns
  93-31(100)   10   ns   P<0.01   P<0.01   ns   ns
  93-37(30)   10   ns   ns   ns   ns   ns
  93-37(100)   10   ns   ns   ns   ns   ns
  加巴喷丁(100)   12   ns   ns   P<0.01   P<0.01   P<0.01
Kruskal-Wallis    p=0.1182  p<0.0001  p<0.0001  p<0.0001  p<0.0001
ns  与媒介物组比较不显著
用化合物93-31(100mg/kg i.p.)治疗在其给药后30和60min时产生可观察到的镇痛作用(图9)。图9图示说明腹腔内施用化合物93-31(100mg/kg)减少了机械性异常疼痛。显示的为用经腹腔内给药的媒介物、加巴喷丁(参考化合物)或30和100mg/kg剂量的化合物93-31治疗的动物的损伤爪中von Frey阈值的均值±SEM(n=10-12)。Dunn′s事后分析检验(Dunn′s post hoc test)显示在30和60min时化合物93-31(100mg/kg)和媒介物组之间的显著配对差异(p<0.01)。加巴喷丁在60,120和240分钟时的作用也很显著(分别为p<0.001,p<0.01,和p<0.01)。30mg/kg化合物93-31,以及30和100mg/kg化合物93-97在研究的任何时间点均没有镇痛作用。在此研究中媒介物组的统计学分析表明在基线和在30,60,120和240分钟时间点时的von Frey阈值之间没有显著的差异(弗里德曼双向方差分析)。
另外,经腹腔内给药的化合物93-97不能减轻SNL大鼠中的机械性异常疼痛。图10显示,化合物93-97(30和100mg/kg)的经腹腔内给药显示对von Frey阈值没有作用。图示的为用经腹腔内给药的媒介物、加巴喷丁(参考化合物)或30和100mg/kg剂量的化合物93-37治疗的动物的损伤爪中von Frey阈值的均值±SEM(n=10-12)。加巴喷丁在60,120和240分钟时的作用也很显著(分别为p<0.001,p<0.01,和p<0.01)。
在本研究中测试的动物组中观察到一些副作用(62只中的8只)。观察到的副作用为扭体(writhing)和伸展(stretching)(8次观察)。这些副作用最常见于经腹腔内药物给药后的开始几分钟(~5分钟)。在所有研究组中均见到伸展/扭体,包括用媒介物经腹腔内治疗的那些动物(3/10),并且似乎不依赖于药物剂量。这些副作用的严重性是适度的,并且不足以干扰终点测量使得动物从研究中被剔除。表1总结了在本研究中观察到的副作用。在测量终点的同时观察到一些副作用。最常见的为伸展/扭体,其可能是一些内脏痛或超敏反应性的体征。其见于媒介物和药物经腹腔内治疗组。其似乎可能与媒介物在一组动物中的腹腔内给药有关。其似乎相对少见,持续时间短(<5min),并且其幅度不够大,不足以干扰终点的测量。
表1-副作用
  媒介物   3/10伸展/扭体(开始5分钟)
  93-31(30mg/kg)   0/10伸展/扭体
  93-31(100mg/kg)   1/10伸展/扭体(开始5分钟)
  93-37(30mg/kg)   2/10伸展/扭体(开始5分钟)
  93-37(100mg/kg)   1/10伸展/扭体(开始5分钟)
  加巴喷丁(100mg/kg)   1/10伸展/扭体(开始5分钟)
化合物93-31当以100mg/kg腹腔内给药时似乎能减轻神经性疼痛的SNL模型中的机械性异常疼痛。在本研究中化合物93-97在测试的剂量(30和100mg/kg)下不能减轻SNL大鼠中的机械性异常疼痛。
化合物93-31(100mg/kg)似乎比参考化合物加巴喷丁(100mg/kg)较快地发生作用(30min)和作用持续时间较短(60min)。在用100mg/kg剂量的化合物93-31治疗的动物中观察到的峰阈值大约为正常爪中所见的阈值的一半。假设采用较高剂量的化合物93-31可达到完全的逆转,则此表明ED50为大约100mg/kg。
实施例6:所选择化合物的pH依赖性
测试一系列n-烷基衍生物的pH依赖性。
Figure BPA00001178509600661
R1               IC50pH 7.6/IC50pH 6.9
-H               3
-CH3             6
-CH2CH3          8
-CH2CH2CH3       6
-CH2CH2CH2CH3    17
-CH2CH2CH2CH2CH3 3
实施例7.在爪蟾卵母细胞测定中在测定对含NMDA-NR2B受体的拮抗作用的IC50时人与大鼠受体cDNA的比较。
根据前述实施例的在神经性疼痛的SNL模型中体外筛选和测试的方法,使用大鼠NMDA和人NMDA受体评估在pH 6.9和7.6下几种化合物的效能,来比较效能增强。测定拮抗作用中的pH依赖性效能增强,该效能增强定义为在pH 6.9下阻断受体的IC50除以在pH 7.6下阻断受体的IC50。对于所有化合物,获自大鼠受体的pH依赖性效能增强不能预测针对人受体获得的pH依赖性效能增强。
表A.大鼠与人pH效能增强的比较
  绝对值
  化合物   大鼠效能增强   人效能增强   效能增强差异
  93-88   6.3   22.1   15.8
  93-108   3.4   17.7   14.3
  93-128   4.1   18.0   13.9
  93-30   7.4   21.0   13.6
  93-31   16.8   6.2   10.6
  93-126   13.3   3.0   10.2
  93-94   10.9   3.4   7.5
  93-175   3.5   10.9   7.4
  93-163   3.8   11.1   7.3
  93-47   12.6   5.9   6.7
  93-36   1.4   7.3   5.8
  93-8   7.8   2.2   5.6
  93-169   3.6   9.0   5.4
  93-5   8.1   3.0   5.1
  93-159   6.3   1.5   4.9
  93-140   2.8   7.6   4.8
  93-176   34.5   29.9   4.6
  93-95   2.5   6.8   4.3
  93-97   1.6   5.3   3.7
  93-2   7.1   3.5   3.6
  93-151   1.8   4.8   3.1
  93-39   7.4   4.4   3.0
  93-1   6.6   3.9   2.8
  93-41   5.3   7.9   2.6
  93-103   6.7   4.1   2.6
  93-59   3.4   6.0   2.5
  93-129   4.0   6.5   2.5
  93-6   9.9   7.4   2.5
  93-173   5.0   2.5   2.5
尽管前面的发明为了清楚和理解的目的在一定程度上进行了详细地说明,但本领域技术人员要理解,通过阅读本公开书,在不背离本发明的真正范围的前提下可在形式和细节方面作出各种改变。

Claims (26)

1.一种鉴定用于治疗或预防降低受侵袭组织区pH的功能障碍的化合物的方法,包括评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的pH下相比所述化合物的效能差异。
2.如权利要求1所述的方法,其中所述效能差异如下进行评估:测量在生理性pH下和功能障碍诱发的pH下化合物的IC50直至随着新试验的加入效能增强的95%置信区间不改变15%以上,并且其中所述测量重复至少5次。
3.如权利要求1所述的方法,其中所述效能差异是与在生理性pH下的效能相比在功能障碍诱发的pH下的效能增加。
4.如权利要求1所述的方法,其中所述效能差异是与生理性pH下相比在功能障碍诱发的pH下的效能增强。
5.如权利要求1所述的方法,其中所述降低受侵袭组织区pH的功能障碍选自由神经性疼痛、缺血、帕金森病、癫痫和创伤性脑损伤组成的组。
6.如权利要求4所述的方法,其中所述方法进一步包括鉴定在表达人NMDA受体的细胞中的效能增强为至少5的化合物。
7.如权利要求4所述的方法,其中所述方法进一步包括鉴定化合物,其中在表达人NMDA受体的细胞中所述化合物的效能增强比所述相同的化合物在表达非人NMDA受体的细胞中测试时的效能增强至少多2。
8.如权利要求7所述的方法,其中所述非人NMDA受体是大鼠NMDA受体。
9.如权利要求1所述的方法,其中所述受侵袭组织选自由脑组织、被缺血损害的组织、受疼痛侵袭的组织、受神经性疼痛侵袭的组织和受创伤性脑损伤侵袭的组织组成的组。
10.如权利要求1所述的方法,其中随着新试验的加入所述95%置信区间不改变10%k上。
11.如权利要求1所述的方法,其中随着新试验的加入所述95%置信区间不改变5%以上。
12.如权利要求1所述的方法,其中所述效能差异试验重复5次。
13.一种鉴定用于治疗或预防受侵袭组织区中的疼痛障碍的化合物的方法,包括:(i)评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的pH下相比化合物抑制人NMDA受体的效能增强;(ii)在体内测试所述化合物,并测量所述化合物对痛阈的作用;以及(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
14.如权利要求13所述的方法,其中所述效能增强如下进行测量:测量在生理性pH下和功能障碍诱发的pH下化合物的IC50直至随着新试验的加入效能差异的95%置信区间不改变15%以上,并且其中所述测量重复至少5次。
15.如权利要求14所述的方法,其中所述效能增强测量至少12次。
16.如权利要求13所述的方法,其中测量所述痛阈直至随着新试验的加入95%置信区间不改变5%以上。
17.如权利要求16所述的方法,其中所述痛阈测量至少12次。
18.如权利要求13所述的方法,其中步骤(i)中获得的所述效能增强的95%置信区间不改变15%以上。
19.如权利要求13所述的方法,其中步骤(i)中获得的所述效能增强的95%置信区间不改变5%以上。
20.如权利要求13所述的方法,其中步骤(i)的所述效能增强试验重复至少5次。
21.如权利要求13所述的方法,其中步骤(ii)包括在神经性疼痛的动物模型中测试所述化合物。
22.如权利要求13所述的方法,其中步骤(ii)中获得的所述痛阈的95%置信区间不改变15%以上。
23.如权利要求13所述的方法,其中步骤(ii)中获得的所述痛阈的95%置信区间不改变5%以上。
24.如权利要求13所述的方法,其中所述疼痛障碍降低所述受侵袭组织中的pH。
25.如权利要求13所述的方法,其中降低所述受侵袭组织区pH的所述疼痛障碍是神经性疼痛。
26.一种鉴定用于治疗或预防神经性疼痛的化合物的方法,包括:(i)通过将效能增强试验重复至少5次并且直至随着新试验的加入95%置信区间不改变15%以上,来评估在表达人NMDA受体的细胞中在生理性pH下与功能障碍诱发的低pH下相比所述化合物的效能增强;(ii)在神经性疼痛的动物模型中测试所述化合物,并且通过将所述试验重复至少12次并且直至随着新试验的加入95%置信区间不改变5%以上,来测量所述化合物对痛阈增加的作用;(iii)选择根据步骤(i)效能增强至少为5并且根据步骤(ii)与痛阈增加至少2倍相关的化合物。
CN2008801240927A 2007-11-06 2008-11-06 鉴定安全的nmda受体拮抗剂的方法 Pending CN101918832A (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US98592207P 2007-11-06 2007-11-06
US98592407P 2007-11-06 2007-11-06
US60/985,924 2007-11-06
US60/985,922 2007-11-06
PCT/US2008/082660 WO2009061935A2 (en) 2007-11-06 2008-11-06 Methods of identifying safe nmda receptor antagonists

Publications (1)

Publication Number Publication Date
CN101918832A true CN101918832A (zh) 2010-12-15

Family

ID=40626437

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801240927A Pending CN101918832A (zh) 2007-11-06 2008-11-06 鉴定安全的nmda受体拮抗剂的方法

Country Status (12)

Country Link
EP (1) EP2212694A4 (zh)
JP (1) JP2011503013A (zh)
KR (1) KR20100100858A (zh)
CN (1) CN101918832A (zh)
AU (1) AU2008323877A1 (zh)
BR (1) BRPI0820406A2 (zh)
CA (1) CA2704475A1 (zh)
EA (1) EA201070571A1 (zh)
IL (1) IL205432A0 (zh)
MX (1) MX2010004971A (zh)
WO (1) WO2009061935A2 (zh)
ZA (1) ZA201003724B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960514A (zh) * 2020-08-28 2020-11-20 浙江浙能技术研究院有限公司 一种用于脱硫废水浓缩的电渗析智能控制系统及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014159960A (ja) * 2011-06-08 2014-09-04 Astellas Pharma Inc 慢性疼痛モデル動物における自発痛行動自動測定法
WO2016191351A1 (en) * 2015-05-22 2016-12-01 Vistagen Therapeutics, Inc. Therapeutic uses of l-4-chlorokynurenine
US10583171B2 (en) 2015-11-30 2020-03-10 INSERM (Institut National de la Santé et de la Recherche Médicale) NMDAR antagonists for the treatment of diseases associated with angiogenesis

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023957A1 (en) * 2004-08-23 2006-03-02 Emory University Improved selection of-ph dependent compounds for in vivo therapy

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2440284A1 (en) * 2001-03-08 2002-09-19 Emory University Ph-dependent nmda receptor antagonists
KR20030063765A (ko) * 2002-01-24 2003-07-31 엘지전자 주식회사 광픽업용 대물렌즈
UY27939A1 (es) * 2002-08-21 2004-03-31 Glaxo Group Ltd Compuestos
CN1894279A (zh) * 2003-12-16 2007-01-10 安万特药物公司 分泌性神经凋亡抑制蛋白

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006023957A1 (en) * 2004-08-23 2006-03-02 Emory University Improved selection of-ph dependent compounds for in vivo therapy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111960514A (zh) * 2020-08-28 2020-11-20 浙江浙能技术研究院有限公司 一种用于脱硫废水浓缩的电渗析智能控制系统及方法

Also Published As

Publication number Publication date
ZA201003724B (en) 2013-10-30
WO2009061935A2 (en) 2009-05-14
AU2008323877A1 (en) 2009-05-14
MX2010004971A (es) 2010-07-28
BRPI0820406A2 (pt) 2015-05-19
EP2212694A2 (en) 2010-08-04
KR20100100858A (ko) 2010-09-15
JP2011503013A (ja) 2011-01-27
CA2704475A1 (en) 2009-05-14
EP2212694A4 (en) 2011-10-12
EA201070571A1 (ru) 2010-12-30
WO2009061935A3 (en) 2009-08-20
IL205432A0 (en) 2010-12-30

Similar Documents

Publication Publication Date Title
JP5015779B2 (ja) インビボ治療のためのpH依存性化合物の改良選択法
Wadenberg et al. The conditioned avoidance response test re-evaluated: is it a sensitive test for the detection of potentially atypical antipsychotics?
Steffensen et al. Chloride cotransporters as a molecular mechanism underlying spreading depolarization-induced dendritic beading
CN103517726B (zh) 用于改善脑损伤后影响脑血流的结果的脑室内药物递送系统
Deer A prospective analysis of intrathecal granuloma in chronic pain patients: a review of the literature and report of a surveillance study
Beyer et al. Angiotensin IV elevates oxytocin levels in the rat amygdala and produces anxiolytic-like activity through subsequent oxytocin receptor activation
WO2015153864A2 (en) Methods for treating inflammatory conditions
Gillespie et al. Efficacy of anthelmintics on South American camelid (llama and alpaca) farms in Georgia
CN101918832A (zh) 鉴定安全的nmda受体拮抗剂的方法
Bauer et al. Pharmacokinetics of 3 formulations of meloxicam in cynomolgus macaques (Macaca fascicularis)
CN109843275A (zh) 药物组合物和针对溶酶体贮积症的用途
Mégalizzi et al. Screening of anti-glioma effects induced by sigma-1 receptor ligands: potential new use for old anti-psychiatric medicines
JP2019534894A (ja) 糖尿病性腎症の予防および処置
Casarsa et al. A previous history of repeated amphetamine exposure modifies brain angiotensin II AT1 receptor functionality
da Silva Bizario et al. Imatinib mesylate ameliorates the dystrophic phenotype in exercised mdx mice
Kang et al. Down-regulation of dorsal striatal RhoA activity and impairment of working memory in middle-aged rats
CN107115270A (zh) 用于改善患有蛛网膜下腔出血的人的预后的组合物和方法
KR20180072579A (ko) 변이된 타우 단백질 단편 및 이의 용도
US20100272648A1 (en) Methods of Identifying Improved NMDA Receptor Antagonists
Yang et al. Disruption of Histamine-H1R signaling exacerbates cardiac microthrombosis after periodontal disease via TLR4/NFκB-p65 pathway
Mahato et al. GDNF receptor agonist supports dopamine neurons in vitro and protects their function in animal model of Parkinson’s
CN103948617B (zh) 一种治疗和预防腹部手术后粘连的药物组合物
KR102644046B1 (ko) 약물중독 진단용 바이오마커 조성물, 약물중독 치료물질의 스크리닝 방법, 그리고 약물중독 예방 또는 치료용 약학 조성물
Mousa Leukocytosis as Prognostic Factor for Severe Multiple Injuries
JP5692838B2 (ja) 感覚器障害モデル動物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20101215