CN101918571B - 产生发酵产物的方法 - Google Patents

产生发酵产物的方法 Download PDF

Info

Publication number
CN101918571B
CN101918571B CN200880125060.9A CN200880125060A CN101918571B CN 101918571 B CN101918571 B CN 101918571B CN 200880125060 A CN200880125060 A CN 200880125060A CN 101918571 B CN101918571 B CN 101918571B
Authority
CN
China
Prior art keywords
enzyme
amylase
fermentation
starch
tunning
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200880125060.9A
Other languages
English (en)
Other versions
CN101918571A (zh
Inventor
宋子良
刘继银
康正芳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Novo Nordisk AS
Original Assignee
Novo Nordisk AS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Novo Nordisk AS filed Critical Novo Nordisk AS
Publication of CN101918571A publication Critical patent/CN101918571A/zh
Application granted granted Critical
Publication of CN101918571B publication Critical patent/CN101918571B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • C12P7/08Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
    • C12P7/10Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P2203/00Fermentation products obtained from optionally pretreated or hydrolyzed cellulosic or lignocellulosic material as the carbon source
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Abstract

本发明涉及使用发酵生物在发酵培养基中将植物材料发酵成发酵产物的方法,其中在所述发酵培养基中存在水平增加的一种或多种焦磷酸酶。

Description

产生发酵产物的方法
技术领域
本发明涉及将植物材料发酵成期望的发酵产物的方法。本发明还涉及使用一种或多种发酵生物从植物材料产生发酵产物的方法,和能够在这样的方法中使用的组合物。
背景技术
大量难以通过合成产生的商业产品如今是通过发酵生物产生的。这些产物包括醇类(例如,乙醇、甲醇、丁醇、1,3-丙二醇);有机酸(例如,柠檬酸、乙酸、衣康酸、乳酸、葡糖酸、葡糖酸盐或酯、乳酸、琥珀酸、2,5-二酮-D-葡糖酸);酮(例如,丙酮);氨基酸(例如,谷氨酸);气体(例如,H2和CO2),和更多复杂的化合物,包括,例如,抗生素(例如,青霉素和四环素);酶;维生素(例如,核黄素、B12、β-胡萝卜素);和激素。发酵也通常用在消费品酒精(例如,啤酒和葡萄酒)、乳品(例如,在酸奶(yogurt)和乳酪(cheese)的生产中)、皮革和烟草工业中。
大量通过发酵由含淀粉和/或含木素纤维素材料的降解所提供的糖来产生发酵产物(如乙醇)的方法是本领域已知的。
然而,从这些植物材料产生发酵产物(如乙醇)仍然太过昂贵。因此,需要提供能够增加发酵产物产率并由此降低生产成本的方法。
发明概述
本发明涉及将植物来源的材料发酵成发酵产物的方法。本发明还提供使用发酵生物从植物来源的材料产生发酵产物的方法。最后本发明涉及适于在本发明的这些方法中使用的组合物。
根据本发明,起始材料(即,供所讨论的发酵生物用的底物)可以是任何植物材料或植物来源的材料。所述材料可以是经处理的或未经处理的。所述起始材料可以是含淀粉材料。所述淀粉材料可以是含木素纤维素材料。
在第一方面本发明涉及使用发酵生物在发酵培养基中将植物材料发酵成发酵产物的方法,其中在所述发酵培养基中存在一种或多种焦磷酸酶。根据本发明,焦磷酸酶的浓度/剂量水平与发酵之前和/或发酵过程中不添加焦磷酸酶时相比是增加的。
在第二方面本发明涉及从含淀粉材料产生发酵产物的方法,包括如下步骤:
i)液化含淀粉材料;
ii)糖化经液化的材料;和
iii)用一种或多种发酵生物根据本发明的发酵方法发酵。
在第三方面本发明涉及从含淀粉材料产生发酵产物的方法,包括如下步骤:
(a)在低于所述含淀粉材料的初始糊化温度的温度糖化含淀粉材料;和
(b)使用发酵生物发酵;
其中发酵根据本发明的发酵方法进行。
在第四方面本发明涉及从含木素纤维素材料产生发酵产物的方法,包括如下步骤:
(a)预处理含木素纤维素材料;
(b)水解所述材料;
(c)使用发酵生物根据本发明的发酵方法发酵。
在第五方面本发明涉及包含一种或多种焦磷酸酶的组合物。
在第六方面本发明涉及焦磷酸酶用于改进发酵工艺过程中的发酵产物产率(yield)和/或发酵速率的用途。
在第七方面本发明涉及用编码焦磷酸酶的多核苷酸序列转化的转基因植物材料。
在第八方面本发明涉及用编码焦磷酸酶的多核苷酸转化的修饰的发酵生物,其中所述发酵生物能够在发酵条件下表达焦磷酸酶。
附图简述
图1a.焦磷酸酶对PCS水解物48小时发酵之后的残余葡萄糖的作用。
图1b.焦磷酸酶对PCS水解物48小时发酵之后的残余木糖的作用。
图2.焦磷酸酶对PCS水解物48小时发酵之后的乙醇产生的作用。
图3.在SSF方法中存在或不存在镁或锰金属离子条件下面包酵母焦磷酸酶对乙醇产率的作用。
图4.在SSF方法中存在或不存在镁或锰金属离子条件下芽孢杆菌属(Bacillus)焦磷酸酶对乙醇产率的作用。
图5.在SSF方法中大肠杆菌焦磷酸酶对乙醇产率的作用。
图6.在SSF方法中烟草焦磷酸酶对乙醇产率的作用。
发明详述
本发明涉及将植物材料发酵成期望的发酵产物的方法。本发明还提供使用发酵生物从植物材料产生期望的发酵产物的方法。最后本发明涉及包含一种或多种焦磷酸酶的组合物。
当乙醇发酵过程中乙醇浓度增加时,酵母(酿酒酵母(Saccharomycescerevisiae))经历细胞生长抑制、细胞生存力损失、营养物摄取损失、跨细胞质膜的质子流量减少和发酵性能受损。乙醇首先在胞内环境中积累,然后再释放到发酵培养基中。结果,胞质酶所经历的乙醇浓度可能比发酵培养基中的浓度高,并因此对酵母细胞有潜在压力。之前的研究显示了胞质溶胶焦磷酸酶在酵母发酵过程中受到乙醇的抑制,其继而影响酵母生长及其代谢机构(Lopes,D.H.J.“Urea increases tolerance of yeast inorganic pyrophosphataseactivity to ethanol:The other side of urea interaction with proteins”(2001)Arch.Biochem.Biophys.(394)61-66;Peres-Castineira,J.R.“Functionalcomplementation of yeast cytosolic pyrophosphatase by bacterial and plant H+-translocating pyrophosphatases(2002)PNAS(99)15914-15919)。
本发明人发现了与不向发酵培养基添加焦磷酸酶时相比,增加的焦磷酸酶水平导致发酵性能提高,并继而导致发酵产率增加。
认为发酵培养基中的焦磷酸酶水平增加保持酵母生存力;维持代谢功能;并导致较小的由乙醇造成的应激。其它因素包括营养物摄取损失的减小也可以实现。
因此,在第一方面本发明涉及使用发酵生物在发酵培养基中将植物材料发酵成发酵产物的方法,其中所述发酵培养基中存在一种或多种焦磷酸酶。所述焦磷酸酶可以在发酵之前和/或过程中加入/引入,和/或可以通过例如由发酵生物(优选酵母)过表达来原位产生。所述焦磷酸酶也可以以含有或表达焦磷酸酶的转基因植物材料的形式引入发酵培养基中。
发酵培养基
短语“发酵培养基”是指发酵所进行的环境并包含发酵底物,即,发酵生物代谢的糖源,并且可以包括发酵生物。
发酵培养基可以包含供发酵生物用的营养物和生长刺激物。营养物和生长刺激物在发酵领域中广泛使用并包括氮源(如氨);维生素和矿物,或其组合。
发酵之后,发酵培养基可以进一步包含发酵产物。
发酵生物
短语“发酵生物”指适用于产生期望的发酵产物的任何生物体,包括细菌和真菌生物。发酵生物可以是C6或C5发酵生物,或其组合。C6和C5两种发酵生物都是本领域熟知的。
合适的发酵生物能够将可发酵的糖类(如葡萄糖、果糖、麦芽糖、木糖、甘露糖和/或阿拉伯糖)直接或间接发酵(即,转化)成期望的发酵产物。
发酵生物的实例包括真菌生物如酵母。优选的酵母包括:酵母属(Saccharomyces)的菌株,特别是酿酒酵母或葡萄汁酵母(Saccharomycesuvarum)的菌株;毕赤酵母属(Pichia)的菌株,优选树干毕赤酵母(Pichia stipitis)的菌株如树干毕赤酵母CBS 5773或巴斯德毕赤酵母(Pichia pastoris)的菌株;假丝酵母属(Candida)的菌株,特别是产朊假丝酵母(Candida utilis)、阿糖发酵假丝酵母(Candida arabinofermentans)、迪丹斯假丝酵母(Candida diddensii)、Candida sonorensis、休哈塔假丝酵母(Candida shehatae)、热带假丝酵母(Candida tropicalis)或博伊丁假丝酵母(Candida boidinii)的菌株。其它发酵生物包括以下属或种的菌株:汉逊酵母属(Hansenula),特别是多形汉逊酵母(Hansenula polymorpha)或异常汉逊酵母(Hansenula anomala);克鲁维酵母属(Kluyveromyces),特别是脆壁克鲁维酵母(Kluyveromyces fragilis)或马克斯克鲁维酵母(Kluyveromyces marxianus),和裂殖酵母属(Schizosaccharomyces),特别是粟酒裂殖酵母(Schizosaccharomyces pombe)。
优选的细菌发酵生物包括埃希氏菌属(Escherichia),特别是大肠杆菌的菌株,发酵单胞菌属(Zymomonas),特别是运动发酵单胞菌(Zymomonas mobilis)的菌株;发酵细菌属(Zymobacter),特别是棕榈发酵细菌(Zymobactor palmae)的菌株;克雷伯氏菌属(Klebsiella)特别是产酸克雷伯氏菌(Klebsiella oxytoca)的菌株;明串珠菌属(Leuconostoc),特别是肠膜明串珠菌(Leuconostoc mesenteroides)的菌株;梭菌属(Clostridium),特别是丁酸梭菌(Clostridium butyricum)的菌株;肠杆菌属(Enterobacter),特别是产气肠杆菌(Enterobacter aerogenes)的菌株;和热厌氧杆菌属(Thermoanaerobacter),特别是热厌氧杆菌BG1L1(Appl.Microbiol.Biotech.77:61-86)和乙醇热厌氧杆菌(Thermoanarobacter ethanolicus)、嗜热解糖热厌氧杆菌(Thermoanaerobacter thermosaccharolyticum)或马瑞氏热厌氧杆菌(Thermoanaerobacter mathranii)的菌株。也涵盖(envision)乳杆菌属(Lactobacillus)的菌株,如谷氨酸棒杆菌R(Corynebacterium glutamicum R)、热葡糖苷酶芽孢杆菌(Bacillus thermoglucosidaisus)和热葡糖苷酶地芽孢杆菌(Geobacillusthermoglucosidasius)。
在一个实施方案中所述发酵生物是C6糖发酵生物,如例如酿酒酵母的菌株。
与木素纤维素来源材料的发酵相关时,涵盖C5糖发酵生物。大多数C5糖发酵生物也发酵C6糖。C5糖发酵生物的实例包括毕赤酵母属菌株,如树干毕赤酵母菌种的菌株。还已知C5糖发酵细菌。一些酿酒酵母菌株也发酵C5(和C6)糖。实例为经遗传修饰的酵母属菌种的菌株,其能发酵C5糖,包括在例如Ho等,1998,Applied and Environmental Microbiology,第1852-1859页和Karhumaa等,2006,Microbial Cell Factories 5:18和Kuyper等,2005,FEMS Yeast Research 5:925-934中提到的菌株。
在一个实施方案中,将发酵生物加入发酵培养基从而使每ml发酵培养基的活发酵生物(如酵母)计数的范围为105-1012,优选107-1010,特别是约5x107
商业上可以获得的酵母包括,例如,RED STARTM和ETHANOL REDTM酵母(可从Fermentis/Lesaffre,USA获得),FALI(可从Fleischmann’s Yeast,USA获得),SUPERSTART和THERMOSACCTM鲜酵母(可从EthanolTechnology,WI,USA获得),BIOFERM AFT和XR(可从NABC-NorthAmerican Bioproducts Corporation,GA,USA获得),GERT STRAND(可从Gert Strand AB,Sweden获得)和FERMIOL(可从DSM Specialties获得)。
根据本发明,优选使所述能够从可发酵的糖类(如,例如,葡萄糖、果糖、麦芽糖、木糖和/或阿拉伯糖)产生期望的发酵产物的发酵生物以特定生长速率在精确条件下生长。将所述发酵生物引入/加入发酵培养基时,接种的发酵生物经过多个阶段。最初不生长。这个阶段称为“迟滞期”,可以认为是一种适应期。在称作“指数期”的下一个阶段中,生长速率逐渐增加。在最大生长时期后,速率停止,并且发酵生物进入“稳定期”。再过一段时间后,发酵生物进入“死亡期”,这时活细胞数降低。
在一个实施方案中,当发酵生物处于迟滞期时向发酵培养基加入焦磷酸酶。
在一个实施方案中,当发酵生物处于指数期时向发酵培养基加入焦磷酸酶。
在一个实施方案中,当发酵生物处于稳定期时向发酵培养基加入焦磷酸酶。
金属离子
在本发明的一个实施方案中,可在发酵之前和/或过程中加入一种或多种金属离子,或可选地能够释放金属离子的化合物。所述金属离子可以与添加焦磷酸酶同时或分开加入。金属离子如Mg2+、Mn2++和Zn2+可对焦磷酸酶活性具有加强效果。本领域技术人员能够容易地确定合适的添加量。在一个实施方案中,金属离子(如Mg2+)以大于0至10mM的量加入。在一个优选的实施方案中,所述金属离子是Mn2+
发酵产物
术语“发酵产物”意指由包括使用发酵生物的发酵步骤的方法产生的产物。根据本发明涵盖的发酵产物包括醇(例如乙醇、甲醇、丁醇);有机酸(例如柠檬酸、乙酸、衣康酸、乳酸、琥珀酸、葡糖酸);酮(例如丙酮);氨基酸(例如谷氨酸);气体(例如H2和CO2),抗生素(例如,青霉素和四环素);酶;维生素(例如核黄素、B12、β-胡萝卜素);和激素。在一个优选的实施方案中,发酵产物是乙醇,例如,燃料乙醇;饮用乙醇,即中性饮料酒(potable neutral spirit);或工业乙醇或用于消费品酒精业的产品(如啤酒和葡萄酒)、用于乳品业的产品(如发酵乳制品)、用于皮革业和烟草业中的产品。优选的啤酒类型包含爱儿啤酒(ale)、烈性黑啤酒(stout)、铂尔透黑啤酒(porter)、陈贮啤酒(lager)、苦味酒(bitter)、麦芽酒(malt liquor)、低麦芽啤酒(happoushu)、高醇啤酒(high-alcohol beer)、低醇啤酒(low-alcohol beer)、低热量啤酒(low-calorie beer)或清淡啤酒(light beer)。使用的优选发酵方法包括醇发酵法。根据本发明获得的发酵产物(如乙醇)可以优选用作燃料。然而,在乙醇的情况下,其还可用作饮料乙醇。
发酵
可以根据本发明在常规使用的条件下进行发酵。优选的发酵方法是厌氧方法。
例如,在一个实施方案中,对于乙醇生产,发酵持续6-120小时,特别是24-96小时。在一个实施方案中,发酵在25℃-40℃,优选28℃-35℃,如30℃-34℃,并且特别是约32℃的温度进行。在一个实施方案中,开始发酵时的pH在pH 3-6的范围(对于基于木素纤维素来源材料或淀粉来源材料的发酵),优选约pH 4-5(对于基于淀粉来源材料的发酵)。
涵盖同步水解/糖化和发酵,意味着水解/糖化酶、发酵生物和焦磷酸酶可以一起加入。然而,应理解的是,例如,焦磷酸酶也可以单独加入。当发酵与水解/糖化同步进行时,当发酵生物是酵母(如酿酒酵母菌株)且期望的发酵产物是乙醇时,温度优选为25℃-40℃,优选28℃-35℃,如30℃-34℃,特别是大约32℃。
其它发酵产物可以在本领域技术人员熟知的、适合于所讨论的发酵生物的条件和温度发酵。
本发明的方法可以作为分批或作为连续方法来进行。本发明的发酵方法可以在超滤系统中进行,其中将渗余物(retentate)在存在固体、水和发酵生物的条件下保持再循环,并且其中透过液是期望的含有发酵产物的液体。同样涵盖的是如果所述方法在带有超滤膜的连续膜反应器中进行,那么其中将渗余物在存在固体、水、发酵生物的条件下保持再循环,并且其中透过液是含有发酵产物的液体。
在发酵之后可以将发酵生物与发酵浆料分离并再循环至发酵培养基。
回收
发酵之后,可以将发酵产物与发酵培养基分离。可以蒸馏浆料以提取期望的发酵产物或可以通过微滤或膜过滤技术从发酵培养基提取期望的发酵产物。或者可以通过汽提回收所述发酵产物。用于回收的方法是本领域熟知的。
从含淀粉材料产生发酵产物
从糊化的含淀粉材料产生发酵产物的方法
在这个方面,本发明涉及从含淀粉材料产生发酵产物(特别是乙醇)的方法,所述方法包括液化步骤和顺序或同步进行的糖化和发酵步骤。
本发明涉及从含淀粉材料产生发酵产物的方法,包括如下步骤:
i)液化含淀粉材料;
ii)糖化经液化的材料,
iii)使用一种或多种发酵生物发酵,其中发酵按照本发明的发酵方法进行,即在焦磷酸酶存在下进行。
糖化步骤ii)和发酵步骤iii)可以顺序或同步进行。焦磷酸酶可以在发酵步骤iii)或同步糖化和发酵步骤之前(例如,在液化步骤i)或单独的糖化步骤ii)的过程中)和/或发酵步骤iii)或同步糖化和发酵步骤的过程中加入。
发酵产物(如特别是乙醇)可以任选地在发酵之后回收,例如通过蒸馏。合适的含淀粉起始材料在下文的“含淀粉材料”部分中列出。所涵盖的酶在下文的“酶”部分中列出。液化优选在α-淀粉酶存在下进行,所述α-淀粉酶优选细菌α-淀粉酶或酸性真菌α-淀粉酶。发酵生物优选为酵母,优选酿酒酵母的菌株。合适的发酵生物在上文的“发酵生物”部分中列出。
在一个特定的实施方案中,本发明的方法在步骤(i)之前还包括如下步骤:
x)将含淀粉材料的粒度减小,优选通过磨制(milling)进行;
y)形成包含所述含淀粉材料和水的浆料。
所述含水浆料可以含有10-55wt.%含淀粉材料的干固体(DS),优选25-45wt.%含淀粉材料的干固体(DS),更优选30-40%含淀粉材料的干固体(DS)。将浆料加热至糊化温度以上,并可加入α-淀粉酶(优选细菌和/或酸性真菌α-淀粉酶)以起始液化(稀化(thinning))。在一个实施方案中,可以喷射蒸煮(jet-cook)所述浆料以使浆料在进行本发明步骤(i)的α-淀粉酶处理之前进一步糊化。
液化可以以三步热浆料方法进行。将浆料加热至60-95℃,优选80-85℃,并加入α-淀粉酶以起始液化(稀化)。然后可以在95-140℃,优选105-125℃的温度使浆料喷射蒸煮约1-15分钟,优选约3-10分钟,特别是约5分钟。将浆料冷却至60-95℃,并加入更多的α-淀粉酶以完成水解(二次液化)。通常在pH 4.5-6.5,特别是在5-6的pH进行所述液化过程。
糖化步骤(ii)可以使用本领域公知的条件进行。例如,完整的糖化过程可以持续约24小时至约72小时,然而,通常在30-65℃的温度(通常约60℃)仅进行通常为40-90分钟的预糖化,然后是在同步糖化和发酵方法(SSF方法)中的发酵过程中的完全糖化。糖化通常在20-75℃,优选40-70℃,通常约60℃的温度,且在4至5的pH进行,通常在约pH 4.5进行。
在发酵产物(特别是乙醇)生产中,最广泛使用的方法是同步糖化和发酵(SSF)方法,其中没有糖化的保留阶段,意味着发酵生物(如酵母)和酶(包括焦磷酸酶)可以一起加入。SSF通常可以在25℃-40℃,如28℃-35℃,如30℃-34℃,优选约32℃的温度进行。根据本发明所述温度可以在发酵过程中调高或调低。
根据本发明发酵步骤(iii)包括,但不限于,用于产生如上文“发酵产物”部分中所例示的发酵产物的本发明的发酵方法。
从未经糊化的含淀粉材料产生发酵产物的方法
在这个方面,本发明涉及不糊化(通常称作“不烹制”)含淀粉材料而从含淀粉材料产生发酵产物的方法。根据本发明,期望的发酵产物(如乙醇)可以在不将包含含淀粉材料的含水浆料液化的情况下产生。在一个实施方案中,本发明的方法包括在初始糊化温度以下糖化(例如,经磨制的)含淀粉材料,例如粒状淀粉,优选在α-淀粉酶和/或糖源产生酶(carbohydrates-sourcegenerating enzyme)的存在下进行以产生糖,所述糖能由合适的发酵生物发酵成期望的发酵产物。
在这个实施方案中,所述期望的发酵产物(优选乙醇)是从未经糊化的(即,未烹制的),优选经磨制的谷物颗粒(如玉米)产生的。
因此,在这个方面本发明涉及从含淀粉材料产生发酵产物的方法,包括如下步骤:
(a)在低于所述含淀粉材料初始糊化温度的温度糖化含淀粉材料;
(b)使用发酵生物发酵;
其中所述发酵根据本发明的发酵方法进行,即,在焦磷酸酶的存在下进行。
在一个优选的实施方案中,步骤(a)和(b)同步(即,一步发酵)或顺序进行。
发酵产物,如特别是乙醇,可以任选地在发酵之后回收,例如通过蒸馏。合适的含淀粉起始材料在下文的“含淀粉材料”部分中列出。涵盖的酶在下文的“酶”部分中列出。在发酵过程中通常存在淀粉酶,如葡糖淀粉酶和/或其它糖源产生酶和/或α-淀粉酶。
葡糖淀粉酶和其它糖源产生酶的实例可见下文,并且包括水解生淀粉的葡糖淀粉酶。
α-淀粉酶的实例包括酸性α-淀粉酶,优选酸性真菌α-淀粉酶。
发酵生物的实例包括酵母,优选酿酒酵母的菌株。其它合适的发酵生物在上文的“发酵生物”部分中列出。
术语“初始糊化温度”是指淀粉糊化出现的最低温度。一般而言,在水中加热的淀粉在大约50℃至75℃开始糊化;精确的糊化温度取决于具体的淀粉并且可以由技术人员容易地确定。因而,初始糊化温度可根据植物物种、植物物种的特定变种以及生长条件而变化。在本发明的上下文中,给定含淀粉材料的初始糊化温度可以使用Gorinstein和Lii,1992,Starch/Vol.44(12):461-466描述的方法,作为5%的淀粉颗粒中双折射消失的温度来测定。
在步骤(a)之前,可以制备含淀粉材料(如粒状淀粉)的浆料,其具有10-55wt.%含淀粉材料的干固体(DS),优选25-45wt.%含淀粉材料的干固体,更优选30-40%含淀粉材料的干固体。所述浆料可以包括水和/或工艺水,如釜馏物(回流)、洗涤水、蒸馏器的冷凝物或蒸馏物、来自蒸馏的侧线汽提水(sidestripper water),或来自其它发酵产物装置的工艺水。因为本发明的方法在糊化温度以下进行,因此没有产生粘度的显著增加,如果期望的话可以使用高水平的釜馏物。在一个实施方案中,含水浆料包含约1至约70vol.%,优选15-60%vol.%,特别是约30-50vol.%的水和或工艺水,如釜馏物(回流)、洗涤水、蒸馏器的冷凝物或蒸馏物、来自蒸馏的侧线汽提水,或来自其它发酵产物装置的工艺水,或其组合,等等。
可以通过将粒度减小(优选通过干磨或湿磨)至0.05-3.0mm,优选0.1-0.5mm,由此制备含淀粉材料。在进行本发明的方法后,将含淀粉材料中干固体的至少85%,至少86%,至少87%,至少88%,至少89%,至少90%,至少91%,至少92%,至少93%,至少94%,至少95%,至少96%,至少97%,至少98%,或优选至少99%转化成可溶性淀粉水解物。
本发明的方法在低于初始糊化温度的温度进行,这意味着实施步骤(a)的温度通常处于30-75℃,优选45-60℃的范围。
在一个优选的实施方案中,步骤(a)和(b)作为同步糖化和发酵方法进行。在这样的优选的实施方案中,所述方法通常在25℃-40℃,例如28℃-35℃,如30℃-34℃,优选约32℃的温度进行。
在一个实施方案中,进行发酵从而将糖水平(如葡萄糖水平)保持在低水平,如低于6wt.%,如低于约3wt.%,如低于约2wt.%,如低于约1wt.%.,如低于约0.5wt.%,或低于0.25wt.%,如低于约0.1wt.%。这样低的糖水平能够通过简单地采用经调节的酶和发酵生物的量来实现。本领域技术人员能够简单地确定使用的酶和发酵生物的剂量/量。也可以选择所采用的酶和发酵生物的量来维持发酵液中的低麦芽糖浓度。例如,可以将麦芽糖水平保持在低于约0.5wt.%,如低于约0.2wt.%。
本发明的方法可以在约pH 3-7,优选pH 3.5-6,或更优选pH 4-5来进行。
含淀粉材料
可以根据本发明使用任何合适的含淀粉起始材料,包括粒状淀粉(生的未烹制淀粉)。起始材料通常基于期望的发酵产物选择。适用于本发明的方法的含淀粉起始材料的实例包括块茎、根、茎、整谷粒、玉米、穗轴、小麦、大麦、黑麦、买罗高粱(milo)、西米(sago)、木薯、树薯、高粱、稻、豌豆、菜豆或甘薯,或其混合物,或谷类。还涵盖糯型/蜡质(waxy)和非糯型的玉米和大麦。
术语“粒状淀粉”指生的未烹制淀粉,即,在谷类、块茎或谷粒中存在的天然形式的淀粉。淀粉在植物细胞内作为不溶于水的微小颗粒形成。当放入冷水中时,淀粉颗粒可以吸收少量的液体并膨胀。在高至50℃至75℃的温度,膨胀可以是可逆的。然而,在更高的温度,开始称为“糊化”的不可逆膨胀。待处理的粒状淀粉可以是高精细度的淀粉(highly refined starch),优选至少90%,至少95%,至少97%或至少99.5%纯,或者可以是更粗的含淀粉材料,其包含(例如,经磨制的)整谷粒,包括非淀粉部分如胚残余物和纤维。可以减小原材料(如整谷粒)的粒度,例如通过磨制,从而打开结构并容许进一步的加工。根据本发明优选两种方法:湿磨和干磨。在干磨中,磨制并使用完整的谷粒(kernel)。湿磨提供胚和粗粉(淀粉颗粒和蛋白质)的良好分离,并且常常在使用淀粉水解物产生例如糖浆的场合应用。干磨和湿磨都在淀粉加工领域中公知,并且同样涵盖于本发明的方法。在一个实施方案中,将粒度减小至0.05-3.0mm,优选0.1-0.5mm,或减小从而使至少30%,优选至少50%,更优选至少70%,甚至更优选至少90%的含淀粉材料适合通过具有0.05-3.0mm筛孔,优选0.1-0.5mm筛孔的筛网。
从含木素纤维素材料产生发酵产物
在这个方面,本发明涉及从含木质素纤维素的材料产生发酵产物的方法。将含木质素纤维素的材料转化成发酵产物(如乙醇)具有大量原料现成可用的优势,所述原料包括木材、农业残余物、草本作物、城市固体废物等。含木质素纤维素的材料主要由纤维素、半纤维素和木质素组成,并常常称作“生物质”。
木质素纤维素的结构无法直接进行酶水解。因此,含木质素纤维素的材料必须预处理,例如,通过在合适的压力和温度条件下酸水解,以使木质素的密封结构(seal)断裂并破坏纤维素的晶体结构。这引起半纤维素和纤维素部分的溶解。然后可以将纤维素和半纤维素用酶水解,例如,通过纤维素分解酶水解,以将糖聚合物转化成可发酵的糖,所述可发酵的糖可以发酵成期望的发酵产物(如乙醇)。任选地,可以回收,例如,通过蒸馏回收发酵产物。
在这个方面,本发明涉及从含木素纤维素材料产生发酵产物的方法,包括如下步骤:
(a)预处理含木素纤维素材料;
(b)水解所述材料;
(c)使用发酵生物根据本发明的发酵方法发酵,即,在焦磷酸酶存在下进行。
所述焦磷酸酶可以在发酵之前和/或过程中加入。水解步骤(b)和发酵步骤(c)可以顺序或同步进行。在优选的实施方案中,将所述步骤作为SSF、HHF或SHF方法步骤进行,这些将在下文进一步描述。
预处理
可以根据本发明在进行水解和发酵之前预处理所述含木素纤维素材料。在一个优选的实施方案中,将所述预处理的材料在发酵之前和/或过程中水解,优选通过酶水解。预处理的目的是分离和/或释放纤维素、半纤维素和/或木质素,而这种方式可改进酶水解的速率。
根据本发明,预处理步骤(a)可以是本领域已知的常规预处理步骤。预处理可以在含水浆料中进行。所述含木素纤维素材料在预处理过程中可以以10-80wt.%,优选20-50wt.%的量存在。
化学、机械和/或生物预处理
含木素纤维素的材料可以根据本发明在水解和/或发酵前进行化学、机械和/或生物预处理。机械处理(经常称作物理预处理)可以单独使用或与后续的或同步的水解(特别是酶水解)组合使用,以促进分离和/或释放纤维素、半纤维素和/或木质素。
优选地,在水解和/或发酵之前进行化学、机械和/或生物预处理。或者,所述化学、机械和/或生物预处理与水解同步进行,如同时加入一种或多种纤维素分解酶,或下述其它酶活性,以释放可发酵的糖,如葡萄糖和/或麦芽糖。
在本发明的一个实施方案中,在水解步骤(b)之前或之后对经预处理的含木素纤维素材料进行洗涤和/或解毒。这可以改进例如经稀酸(dilute-acid)水解的含木素纤维素材料(如玉米秸秆)的可发酵性。解毒可以以任何合适的方式进行,例如通过对液态级分进行蒸汽汽提、蒸发、离子交换、树脂或活性炭处理,或通过洗涤经预处理的材料来进行。
化学预处理
根据本发明“化学预处理”指促进纤维素、半纤维素和/或木质素的分离和/或释放的任何化学处理。合适的化学预处理步骤的实例包括用例如稀酸、石灰、碱、有机溶剂、氨、二氧化硫、二氧化碳的处理。此外,湿氧化和pH受控的水热解(hydrothermolysis)也是可考虑的化学预处理。
优选地,化学预处理为酸处理,更优选地,是连续稀酸和/或弱酸(mildacid)处理,如用硫酸或别的有机酸,如乙酸、柠檬酸、酒石酸、琥珀酸或其混合物处理。也可以使用其他酸。弱酸处理在本发明的上下文中指处理pH在1-5的范围内,优选1-3。在一个特定的实施方案中,酸浓度范围是0.1-2.0wt.-%的酸,优选硫酸。所述酸可与要根据本发明发酵的材料混合或接触,并且混合物可以在160-220℃,如165-195℃的温度保持数分钟到数秒的时间,例如1-60分钟,如2-30分钟或3-12分钟。可以采用强酸如硫酸的添加来去除半纤维素。这增强了纤维素的可消化性。
已经证明(根据本发明也涵盖的)纤维素溶剂处理将约90%的纤维素转化成葡萄糖。还已经证明当破坏木素纤维素结构时能大大增强酶水解。碱H2O2、臭氧、有机溶剂(使用含水醇中的Lewis酸、FeCl3、(Al)2SO4)、甘油、二噁烷(dioxane)、苯酚或乙二醇属于已知破坏纤维素结构并促进水解的溶剂(Mosier等,2005,Bioresource Technology 96:673-686)。
使用碱(例如NaOH、Na2CO3和/或氨等)的碱性化学预处理也在本发明的范围内。使用氨的预处理方法在例如WO 2006/110891、WO 2006/110899、WO 2006/110900、WO 2006/110901中描述,将它们通过提述并入本文。
湿法氧化技术涉及使用氧化剂,例如:基于亚硫酸盐的氧化剂等。溶剂预处理的实例包括用DMSO(二甲亚砜)等处理。化学预处理通常进行1-60分钟,如5-30分钟,但是可以进行更短或更长时间,依赖于待预处理的材料。
合适的预处理方法的其它实例由Schell等,2003,Appl.Biochem andBiotechn.Vol.105-108,69-85页,和Mosier等,2005,Bioresource Technology96:673-686,和美国专利公开2002/0164730号描述,将这些参考文献全部通过提述并入。
机械预处理
如用于本发明的上下文中,术语“机械预处理”是指任何促进纤维素、半纤维素和/或木质素从含木素纤维素材料分离和/或释放的机械或物理预处理。例如,机械预处理包括多种类型的磨制、照射、汽蒸/蒸汽爆炸(steaming/steam explosion)和水热解。
机械预处理包括粉碎(机械减小粒度)。粉碎包括干磨、湿磨和振动球磨。机械预处理可以涉及高压和/或高温(蒸汽爆炸)。在本发明的一个实施方案中,高压指范围在300-600psi,优选400-500psi,如约450psi的压力。在本发明的一个实施方案中,高温指范围在约100-300℃,优选约140-235℃的温度。在一个优选的实施方案中,机械预处理是一种分批过程的蒸汽枪水解仪系统(abatch-process,steam gun hydrolyzer system),其使用如上所定义的高温和高压。可以为此使用Sunds Hydrolyzer(可从Sunds Defibrator AB(Sweden)获得)。
组合的化学和机械预处理
在一个优选的实施方案中,进行化学和机械两种预处理,其涉及,例如,稀酸或弱酸处理和高的温度和压力处理二者。根据需要,可以顺序或同步进行所述化学和机械预处理。
因此,在一个优选的实施方案中,对含木质素纤维素材料进行化学和机械两种预处理,以促进纤维素、半纤维素和/或木质素的分离和/或释放。
在一个优选的实施方案中,将预处理作为稀酸或弱酸预处理步骤进行。在另一优选的实施方案中,将预处理作为氨纤维爆炸步骤(或AFEX预处理步骤)进行。
生物预处理
如用于本发明中,术语“生物预处理”指任何促进纤维素、半纤维素和/或木质素从含木素纤维素材料分离和/或释放的生物预处理。生物预处理技术可以包括应用溶解木质素的微生物(参见,例如,Hsu,T.-A.,1996,Pretreatment ofbiomass,于Handbook on Bioethanol:Production and Utilization,Wyman,C.E.编,Taylor & Francis,Washington,DC,179-212;Ghosh,P.和Singh,A.,1993,Physicochemical and biological treatments for enzymatic/microbial conversion oflignocellulosic biomass,Adv.Appl.Microbiol.39:295-333;McMillan,J.D.,1994,Pretreating lignocellulosic biomass:a review,于Enzymatic Conversion of Biomassfor Fuels Production,Himmel,M.E.,Baker,J.O.和Overend,R.P.编,ACSSymposium Series 566,American Chemical Society,Washington,DC,第15章;Gong,C.S.,Cao,N.J.,Du,J.和Tsao,G.T.,1999,Ethanol production fromrenewable resources,于Advances in Biochemical Engineering/Biotechnology,Scheper,T.编,Springer-Verlag Berlin Heidelberg,Germany,65:207-241;Olsson,L.,和Hahn-Hagerdal,B.,1996,Fermentation of lignocellulosic hydrolysates forethanol production,Enz.Microb.Tech.18:312-331;和Vallander,L.和Eriksson,K.-E.L.,1990,Production of ethanol from lignocellulosic materials:State of theart,Adv.Biochem.Eng./Biotechnol.42:63-95)。
水解
在发酵之前和/或过程中,可以将预处理的含木素纤维素材料水解,以打破木质素密封结构并破坏纤维素的晶体结构。在一个优选的实施方案中,水解通过酶进行。根据本发明,待发酵的经预处理的含木素纤维素材料可以通过一种或多种水解酶(根据酶命名法为E.C.3类)水解,优选一种或多种糖酶,包括纤维素分解酶和半纤维素分解酶,或其组合。另外,在水解和/或发酵过程中也可以存在蛋白酶、α-淀粉酶、葡糖淀粉酶和/或类似的酶,因为含木素纤维素材料可能包括一些,例如,淀粉性和/或蛋白质性物质。
用于水解的酶可能能够直接或间接地将糖聚合物转化成可发酵的糖,如葡萄糖和/或麦芽糖,所述可发酵的糖可以发酵成期望的发酵产物,如乙醇。
在一个优选的实施方案中,糖酶具有纤维素分解和/或半纤维素分解酶活性。
在一个优选的实施方案中,使用纤维素分解酶制备物进行水解,所述制备物还包括一种或多种具有纤维素分解增强活性的多肽。在一个优选的实施方案中,所述具有纤维素分解增强活性的多肽是家族GH61A来源的。合适的和优选的纤维素分解酶制备物和具有纤维素分解增强活性的多肽的实例在下文的“纤维素分解酶”部分和“纤维素分解增强多肽”部分中描述。
合适的酶在下文的“酶”部分中描述。
半纤维素聚合物可以通过半纤维素分解酶和/或酸水解来分解以释放其五碳和六碳糖组分。六碳糖(己糖),如葡萄糖、半乳糖、阿拉伯糖和甘露糖,能够通过合适的发酵生物(包括酵母)容易地发酵成发酵产物如乙醇、丙酮、丁醇、甘油、柠檬酸、延胡索酸/富马酸等。
酵母是供乙醇发酵用的优选发酵生物。优选酵母属的菌株,特别是酿酒酵母菌种的菌株,优选对高水平乙醇(即,高至例如约10、12、15或20vol.%或更多的乙醇)有抗性的菌株。
酶水解优选在合适的含水环境中在本领域技术人员能够容易地确定的条件下进行。在一个优选的实施方案中,水解在对于所讨论的酶合适的条件下,优选最佳的条件下进行。
合适的过程时间、温度和pH条件能够由本领域技术人员容易地确定。优选地,水解在25-70℃,优选40-60℃,特别是约50℃的温度进行。所述步骤优选在pH 3-8,优选pH 4-6进行。水解通常进行12-96小时,优选16-72小时,更优选24-48小时。
木素纤维素来源材料的发酵
木素纤维素来源材料的发酵是按照本发明的发酵方法如上所述进行的。
含木素纤维素的材料(生物质)
在本发明的上下文中涵盖任何合适的含木素纤维素材料。含木素纤维素的材料可以是任何含有木素纤维素的材料。在一个优选的实施方案中,所述含木素纤维素材料含有至少50wt.%,优选至少70wt.%,更优选至少90wt.%木素纤维素。应理解的是,含木素纤维素的材料也可以包含其它组分,如纤维素类材料,如纤维素、半纤维素,并且也可以包含组分如糖,如可发酵的糖和/或不可发酵的糖。
含木素纤维素的材料通常存在于,例如,植物的茎、叶、外皮(hull)、外壳(husk)和穗轴(cob)或树的叶、枝和木材中。木素纤维素材料也可以是,但不限于,草本材料、农业残余物、林业残余物、市政固体废物、废纸、及纸浆和造纸厂残余物。在本文中可理解的是含木素纤维素材料可为在混合基质中含有木质素、纤维素和半纤维素的植物细胞壁材料的形式。
在一个实施方案中,含木素纤维素材料是玉米纤维、稻草(rice straw)、松木、木屑/木花(wood chip)、杨木(poplar)、麦秆(wheat straw)、柳枝稷(switchgrass)、甘蔗渣(bagasse)、造纸和纸浆加工废物。
其它更具体的实例包括玉米秸秆、玉米穗轴、玉米纤维、硬木(如杨木和桦木)、软木、谷类的茎秆(诸如麦秆)、柳枝稷、芒草属(Miscanthus)、稻壳(rice hull)、市政固体废物(MSW)、工业有机废物、办公室用纸、或其混合物。
在一个优选的实施方案中,所述含木素纤维素材料是玉米秸秆或玉米穗轴。在另一优选的实施方案中,所述含木素纤维素材料是玉米纤维。在另一优选的实施方案中,所述含木素纤维素材料是柳枝稷。在另一优选的实施方案中,所述含木素纤维素材料是甘蔗渣。
SSF、HHF和SHF
在本发明的一个实施方案中,水解和发酵是作为同步水解和发酵步骤(SSF)进行的。通常这意味着在对于所讨论的发酵生物合适的(优选最佳的)条件(例如,温度和/或pH)下进行组合的/同步的水解和发酵。
在另一实施方案中,水解步骤和发酵步骤是作为混合的水解和发酵(hybrid hydrolysis and fermentation)(HHF)进行的。HHF通常以单独的部分水解步骤开始,并以同步的水解和发酵步骤结束。所述单独的部分水解步骤是酶促纤维素糖化步骤,该步骤通常在对于所讨论的水解酶合适的(优选最佳的)条件下(例如,在较高的温度下)进行。后续的同步水解和发酵步骤通常在对于所述发酵生物合适的条件下进行(通常在比所述单独水解步骤低的温度)。
在另一实施方案中,所述水解和发酵步骤也可以作为分别的水解和发酵来进行,其中使水解在发酵起始前完成。这常常称作“SHF”。
即使在本发明方法的上下文中不具体提及,也应理解所述酶是以“有效量”使用的。
焦磷酸酶
在本发明的上下文中“焦磷酸酶”(缩写为“PPase”)包括以下EC(EnzymeCommission(酶学委员会))类别中的酶:EC 3.1.3.1和EC 3.1.3.9,EC 3.6.1.1;EC 3.6.1.8,EC 3.6.1.9,EC 3.6.1.40。EC类别是基于国际生物化学和分子生物学联合会(International Union of Biochemistry and Molecular Biology)(IUBMB)的命名委员会的建议。关于EC类别的描述可以在互联网上找到,例如在www.expasy.org/enzyme/
在一个优选的实施方案中,焦磷酸酶是无机焦磷酸酶(EC.3.6.1.1),其也称作二磷酸磷酸水解酶和焦磷酸磷酸水解酶。
无机焦磷酸酶催化以下反应:
二磷酸盐/酯+H2O=>2磷酸盐/酯
特异性可以随着来源和活化金属离子而变化,并且来自一些来源的酶可能与EC 3.1.3.1或EC 3.1.3.9的相同。
无机PPase在能量代谢中发挥重要作用,其为生物合成反应(如蛋白质、RNA和DNA合成)提供热力学牵引(thermodynamic pull)(Lahti等,“Cloningand characterization of the gene encoding inorganic pyrophosphatase of E.coliK-12”,1988,J.Bacteriol.170:5901-5907)。根据Peller,“On the free-energychanges in the synthesis and degradation of nucleic acids,1976,Biochemistry 15:141-146,如果核酸合成不与焦磷酸酶催化的焦磷酸(PPi)的水解偶联,那么核酸合成在体内在能量上就会是不可行的。此外,焦磷酸酶在对大分子合成和生长的调节中,以及PPi依赖性磷酸果糖激酶反应的糖酵解过程中是重要的。另外,将PPi的水解与氢离子的跨膜转运偶联,由此增强质子泵送。
根据本发明,可以在本发明的发酵过程中存在和/或加入任何焦磷酸酶(PPase)。
根据本发明的焦磷酸酶以有效量存在和/或加入,由此所述酶提供与在不存在/加入焦磷酸酶条件下进行的相应方法相比的改进,例如,更高的发酵产率。
多种焦磷酸酶是本领域已知的,并且可以在例如互联网上找到(参见www.expasy.org/enzyme/)。
在一个优选的实施方案中,所述焦磷酸酶是微生物来源的,如细菌的或真菌的,如酵母或丝状真菌来源。在另一实施方案中,所述焦磷酸酶是哺乳动物或植物来源的。在一个实施方案中,所述焦磷酸酶是酸性的,这意味着其具有低于pH 7的最适pH。
焦磷酸酶的实例包括源自细菌的那些,如:芽孢杆菌属的菌株,如嗜热脂肪芽孢杆菌(Bacillus stearothermophilus)的菌株;或热原体属(Thermoplasma)的菌株,如嗜酸热原体(Thermoplasma acidophilum);或栖热菌属(Thermus)的菌株,如嗜热栖热菌(Thermus thermophilus)的菌株;或埃希氏菌属(Escherichia)的菌株,如大肠杆菌(Escherichia coli)的菌株;或来自丝状真菌,如曲霉属(Aspergillus)的菌株,如黑曲霉(Aspergillus niger)的菌株;或来自酵母,如酵母属(Saccharomyces)的菌株,如酿酒酵母(Saccharomyces cerevisae)的菌株。
在另一实施方案中,所述焦磷酸酶源自植物烟草。
根据本发明,所述焦磷酸酶以有效量加入,这意味着焦磷酸酶以0.1-1,000单位/g干固体(DS),优选1-100单位/g干固体(DS)(当使用用于酵母的PPase测定法时)或0.001-5单位/g干固体(DS),优选0.01-1.5单位/g干固体(DS)(当使用用于细菌的PPase测定法时)的浓度存在于和/或加入至发酵培养基。两种PPase测定法在下文的“材料和方法”部分中均有描述。
商业上可得到的焦磷酸酶产品包括可从Sigma-Aldrich获得的来自酿酒酵母、嗜热脂肪芽孢杆菌、大肠杆菌和烟草的那些产品。
α-淀粉酶
根据本发明可以使用任何α-淀粉酶。优选的α-淀粉酶是微生物的,如细菌或真菌来源的。哪种α-淀粉酶最合适取决于工艺条件,但是可以由本领域技术人员容易地确定。
在一个实施方案中,优选的α-淀粉酶是酸性α-淀粉酶,例如,真菌酸性α-淀粉酶或细菌酸性α-淀粉酶。短语“酸性α-淀粉酶”意指以有效量加入的在3-7,优选3.5-6,或更优选4-5的pH具有最佳活性的α-淀粉酶(E.C.3.2.1.1)。
细菌α-淀粉酶
根据本发明,细菌α-淀粉酶优选源自芽孢杆菌属。
在一个优选的实施方案中,芽孢杆菌属α-淀粉酶源自地衣芽孢杆菌(Bacillus licheniformis)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、枯草芽孢杆菌或嗜热脂肪芽孢杆菌的菌株,但也可以源自其它芽孢杆菌属菌种。所涵盖的α-淀粉酶的具体实例包括WO 99/19467中SEQ ID NO:4中所示的地衣芽孢杆菌α-淀粉酶,WO 99/19467中SEQ ID NO:5的解淀粉芽孢杆菌α-淀粉酶和WO 99/19467中SEQ ID NO:3中所示的嗜热脂肪芽孢杆菌α-淀粉酶(将全部这些序列通过提述并入本文)。在一个实施方案中,所述α-淀粉酶可以是与WO 99/19467中SEQ ID NOS:1、2或3分别所示的序列中的任一具有至少60%,优选至少70%,更优选至少80%,甚至更优选至少90%,如至少95%,至少96%,至少97%,至少98%或至少99%的同一性程度的酶。
所述芽孢杆菌属α-淀粉酶也可以是变体和/或杂合体,特别是在WO96/23873、WO 96/23874、WO 97/41213、WO 99/19467、WO 00/60059和WO02/10355(将全部这些文献通过提述并入本文)中的任一篇中所描述的。具体涵盖的α-淀粉酶变体公开于美国专利No.6,093,562、6,297,038或6,187,576中(通过提述并入本文)并且包括在位置R179至G182缺失一个或两个氨基酸的嗜热脂肪芽孢杆菌α-淀粉酶(BSG α-淀粉酶)变体,优选WO 1996/023873中公开的双缺失——参见例如,第20页,第1-10行(通过提述并入本文),优选与WO 99/19467中公开的SEQ ID NO:3中所示野生型BSG α-淀粉酶氨基酸序列相比对应于Δ(181-182)或使用WO 99/19467中的SEQ ID NO:3(将所述参考文献通过提述并入本文)进行编号对应于氨基酸R179和G180的缺失。甚至更优选的是芽孢杆菌属α-淀粉酶,尤其是嗜热脂肪芽孢杆菌α-淀粉酶,其与WO 99/19467中公开的SEQ ID NO:3中所示野生型BSG α-淀粉酶氨基酸序列相比具有对应于Δ(181-182)的双缺失并进一步包含N193F取代(也表示为I181*+G182*+N193F)。
细菌杂合α-淀粉酶
具体涵盖的杂合α-淀粉酶包含地衣芽孢杆菌α-淀粉酶(WO 99/19467的SEQ ID NO:4中所示)的445个C末端氨基酸残基和源自解淀粉芽孢杆菌的α-淀粉酶(WO 99/19467的SEQ ID NO:5中所示)的37个N末端氨基酸残基,其具有下述取代中的一个或多个,特别是具有全部:
G48A+T49I+G107A+H156Y+A181T+N190F+I201F+A209V+Q264S(使用WO 99/19467中的SEQ ID NO:4中的地衣芽孢杆菌编号)。还优选具有以下突变(或在其它芽孢杆菌属α-淀粉酶主链中的相应突变)中的一个或多个的变体:H154Y、A181T、N190F、A209V和Q264S和/或在176和179位之间两个残基的缺失,优选E178和G179的缺失(使用WO 99/19467的SEQ ID NO:5的编号)。
在一个实施方案中,所述细菌α-淀粉酶以0.0005-5KNU/g DS,优选0.001-1KNU/g DS,如约0.050KNU/g DS的量添加(dose)。
真菌α-淀粉酶
真菌α-淀粉酶包括源自芽孢杆菌属的菌株的α-淀粉酶,如米曲霉(Aspergillus oryzae)、黑曲霉和川地曲霉(Aspergillus kawachii)的α-淀粉酶。
优选的酸性真菌α-淀粉酶是源自米曲霉菌株的Fungamyl-样α-淀粉酶。根据本发明,术语“Fungamyl-样α-淀粉酶”指与WO 96/23874中SEQ ID NO:10中所示氨基酸序列的成熟部分展现高同一性,即至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或甚至100%同一性的α-淀粉酶。
另一优选的酸性α-淀粉酶源自黑曲霉菌株。在一个优选的实施方案中,酸性真菌α-淀粉酶是在Swiss-prot/TeEMBL数据库中以初始登录号P56271作为“AMYA_ASPNG”公开的并在WO 89/01969(实施例3-通过提述并入)中记载的来自黑曲霉的酸性α-淀粉酶。商业上可得到的源自黑曲霉的酸性真菌α-淀粉酶是SP288(可从Novozymes A/S,丹麦获得)。
其它涵盖的野生型α-淀粉酶包括源自根毛霉属(Rhizomucor)和多孔菌属(Meripilus)的菌株,优选微小根毛霉(Rhizomucor pusillus)(WO 2004/055178,通过提述并入)或巨多孔菌(Meripilus giganteus)的菌株的那些。
在一个优选的实施方案中,α-淀粉酶源自川地曲霉并由Kaneko等,1996,J.Ferment.Bioeng.81:292-298,“Molecular-cloning and determination of thenucleotide-sequence of a gene encoding an acid-stable α-amylase fromAspergillus kawachii″公开;此外还作为EMBL:#AB008370公开。
所述真菌α-淀粉酶也可以是包含淀粉结合域(SBD)和α-淀粉酶催化域的野生型酶(即,非杂合的),或其变体。在一个实施方案中,所述野生型α-淀粉酶源自川地曲霉菌株。
真菌杂合α-淀粉酶
在一个优选的实施方案中,所述真菌酸性α-淀粉酶是杂合α-淀粉酶。真菌杂合α-淀粉酶的优选实例包括WO 2005/003311或美国专利公开No.2005/0054071(Novozymes)或美国专利申请No.60/638,614(Novozymes)(其通过提述并入本文)中公开的真菌杂合α-淀粉酶。杂合α-淀粉酶可以包含α-淀粉酶催化域(CD)和糖结合域/模块(CBM),如淀粉结合域,和任选的接头。
涵盖的杂合α-淀粉酶的具体实例包括美国专利申请No.60/638,614中实施例的表1-5中公开的那些,包括具有催化域JA118和罗耳阿太菌(Atheliarolfsii)SBD的Fungamyl变体(US 60/638,614中的SEQ ID NO:100),具有罗耳阿太菌AMG接头和SBD的微小根毛霉α-淀粉酶(US 60/638,614中的SEQ IDNO:101),具有黑曲霉葡糖淀粉酶接头和SBD的微小根毛霉α-淀粉酶(其作为美国申请No.11/316,535中氨基酸序列SEQ ID NO:20、SEQ ID NO:72和SEQID NO:96的组合公开于表5中)或作为WO 2006/069290的表5中的V039,和具有罗耳阿太菌葡糖淀粉酶接头和SBD的巨多孔菌α-淀粉酶(US 60/638,614中的SEQ ID NO:102)。其它具体涵盖的杂合α-淀粉酶是美国申请No.11/316,535和WO 2006/069290(通过提述并入本文)的实施例4中表3、4、5和6内所列的杂合α-淀粉酶中的任一个。
涵盖的杂合α-淀粉酶的其它具体实例包括美国专利公开No.2005/0054071中公开的那些,包括在第15页的表3中公开的那些,如具有川地曲霉接头和淀粉结合域的黑曲霉α-淀粉酶。
还涵盖与上述α-淀粉酶中任一展现高同一性的α-淀粉酶,即与所述成熟酶序列具有至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或甚至100%的同一性。
根据本发明酸性α-淀粉酶可以以0.001-10AFAU/g DS优选0.01-5AFAU/g DS,特别是0.3-2AFAU/g DS或0.001-1FAU-F/g DS,优选0.01-1FAU-F/g DS的量加入。
商业α-淀粉酶产品
优选的包含α-淀粉酶的商业组合物包括来自DSM(Gist Brocades)的MYCOLASETM,BANTM、TERMAMYLTM SC,、FUNGAMYLTM、LIQUOZYMETM X、LIQUOZYMETM SC和SANTM SUPER,SANTM EXTRA L(Novozymes A/S)和CLARASETM L-40,000、DEX-LOTM、SPEZYMETM FRED、SPEZYMETM AA和SPEZYMETM DELTA AA(Genencor Int.),以及以商品名SP288出售的酸性真菌α-淀粉酶(可从Novozymes A/S,Denmark获得)。
糖源产生酶
术语“糖源产生酶(carbohydrate-source generating enzyme)”包括葡糖淀粉酶(是葡萄糖产生者)、β-淀粉酶和产麦芽糖淀粉酶(是麦芽糖产生者),还有支链淀粉酶和α-葡糖苷酶。糖源产生酶能够产生能由所讨论的发酵生物用作能量来源的糖,例如,当在本发明的方法中使用所述发酵生物用于产生发酵产物(如乙醇)时。产生的糖可以直接或间接转化为期望的发酵产物,优选乙醇。根据本发明,可以使用糖源产生酶的混合物。特别涵盖的混合物至少是葡糖淀粉酶和α-淀粉酶(特别是酸性淀粉酶,甚至更优选酸性真菌α-淀粉酶)的混合物。酸性真菌α-淀粉酶活性(FAU-F)和葡糖淀粉酶活性(AGU)之间的比例(即,FAU-F每AGU)在本发明的实施方案中可以是0.1-100AGU/FAU-F,特别是2-50AGU/FAU-F,如在10-40AGU/FAU-F的范围内。
葡糖淀粉酶
根据本发明使用的葡糖淀粉酶可以源自任何合适的来源,例如,源自微生物或植物。优选的葡糖淀粉酶是真菌或细菌来源的,选自下组:曲霉属葡糖淀粉酶,特别是黑曲霉G1或G2葡糖淀粉酶(Boel等,1984,EMBO J.3(5):1097-1102),或其变体,如WO 92/00381、WO 00/04136和WO 01/04273(来自丹麦Novozymes)中公开的那些;WO 84/02921中公开的泡盛曲霉(A.awamori)葡糖淀粉酶,米曲霉葡糖淀粉酶(1991,Agric.Biol.Chem.55(4):941-949),或其变体或片段。其它曲霉属葡糖淀粉酶变体包括具有增强的热稳定性的变体:G137A和G139A(Chen等(1996),Prot.Eng.9,499-505);D257E和D293E/Q(Chen等,1995,Prot.Eng.8:575-582);N182(Chen等,1994,Biochem.J.301:275-281);二硫键,A246C(Fierobe等,1996,Biochemistry,35:8698-8704;和在A435和S436位引入Pro残基(Li等,1997,Protein Eng.10:1199-1204)。
其它葡糖淀粉酶包括罗耳阿太菌(之前称为罗耳伏革菌(Corticiumrolfsii))葡糖淀粉酶(参见美国专利No.4,727,026和Nagasaka.等,1998,“Purification and properties of the raw-starch-degrading glucoamylases fromCorticium rolfsii,Appl Microbiol Biotechnol.50:323-330),踝节菌属(Talaromyces)葡糖淀粉酶,特别是源自埃默森踝节菌(Talaromyces emersoni)(WO 99/28448)、Talaromyces leycettanus(美国专利No.Re.32,153)、杜邦踝节菌(Talaromyces duponti)、嗜热踝节菌(Talaromyces thermophilus)(美国专利No.4,587,215)的葡糖淀粉酶。
涵盖的细菌葡糖淀粉酶包括来自下列的葡糖淀粉酶:梭菌属(Clostridium),特别是热解淀粉梭菌(C.thermoamylolyticum)(EP 135,138),和热硫化氢梭菌(WO 86/01831)和瓣环栓菌(Trametes cingulata)、纸质大纹饰孢(Pachykytospora papyracea);和大白桩菇(Leucopaxillus giganteus),其全部公开在WO 2006/069289中;或PCT/US2007/066618中公开的红边笋壳菌(Peniophora rufomarginata);或其混合物。根据本发明还涵盖杂合葡糖淀粉酶。杂合葡糖淀粉酶的实例公开在WO 2005/045018中。具体实例包括实施例1的表1和4中公开的杂合葡糖淀粉酶(将所述杂合体通过提述并入本文)。
还涵盖与上述葡糖淀粉酶中任一展现高同一性的葡糖淀粉酶,即,与上述的成熟酶序列至少70%、至少75%、至少80%、至少85%、至少90%、至少95%、至少96%、至少97%、至少98%、至少99%或甚至100%的同一性。
商业上可得到的包含葡糖淀粉酶的组合物包括AMG 200L;AMG 300L;SANTM SUPER、SANTM EXTRA L、SPIRIZYMETM PLUS、SPIRIZYMETMFUEL、SPIRIZYMETM B4U和AMGTM E(来自Novozymes A/S);OPTIDEXTM300(来自Genencor Int.);AMIGASETM和AMIGASETM PLUS(来自DSM);G-ZYMETM G900、G-ZYMETM和G990 ZR(来自Genencor Int.)。
在一个实施方案中,葡糖淀粉酶可以以0.0001-20AGU/g DS,优选0.001-10AGU/g DS,尤其是0.01-5AGU/g DS,如0.1-2AGU/g DS的量加入。
β-淀粉酶
β-淀粉酶(E.C 3.2.1.2)是传统上给予外切作用的产麦芽糖淀粉酶的名称,其催化直链淀粉、支链淀粉和相关的葡萄糖聚合物中1,4-α-葡糖苷键的水解。麦芽糖单元以逐步的方式从非还原性链末端相继去除,直至将分子降解,或者在支链淀粉的情况下,直至到达分支点。释放的麦芽糖具有β异头构型,因此名为β-淀粉酶。
β-淀粉酶已经从多种植物和微生物中分离(W.M.Fogarty和C.T.Kelly,1979,Progress in Industrial Microbiology,15:112-115)。这些β-淀粉酶的特征在于具有40℃-65℃范围内的最适温度和4.5-7范围内的最适pH。商业上可得到的来自大麦的β-淀粉酶是来自丹麦Novozymes A/S的NOVOZYMTM WBA和来自美国Genencor Int.的SPEZYMETM BBA 1500。
产麦芽糖淀粉酶
淀粉酶也可以是产麦芽糖α-淀粉酶。“产麦芽糖α-淀粉酶”(葡聚糖1,4-α-麦芽糖水解酶,E.C.3.2.1.133)能够将直链淀粉和支链淀粉水解成α-构型的麦芽糖。来自嗜热脂肪芽孢杆菌菌株NCIB 11837的产麦芽糖淀粉酶商业上可从Novozymes A/S得到。产麦芽糖α-淀粉酶记载于美国专利Nos.4,598,048、4,604,355和6,162,628中,将它们通过提述并入本文。
在一个优选的实施方案中,所述产麦芽糖淀粉酶可以以0.05-5mg总蛋白/g DS或0.05-5MANU/g DS的量加入。
纤维素分解活性
术语“纤维素分解活性”如用于本文理解为包括具有以下活性的酶:纤维二糖水解酶活性(EC 3.2.1.91),例如,纤维二糖水解酶I和纤维二糖水解酶II,以及内切葡聚糖酶活性(EC 3.2.1.4)和β-葡糖苷酶活性(EC 3.2.1.21)。
至少三类的酶对于将纤维素转化为可发酵的糖是重要的:内切葡聚糖酶(EC 3.2.1.4),其随机切割纤维素链;纤维二糖水解酶(EC 3.2.1.91),其从纤维素链末端切割纤维二糖基单元;和β-葡糖苷酶(EC 3.2.1.21),其将纤维二糖和可溶性纤维糊精转化成葡萄糖。在这三类涉及纤维素生物降解的酶之中,纤维二糖水解酶似乎是降解天然晶状纤维素的关键酶。
在一个优选的实施方案中,纤维素分解活性可以是真菌来源的酶制备物的形式,如来自木霉属(Trichoderma)的菌株,优选里氏木霉(Trichoderma reesei)的菌株;腐质霉属(Humicola)的菌株,如特异腐质霉(Humicola insolens)的菌株;或金孢子菌属(Chrysosporium)的菌株,优选Chrysosporium lucknowense的菌株。
在一个优选的实施方案中,所述纤维素分解酶制备物含有以下活性中的一种或多种:纤维素酶、半纤维素酶、纤维素分解酶增强活性、β-葡糖苷酶活性、内切葡聚糖酶、纤维二糖水解酶或木糖异构酶。
在一个优选的实施方案中,纤维素分解酶制备物是共同待审的申请PCT/US2008/065417中涉及的组合物,将该申请通过提述并入本文。在一个优选的实施方案中,纤维素分解酶制备物包含具有纤维素分解增强活性的多肽,优选家族GH61A多肽,优选WO 2005/074656(Novozymes)中公开的多肽。纤维素分解酶制备物可进一步包含β-葡糖苷酶,如源自木霉属、曲霉属或青霉属(Penicillium)的菌株的β-葡糖苷酶,包括公开于共同待审的申请WO2008/057637(Novozymes)中的具有β-葡糖苷酶活性的融合蛋白。在一个优选的实施方案中,纤维素分解酶制备物也可以包含CBH II酶,优选为土生梭孢霉(Thielavia terrestris)纤维二糖水解酶II(CEL6A)。在另一优选的实施方案中,纤维素分解制备物还可以包含纤维素分解酶,优选源自里氏木霉或特异腐质霉。
在一个优选的实施方案中,所述纤维素分解酶制备物也可以包含WO2005/074656中公开的具有纤维素分解增强活性(GH61A)的多肽;β-葡糖苷酶(WO 2008/057637中公开的融合蛋白)和源自里氏木霉的纤维素分解酶。
在一个实施方案中,纤维素分解酶组合物是商业上可得到的产品CELLUCLASTTM 1.5L,CELLUZYMETM(来自丹麦Novozymes A/S)或ACCELERASETM 1000(来自美国Genencor Inc.)。
可以加入纤维素分解酶用于水解经预处理的含木素纤维素材料。纤维素分解酶可以在0.1-100FPU/g总固体(TS),优选0.5-50FPU/g TS,特别是1-20FPU/g TS的范围内添加。在另一实施方案中,使用至少0.1mg纤维素分解酶每克总固体(TS),优选至少3mg纤维素分解酶每克TS,如5-10mg纤维素分解酶每克TS用于水解。
内切葡聚糖酶(EG)
术语“内切葡聚糖酶”是指内切-1,4-(1,3;1,4)-β-D-葡聚糖4-葡聚糖水解酶(E.C.No.3.2.1.4),其催化纤维素、纤维素衍生物(如羧甲基纤维素和羟乙基纤维素)、地衣淀粉、混合的β-1,3葡聚糖如谷类β-D-葡聚糖或木葡聚糖中的β-1,4键和其它包含纤维素组分的植物材料中1,4-β-D-糖苷键的内切水解。内切葡聚糖酶活性可以根据Ghose,1987,Pure and Appl.Chem.59:257-268的方法使用羧甲基纤维素(CMC)水解来测定。
在一个优选的实施方案中,内切葡聚糖酶可以源自木霉属的菌株,优选里氏木霉的菌株;腐质霉属的菌株,如特异腐质霉的菌株;或金孢子属的菌株,优选Chrysosproium lucknowense的菌株。
纤维二糖水解酶(CBH)
术语“纤维二糖水解酶”指1,4-β-D-葡聚糖纤维二糖水解酶(E.C.3.2.1.91),其催化纤维素、纤维寡糖或任何含β-1,4-连接的葡萄糖的聚合物中1,4-β-D-葡糖苷键的水解,从链的还原或非还原末端释放纤维二糖。
上述纤维二糖水解酶的实例包括来自里氏木霉、特异腐质霉的CBH I和CBH II,和来自土生梭孢霉纤维二糖水解酶(CELL6A)的CBH II。
可以根据由Lever等,1972,Anal.Biochem.47:273-279和van Tilbeurgh等,1982,FEBS Letters 149:152-156;van Tilbeurgh和Claeyssens,1985,FEBSLetters 187:283-288描述的方法测定纤维二糖水解酶活性。Lever等的方法适于评价玉米秸秆中纤维素的水解,而van Tilbeurgh等的方法适于测定对于荧光二糖衍生物的纤维二糖水解酶活性。
β-葡糖苷酶
在水解过程中可以存在一种或多种β-葡糖苷酶。
术语“β-葡糖苷酶”指β-D-葡糖苷葡糖水解酶(E.C.3.2.1.21),其催化末端非还原β-D-葡萄糖残基的水解,并释放β-D-葡萄糖。就本发明而言,根据由Venturi等,2002,J.Basic Microbiol.42:55-66描述的基本方法测定β-葡糖苷酶活性,只是使用如本文所述的不同条件。一个单位的β-葡糖苷酶活性定义为在50℃,pH 5,从100mM柠檬酸钠、0.01%20中作为底物的4mM对硝基苯基-β-D-吡喃葡萄糖苷每分钟产生1.0微摩尔对硝基酚。
在一个优选的实施方案中,β-葡糖苷酶是真菌来源的,如木霉属、曲霉属或青霉属的菌株。在一个优选的实施方案中,β-葡糖苷酶源自里氏木霉,如由bgl1基因编码的β-葡糖苷酶(参见EP 562003的图1)。在另一个优选的实施方案中,β-葡糖苷酶源自米曲霉(根据WO 02/095014,在米曲霉中重组产生),烟曲霉(Aspergillus fumigatus)(根据WO 02/095014的实施例22,在米曲霉中重组产生)或黑曲霉(1981,J.Appl.3:157-163)。
半纤维素分解酶
根据本发明,可以将经预处理的含木素纤维素材料进一步用一种或多种半纤维素分解酶(例如,一种或多种半纤维素酶)处理。
可以通过半纤维素酶和/或酸水解分解半纤维素,以释放它的五碳糖和六碳糖组分。
在本发明的一个实施方案中,可以用一种或多种半纤维素酶处理木素纤维素来源材料。
可以使用适用于水解半纤维素(优选将半纤维素水解成木糖)的任何半纤维素酶。优选的半纤维素酶包括木聚糖酶,阿拉伯呋喃糖苷酶,乙酰木聚糖酯酶,阿魏酸酯酶,葡糖醛酸糖苷酶,内切半乳聚糖酶,甘露聚糖酶,内切或外切阿拉伯糖酶,外切半乳聚糖酶,或其中两种或更多种的混合物。优选地,用于本发明的半纤维素酶是外切作用的半纤维素酶,并且更优选地,半纤维素酶是能在低于pH 7,优选pH 3-7的酸性条件下水解半纤维素的外切作用的半纤维素酶。适用于本发明的半纤维素酶的实例包括VISCOZYMETM(可从丹麦Novozymes A/S获得)。
在一个实施方案中,半纤维素酶是木聚糖酶。在一个实施方案中,木聚糖酶可以优选是微生物来源的,如真菌来源的(例如,木霉属、多孔菌属、腐质霉属、曲霉属、镰孢属(Fusarium))或者来自细菌(例如,芽孢杆菌属)。在一个优选的实施方案中,木聚糖酶源自丝状真菌,优选源自曲霉属,如棘孢曲霉(Aspergillus aculeatus)的菌株;或者腐质霉属,优选疏棉状腐质霉(Humicolalanuginosa)的菌株。木聚糖酶可以优选是内切-1,4-β-木聚糖酶,更优选是GH10或GH11的内切-1,4-β-木聚糖酶。商业化木聚糖酶的实例包括来自丹麦Novozymes A/S的SHEARZYMETM和BIOFEED WHEATTM
可以以有效水解半纤维素的量加入所述半纤维素酶,例如,以约0.001-0.5wt.%总固体(TS),更优选约0.05-0.5wt.%TS的量加入。
可以以0.001-1.0g/kg DM(干物质)底物的量,优选以0.005-0.5g/kg DM底物,和最优选0.05-0.10g/kg DM底物的量加入木聚糖酶。
木糖异构酶
木糖异构酶(D-木糖酮异构酶)(E.C.5.3.1.5.)是催化D-木糖到D-木酮糖的可逆异构化反应的酶。一些木糖异构酶还转化D-葡萄糖到D-果糖的可逆异构。因此,木糖异构酶有时称作“葡萄糖异构酶”。
本发明的方法或过程中使用的木糖异构酶可以是具有木糖异构酶活性的任何酶并且可以源自任何来源,优选细菌或真菌来源,如丝状真菌或酵母。细菌木糖异构酶的实例包括属于链霉菌属(Streptomyces)、游动放线菌属(Actinoplanes)、芽孢杆菌属、黄杆菌属(Flavobacterium)和栖热袍菌属(Thermotoga)的,包括那不勒斯栖热袍菌(T.neapolitana)(Vieille等,1995,Appl.Environ.Microbiol.61(5):1867-1875)和海栖热袍菌(T.maritime)的。
真菌木糖异构酶的实例源自担子菌纲(Basidiomycetes)的物种。
优选的木糖异构酶源自酵母假丝酵母属(Candida)菌株,优选博伊丁假丝酵母(Candida boidinii)的菌株,特别是由例如Vongsuvanlert等,1988,Agric.Biol.Chem.,52(7):1817-1824公开的博伊丁假丝酵母木糖异构酶。所述木糖异构酶可以优选源自博伊丁假丝酵母的菌株(克勒克酵母2201(Kloeckera 2201)),其作为DSM 70034和ATCC 48180保藏,公开在Ogata等,Agric.Biol.Chem,33:1519-1520或Vongsuvanlert等,1988,Agric.Biol.Chem,52(2):1519-1520中。
在一个实施方案中,木糖异构酶源自链霉菌属的菌株,例如,源自鼠灰链霉菌(Streptomyces murinus)的菌株(美国专利No.4,687,742);黄微绿链霉菌(S.flavovirens)、白色链霉菌(S.albus)、不产色链霉菌(S.achromogenus)、多刺链霉菌(S.echinatus)、威德摩尔链霉菌(S.wedmorensis),其全部公开于美国专利No.3,616,221。其它木糖异构酶公开在美国专利No.3,622,463、美国专利No.4,351,903、美国专利No.4,137,126、美国专利No.3,625,828、HU专利No.12,415、德国专利2,417,642、日本专利No.69,28,473和WO 2004/044129中,将每一篇通过提述并入本文。
木糖异构酶可以是固定化的形式或液体形式。液体形式是优选的。
商业上可得到的木糖异构酶的实例包括来自丹麦Novozymes A/S的SWEETZYMETM
加入木糖异构酶以提供0.01-100 IGIU每克总固体范围内的活性水平。
纤维素分解增强活性
术语“纤维素分解增强活性”在本文定义为增强由具有纤维素分解活性的蛋白质进行的木素纤维素来源材料的水解的生物学活性。就本发明而言,纤维素分解增强活性是如下测定的:测量与使用相等的总蛋白质装载量但没有纤维素分解增强活性(1-50mg纤维素分解蛋白/g PCS(经预处理的玉米秸秆)中的纤维素)的对照水解相比,从在以下条件下通过纤维素分解蛋白进行的木素纤维素来源材料(例如,经预处理的含木素纤维素材料)的水解得到的还原糖的增加或纤维二糖和葡萄糖总和的增加:1-50mg总蛋白/g PCS中的纤维素,其中总蛋白包含80-99.5%w/w纤维素分解蛋白/g PCS中的纤维素和0.5-20%w/w具有纤维素分解增强活性的蛋白质,在50℃进行1-7天。
所述具有纤维素分解增强活性的多肽通过将达到相同程度水解所需的纤维素分解酶量降低优选至少0.1-倍,更优选至少0.2-倍,更优选至少0.3-倍,更优选至少0.4-倍,更优选至少0.5-倍,更优选至少1-倍,更优选至少3-倍,更优选至少4-倍,更优选至少5-倍,更优选至少10-倍,更优选至少20-倍,甚至更优选至少30-倍,最优选至少50-倍,并且甚至最优选至少100-倍,来增强由具有纤维素分解活性的蛋白质催化的木素纤维素来源材料的水解。
在一个优选的实施方案中,水解和/或发酵是在纤维素分解酶与具有增强活性的多肽的组合存在下进行的。在一个优选的实施方案中,具有增强活性的多肽是家族GH61A多肽。WO 2005/074647公开了来自土生梭孢霉的具有纤维素分解增强活性的分离的多肽及其多核苷酸。WO 2005/074656公开了来自橙色嗜热子囊菌(Thermoascus aurantiacu)的具有纤维素分解增强活性的分离的多肽及其多核苷酸。公布的美国申请系列号No.2007/0077630公开了来自里氏木霉的具有纤维素分解增强活性的分离的多肽及其多核苷酸。
蛋白酶
蛋白酶可以在步骤ii)的水解过程中、步骤iii)的发酵过程中或同步水解和发酵过程中加入。蛋白酶可以是任何蛋白酶。在一个优选的实施方案中,蛋白酶是微生物来源的(优选真菌或细菌来源的)酸性蛋白酶。酸性真菌蛋白酶是优选的,但也可以使用其它蛋白酶。
合适的蛋白酶包括微生物蛋白酶,如真菌和细菌蛋白酶。优选的蛋白酶是酸性蛋白酶,即,其特征为在pH 7以下的酸性条件下水解蛋白质的能力。
涵盖的酸性真菌蛋白酶包括源自曲霉属、毛霉属(Mucor)、根霉属(Rhizopus)、假丝酵母属、革盖菌属(Coriolus)、内座壳属(Endothia)、虫霉属(Enthomophtra)、耙齿菌属(Irpex)、青霉属、小核菌属(Sclerotium)和球拟酵母属(Torulopsis)的真菌蛋白酶。特别涵盖的是源自黑曲霉(参见,例如,Koaze等,1964,Agr.Biol.Chem.Japan,28:216)、斋藤曲霉(Aspergillus saitoi)(参见,例如,Yoshida,1954,J.Agr.Chem.Soc.Japan,28:66),泡盛曲霉(Hayashida等,1977,Agric.Biol.Chem.,42(5):927-933),棘孢曲霉(Aspergillus aculeatus)(WO95/02044),或米曲霉的蛋白酶,如pepA蛋白酶;和来自微小毛霉(Mucorpusillus)或米黑毛霉(Mucor miehei)的酸性蛋白酶。
涵盖的还有中性或碱性蛋白酶,如源自芽孢杆菌属菌株的蛋白酶。对于本发明特别涵盖的蛋白酶源自解淀粉芽孢杆菌,并且具有可以以登录号P06832在Swissprot获得的序列。还涵盖与可在Swissport以登录号P06832获得的氨基酸序列具有至少90%同一性,如至少92%,至少95%,至少96%,至少97%,至少98%,或者特别是至少99%同一性的蛋白酶。
此外还涵盖与WO 2003/048353中作为SEQ.ID.NO:1公开的氨基酸序列具有至少90%同一性,如至少92%,至少95%,至少96%,至少97%,至少98%,或者特别是至少99%同一性的蛋白酶。
还涵盖木瓜蛋白酶-样蛋白酶,如E.C.3.4.22.*(半胱氨酸蛋白酶)中的蛋白酶,如E.C.3.4.22.2(木瓜蛋白酶),EC 3.4.22.6(木瓜凝乳蛋白酶),EC 3.4.22.7(萝藦蛋白酶),EC 3.4.22.14(奇异果蛋白酶(actinidain)),EC 3.4.22.15(组织蛋白酶L),EC 3.4.22.25(甘氨酰-内肽酶)和EC 3.4.22.30(Caricain)。
在一个实施方案中,蛋白酶是源自曲霉属如米曲霉的菌株的蛋白酶制备物。在另一实施方案中,蛋白酶源自根毛霉属,优选曼赫根毛霉(Rhizomucormiehei)的菌株。在另一涵盖的实施方案中,蛋白酶是蛋白酶制备物,优选为源自曲霉属(如米曲霉)菌株的蛋白分解制备物和源自根毛霉属(优选曼赫根毛霉)的菌株的蛋白酶的混合物。
天冬氨酸蛋白酶在,例如,Handbook of Proteolytic Enzymes,由A.J.Barrett,N.D.Rawlings和J.F.Woessner编,Academic Press,San Diego,1998,Chapter 270中描述。天冬氨酸蛋白酶的合适实例包括,例如,在Berka等,1990,Gene,96:313;Berka等,1993,Gene,125:195-198;和Gomi等,1993,Biosci.Biotech.Biochem.57:1095-1100中公开的那些,所述文献通过提述并入本文。
商业上可得到的产品包括ESPERASETM、FLAVOURZYMETM、PROMIXTMNOVOZYMTM FM 2.0L,和NOVOZYMTM 50006(可从丹麦Novozymes A/S获得)和来自美国Genencor Int.,Inc.的GC106TM和SPEZYMETM FAN。
蛋白酶可以以0.0001-1mg酶蛋白/g DS,优选0.001-0.1mg酶蛋白/g DS的量存在。或者,蛋白酶可以以0.0001-1LAPU/g DS,优选0.001-0.1LAPU/gDS和/或0.0001-1mAU-RH/g DS,优选0.001-0.1mAU-RH/g DS的量存在。
组合物
在这个方面,本发明涉及包含一种或多种焦磷酸酶的组合物。在一个优选的实施方案中,所述焦磷酸酶具有无机焦磷酸酶活性(EC 3.6.1.1)。合适的焦磷酸酶的实例可以在上文“焦磷酸酶”部分中找到。
所述组合物可以包含一种或多种糖源产生酶,例如特别是葡糖淀粉酶、β-淀粉酶、产麦芽糖淀粉酶、支链淀粉酶、α-葡糖苷酶或其混合物。
在一个实施方案中,所述组合物进一步包含一种或多种其它糖酶,如α-淀粉酶。在一个优选的实施方案中,所述α-淀粉酶是酸性α-淀粉酶或真菌α-淀粉酶,优选酸性真菌α-淀粉酶。
在一个实施方案中,所述组合物包含选自下组的酶:纤维素分解酶,如纤维素酶,和/或半纤维素分解酶,如半纤维素酶。
涵盖的酶的实例可以在上文“酶”部分中找到。
在另一优选的实施方案中,所述组合物包含一种或多种焦磷酸酶,还进一步包含一种或多种发酵生物,如酵母和/或细菌。发酵生物的实例可以在上文“发酵生物”部分中找到。
用途
在这个方面,本发明涉及焦磷酸酶用于改进发酵方法过程中的发酵产物产率和/或发酵速率的用途。
转基因植物材料
在这个方面本发明涉及用一种或多种焦磷酸酶基因转化的转基因植物材料。
在一个实施方案中,本发明涉及已经用编码焦磷酸酶的多核苷酸序列转化从而表达并产生该酶的转基因植物、植物部分或植物细胞。所述酶可以自所述植物或植物部分回收,但是在本发明的上下文中,含有重组焦磷酸酶的植物或植物部分可以用于上文涉及并描述的本发明的一种或多种方法中。
所述转基因植物可以是双子叶的(双子叶植物)或单子叶的(单子叶植物)。单子叶植物的实例是草,如草地早熟禾(meadow grass)(蓝草,早熟禾属(Poa)),牧草(forage grass)如羊茅属(Festuca)、黑麦草属(Lolium),温带草如剪股颖属(Agrostis),和谷类,例如,小麦、燕麦、黑麦、大麦、稻、高粱和玉米。
双子叶植物的实例是烟草,豆类,如羽扇豆(lupin),马铃薯,糖甜菜,豌豆(pea),豆(bean)和大豆(soybean),和十字花科植物(十字花科(family Brassicaceae)),如花椰菜,油菜籽,和密切相关的模式生物拟南芥(Arabidopsis thaliana)。
植物部分的实例是茎/干、愈伤组织、叶、根、果实、种子和块茎,以及包含这些部分的单独组织,例如,表皮、叶肉、薄壁组织、维管组织、分生组织。特定植物细胞区室,如叶绿体、质外体、线粒体、液泡、过氧化物酶体和胞质也认为是植物部分。此外,任何植物细胞,无论组织来源如何,都认为是植物部分。同样,植物部分如为了促进本发明的利用而分离的特定组织和细胞也认为是植物部分,例如,胚、胚乳、糊粉和种皮。
本发明的范围还包括这些植物、植物部分和植物细胞的子代。
表达焦磷酸酶的转基因植物或植物细胞可以按照本领域熟知的方法构建。简言之,所述植物或植物细胞是通过将一种或多种编码焦磷酸酶的表达构建体并入植物宿主基因组并将所得经修饰的植物或植物细胞繁殖成转基因植物或植物细胞来构建的。
表达构建体方便地是核酸构建体,其包含编码焦磷酸酶的多核苷酸,所述多核苷酸与在所选择的植物或植物部分中表达该多核苷酸序列所需的适当的调节序列可操作地连接。此外,所述表达构建体可以包含对于鉴定其中整合了该表达构建体的宿主细胞有用的选择标志和对于将该构建体引入所讨论的植物所必需的DNA序列(后者依赖于要使用的DNA引入方法)。
调节序列(如启动子和终止子序列,和任选地信号或转运序列)的选择是例如基于期望所述酶在何时、何地以及如何表达来确定的。例如,编码焦磷酸酶的基因的表达可以是组成型或诱导型的,或者可以是发育、阶段或组织特异性的,并且可以使基因产物靶向特定组织或植物部分如种子或叶。调节序列由例如Tague等,1988,Plant Physiology 86:506描述。
对于组成型表达,可以使用35S-CaMV、玉米泛素1和稻肌动蛋白1启动子(Franck等,1980,Cell 21:285-294,Christensen等,1992,Plant Mo.Biol.18:675-689;Zhang等,1991,Plant Cell 3:1155-1165)。器官特异性启动子可以是例如,来自贮存库组织(storage sink tissue)如种子、马铃薯块茎和果实的启动子(Edwards & Coruzzi,1990,Ann.Rev.Genet.24:275-303),或来自代谢库组织(metabolic sink tissue)如分生组织的启动子(Ito等,1994,Plant Mol.Biol.24:863-878),种子特异性启动子,如来自稻的谷蛋白、醇溶谷蛋白、球蛋白或清蛋白启动子(Wu等,1998,Plant and Cell Physiology 39:885-889),来自豆球蛋白B4和来自蚕豆(Vicia faba)的未知种子蛋白基因的蚕豆启动子(Conrad等,1998,Journal of Plant Physiology 152:708-711),来自种子油体蛋白(seed oilbody protein)的启动子(Chen等,1998,Plant and Cell Physiology 39:935-941),来自欧洲油菜(Brassica napus)的贮存蛋白napA启动子,或本领域已知的任何其它种子特异性启动子,例如如WO 91/14772中所描述的。此外,启动子也可以是叶特异性启动子,如来自稻或番茄的rbcs启动子(Kyozuka等,1993,Plant Physiology 102:991-1000),小球藻病毒腺嘌呤甲基转移酶基因启动子(Mitra和Higgins,1994,Plant Molecular Biology 26:85-93),或来自稻的aldP基因启动子(Kagaya等,1995,Molecular and General Genetics 248:668-674),或伤口诱导的启动子如马铃薯pin2启动子(Xu等,1993,Plant MolecularBiology 22:573-588)。同样,启动子可通过非生物处理如温度、干旱或盐度改变来诱导,或由活化启动子的外源施加的物质,例如乙醇、雌激素、植物激素(如乙烯、脱落酸和赤霉酸)以及重金属所诱导。
在植物中可以使用启动子增强子元件来实现焦磷酸酶的较高表达。例如,启动子增强子元件可以是位于启动子和编码焦磷酸酶的多核苷酸序列之间的内含子。例如,Xu等(1993,同上)公开了使用稻肌动蛋白1基因的第一内含子来增强表达。
选择标志基因和表达构建体的任何其它部分可选自本领域可用的那些。
根据本领域已知的常规技术将核酸构建体并入植物基因组,所述常规技术包括土壤杆菌(Agrobacterium)介导的转化、病毒介导的转化、显微注射(micro injection)、粒子轰击、生物射弹转化(biolistic transformation)和电穿孔(Gasser等,1990,Science 244:1293;Potrykus,1990,Bio/Technology 8:535;Shimamoto等,1989,Nature 338:274)。
目前,根癌土壤杆菌(Agrobacterium tumefaciens)介导的基因转移是用于产生转基因双子叶植物的优选方法(参见综述Hooykas和Schilperoort,1992,Plant Molecular Biology 19:15-38),并且也能用于转化单子叶植物,尽管对这些植物通常使用其它转化方法。目前,用于产生转基因单子叶植物的优选方法是对胚愈伤组织或发育中的胚的粒子轰击(用转化DNA涂覆的微观(microscopic)金或钨颗粒)(Christou,1992,Plant Journal 2:275-281;Shimamoto,1994,Current Opinion Biotechnology 5:158-162;Vasil等,1992,Bio/Technology 10:667-674)。转化单子叶植物的可选方法基于原生质体转化,如Omirulleh等,1993,Plant Molecular Biology 21:415-428所述。
转化后,根据本领域熟知方法选择并入了表达构建体的转化体并将其再生成全植株。通常将转化方法设计成通过使用例如两种单独T-DNA构建体的共转化或以特异性重组酶位点特异性切除选择基因,在再生期间或在后代中选择性地消除选择基因。
用于在植物中产生焦磷酸酶的方法可包括:(a)在有益于产生所述酶的条件下培养转基因植物或植物细胞,所述转基因植物或植物细胞包含编码焦磷酸酶的多核苷酸。
如上文所述,所述转基因植物材料可以用于上文所述的本发明的方法中。
转基因植物能够以与相应的未修饰的植物材料相比升高的量表达一种或多种焦磷酸酶。
修饰的发酵生物
在这个方面本发明涉及用编码焦磷酸酶的多核苷酸转化的修饰的发酵生物,其中所述发酵生物在发酵条件下能够表达焦磷酸酶。
在一个优选的实施方案中,所述发酵条件如根据本发明所限定。在一个优选的实施方案中,所述发酵生物是微生物,如酵母或丝状真菌,或细菌。其它发酵生物的实例可以在“发酵生物”部分中找到。
可以使用本领域公知的技术将发酵生物用编码焦磷酸酶的基因转化。
本文描述并要求保护的发明不限于本文公开的具体实施方案的范围,因为这些实施方案旨在示例本发明的数个方面。意欲将任何等同的实施方案都包括在本发明的范围内。事实上,根据前文的描述,除了本文显示和描述的之外的多种对本发明的修饰对于本领域技术人员而言会变得显而易见。这些修饰也意欲落入所附权利要求书的范围中。如有冲突,以包括定义在内的本文公开内容为准。
本文引用了多篇参考文献,将它们的内容通过提述完整并入。
材料和方法
材料:
来自面包酵母(酿酒酵母)的焦磷酸酶购自Sigma(I1643)。
来自烟草的焦磷酸酶购自Sigma(产品号P0414)。
来自大肠杆菌的焦磷酸酶购自Sigma(产品号I5907)。
来自芽孢杆菌属的焦磷酸酶购自Sigma(产品号I2891)。
来自瓣环栓菌的葡糖淀粉酶TC公开在WO 2006/069289的SEQ ID NO:2中并可以从丹麦Novozymes A/S获得。
葡糖淀粉酶(AMG A):源自瓣环栓菌的葡糖淀粉酶,公开在WO2006/069289的SEQ ID NO:2中并且可以从Novozymes A/S获得。
α-淀粉酶A(AA1):杂合α-淀粉酶,由微小根毛霉α-淀粉酶与黑曲霉葡糖淀粉酶接头和SBD组成,其作为V039公开于WO 2006/069290(Novozymes A/S)的表5中。
纤维素酶制备物A:纤维素分解组合物,包含WO 2005/074656中公开的具有纤维素分解增强活性(GH61A)的多肽;β-葡糖苷酶(WO 2008/057637中公开的融合蛋白)和源自里氏木霉的纤维素分解酶制备物。纤维素酶制备物A在共同待审的申请PCT/US2008/065417中公开。
酵母:RED STARTM,可从美国Red Star/Lesaffre获得的。
RWB218是从Royal Nedalco/The Netherlands得到的,并记载于Kuyper等,2005,FEMS Yeast Research 5:925-934。
未经洗涤的、经预处理的玉米秸秆(PCS):酸催化的,蒸汽爆炸的,获得自The National Renewable Energy Laboratory(美国国家可再生能源实验室),Golden,CO。
方法:
同一性
两个氨基酸序列之间或两个多核苷酸序列之间的相关性通过参数“同一性”来描述。
就本发明而言,两个氨基酸序列之间的同一性程度是通过Clustal方法(Higgins,1989,CABIOS 5:151-153)测定的,该方法使用LASERGENETMMEGALIGNTM软件(DNASTAR,Inc.,Madison,WI),及同一性表和以下多重比对参数:缺口罚分(Gap penalty)10和缺口长度罚分(gap length penalty)10。配对比对参数是K元组(Ktuple)=1,缺口罚分=3,窗口=5,且对角线=5。
就本发明而言,两个多核苷酸序列之间的同一性程度是通过Wilbur-Lipman方法(Wilbur和Lipman,1983,Proceedings of the NationalAcademy of Science USA 80:726-730)测定的,该方法使用LASERGENETMMEGALIGNTM软件(DNASTAR,Inc.,Madison,WI),及同一性表和以下多重比对参数:缺口罚分10和缺口长度罚分10。配对比对参数是K元组=3,缺口罚分=3,且窗口=20。
焦磷酸酶活性测定(PPase测定法)
* Sigma单位定义(酵母)
1单位会在pH 7.2、25℃每分钟释放1.0微摩尔无机正磷酸。
* Sigma单位定义(细菌)
1单位会在pH 9、25℃每分钟释放1.0微摩尔无机正磷酸。
以上活性单位定义是基于来自Sigma-Aldrich的PPase产品的单位定义:来自酿酒酵母的PPase(产品号I1643)和来自大肠杆菌的PPase(产品号I5907)的单位定义。
* Sigma单位定义(植物或酸性PPase)
1单位会在pH 6.0、37℃在30分钟内从7-甲基-GTP释放1.0纳摩尔无机磷酸。1个7-甲基-GTP单位(pH 6.0)相当于15个ATP单位(pH 5.0)。
葡糖淀粉酶活性
葡糖淀粉酶活性可以以葡糖淀粉酶单位(AGU)测量。
葡糖淀粉酶活性(AGU)
Novo葡糖淀粉酶单位(Novo Glucoamylase Unit)(AGU)定义为在如下的标准条件下每分钟水解1微摩尔麦芽糖的酶量:37℃,pH 4.3,底物:麦芽糖23.2mM,缓冲液:乙酸盐0.1M,反应时间5分钟。
可以使用自动分析仪系统。向葡萄糖脱氢酶试剂加入变旋酶,从而将任何存在的α-D-葡萄糖转变为β-D-葡萄糖。葡萄糖脱氢酶在上述反应中特异性地与β-D-葡萄糖反应,形成NADH,使用光度计在340nm测定NADH作为原始葡萄糖浓度的量度。
  AMG温育:
  底物:   麦芽糖23.2mM
  缓冲液:   乙酸盐0.1M
  pH:   4.30±0.05
  温育温度:   37℃±1
  反应时间:   5分钟
  酶工作范围:   0.5-4.0AGU/mL
  显色反应:
  GlucDH:   430U/L
  变旋酶:   9U/L
  NAD:   0.21mM
  缓冲液:   磷酸盐0.12M;0.15M NaCl
  pH:   7.60±0.05
  温育温度:   37℃±1
  反应时间:   5分钟
  波长:   340nm
更详细描述这种分析方法的文件夹(EB-SM-0131.02/01)可从丹麦Novozymes A/S通过索取获得,将该文件夹通过提述包括在本文中。
α-淀粉酶活性(KNU)
α-淀粉酶活性可以使用马铃薯淀粉作为底物来测定。这种方法基于酶对经改性的马铃薯淀粉的分解,并且通过将淀粉/酶溶液样品与碘溶液混合来追踪所述反应。起初,形成蓝黑色,但在淀粉分解过程中蓝色变浅并逐渐转为红棕色,将其与有色玻璃标准品比较。
一千个Novo α-淀粉酶单位(KNU)定义为在标准条件(即,在37℃+/-0.05;0.0003M Ca2+;和pH 5.6)下糊精化5260mg淀粉干物质Merck Amylumsolubile的酶量。
更详细描述这种分析方法的文件夹EB-SM-0009.02/01可从丹麦Novozymes A/S通过索取获得,将该文件夹通过提述包括在本文中。
酸性α-淀粉酶活性(AFAU)
当根据本发明使用时,酸性α-淀粉酶的活性可以以AFAU(酸性真菌α-淀粉酶单位)来测量。或者,所述α-淀粉酶的活性可以以AAU(酸性α-淀粉酶单位)来测量。
酸性α-淀粉酶单位(AAU)
酸性α-淀粉酶活性可以以AAU(酸性α-淀粉酶单位)测量,这是一种绝对方法。1个酸性淀粉酶单位(AAU)是在标准化条件下每小时将1g淀粉(100%干物质)转化成在与已知强度的碘溶液反应之后在620nm具有与颜色参比之一相等的透射的产物的酶量。
标准条件/反应条件:
底物:      可溶性淀粉。浓度约20g DS/L.
缓冲液:    柠檬酸盐,约0.13M,pH=4.2
碘溶液:    40.176g碘化钾+0.088g碘/L
城市用水    15°-20°dH(德国硬度)
pH:        4.2
温育温度:  30℃
反应时间:  11分钟
波长:      620nm
酶浓度:    0.13-0.19AAU/mL
酶工作范围:0.13-0.19AAU/mL
淀粉应为Lintner淀粉,其是稀糊(thin-boiling)淀粉,用在实验室中作为比色指示剂。Lintner淀粉通过用稀盐酸处理天然淀粉而获得,因而其保持了与碘一起呈蓝色的能力。更多细节可见EP 0140410 B2,通过提述将其内容包括在本文中。
FAU-F的测定
FAU-F真菌α-淀粉酶单位(Fungamyl)是相对于具有公布的强度(declaredstrength)的酶标准品测量的。
更详细描述这种标准方法的文件夹(EB-SM-0216.02)可从丹麦Novozymes A/S通过索取获得,将该文件夹通过提述包括在本文中。
酸性α-淀粉酶活性(AFAU)
酸性α-淀粉酶活性可以以AFAU(酸性真菌α-淀粉酶单位)测量,其是相对于酶标准品测定的。1 AFAU定义为在下述标准条件下每小时降解5.260mg淀粉干物质的酶量。
酸性α-淀粉酶(一种内切α-淀粉酶(1,4-α-D-葡聚糖-葡聚糖水解酶,E.C.3.2.1.1))水解淀粉分子内部区域中的α-1,4-葡糖苷键,形成具有不同链长的糊精和寡糖。与碘形成的颜色的强度与淀粉浓度成正比。使用反向比色法在指定分析条件下测定淀粉浓度的降低作为淀粉酶活性。
λ=590nm     40℃,pH 2.5
蓝/紫         t=23秒    脱色
标准条件/反应条件:
底物:      可溶性淀粉,约0.17g/L
缓冲液:    柠檬酸盐,约0.03M
碘(I2):    0.03g/L
CaCl2:     1.85mM
pH:        2.50±0.05
温育温度:  40℃
反应时间:  23秒
波长:      590nm
酶浓度:    0.025AFAU/mL
酶工作范围:0.01-0.04AFAU/mL
更详细描述这种标准方法的文件夹EB-SM-0259.02/01可从丹麦Novozymes A/S通过索取获得,将该文件夹通过提述包括在本文中。
使用滤纸测定法(FPU测定法)测量纤维素酶活性
1.方法来源
1.1本方法公开在Adney,B.和Baker,J.,1996,Laboratory AnalyticalProcedure,LAP-006,National Renewable Energy Laboratory(NREL)的题为“Measurement of Cellulase Activities”的文件中。其以用于测量纤维素酶活性的IUPAC法(Ghose,T.K.,1987,Measurement of Cellulase Activities,Pure &Appl.Chem.59:257-268)为基础。
2.程序
2.1按照Adney和Baker,1996(同上)所述实施该方法,只是使用96孔板来读取显色之后的吸光度值,如下所述。
2.2酶测定管:
2.2.1向试管(13X 100mm)底部加入成卷的滤纸条(#1 Whatman;1 X 6cm;50mg)。
2.2.2向试管加入1.0mL 0.05M柠檬酸钠缓冲液(pH 4.80)。
2.2.3将含有滤纸和缓冲液的试管在循环水浴中在50℃(±0.1℃)温育5分钟。
2.2.4温育之后,将0.5mL柠檬酸盐缓冲液中的酶稀释物加入试管。将所述酶稀释物设计成产生比2.0mg葡萄糖的目标值稍高和稍低的数值。
2.2.5通过温和涡旋震荡3秒使试管内容物混合。
2.2.6涡旋震荡之后,将试管在循环水浴中在50℃(±0.1℃)温育60分钟。
2.2.760分钟温育之后立即将试管从水浴移出,并向每个试管加入3.0mL DNS试剂以终止反应。涡旋震荡试管3秒来混合。
2.3空白和对照
2.3.1试剂空白是通过向试管加入1.5mL柠檬酸盐缓冲液来制备的。
2.3.2底物对照是通过将成卷的滤纸条置于试管底部中并加入1.5mL柠檬酸盐缓冲液来制备的。
2.3.3每种酶稀释物的酶对照是通过将1.0mL柠檬酸盐缓冲液与0.5mL适当的酶稀释物混合来制备的。
2.3.4按照与酶测定管相同的方式测定所述试剂空白、底物对照和酶对照,并与酶测定管一起进行。
2.4葡萄糖标准品
2.4.1制备100mL葡萄糖的贮存溶液(10.0mg/mL),并以5mL等分试样冷冻。使用前,为等分试样解冻并涡旋震荡混合。
2.4.2在柠檬酸盐缓冲液中如下制备贮存溶液的稀释液:
G1=1.0mL贮藏液+0.5mL缓冲液=6.7mg/mL=3.3mg/0.5mL
G2=0.75mL贮藏液+0.75mL缓冲液=5.0mg/mL=2.5mg/0.5mL
G3=0.5mL贮藏液+1.0mL缓冲液=3.3mg/mL=1.7mg/0.5mL
G4=0.2mL贮藏液+0.8mL缓冲液=2.0mg/mL=1.0mg/0.5mL
2.4.3通过将0.5mL的每种稀释液加入1.0mL柠檬酸盐缓冲液来制备葡萄糖标准管。
2.4.4按与酶测定管相同的方式测定葡萄糖标准管,并且与酶测定管一起进行。
2.5显色
2.5.160分钟温育并加入DNS之后,将试管全部一起在水浴中煮沸5分钟。
2.5.2煮沸之后,立即将它们在冰/水浴中冷却。
2.5.3冷却后,将试管短暂地涡旋震荡,并允许浆液(pulp)沉降。然后通过将来自试管的50微升加入96孔板中200微升ddH2O来稀释各个试管。是各个孔混合,并读取540nm处的吸光度。
2.6计算(实例在NREL文件中提供)
2.6.1葡萄糖标准曲线是通过将四种标准品(G1-G4)的葡萄糖浓度(mg/0.5mL)相对于A540绘图来准备的。这是使用线性回归(Prism Software)拟合的,并将直线的方程用于测定每个酶测定管产生的葡萄糖。
2.6.2准备了产生的葡萄糖(mg/0.5mL)相对于总的酶稀释度的图,其中Y轴(酶稀释度)是对数标度。
2.6.3在产生恰好高于2.0mg葡萄糖的酶稀释度和产生恰好低于2.0mg葡萄糖的酶稀释度之间画一条线。由这条线确定精确产生2.0mg葡萄糖的酶稀释度。
2.6.4滤纸单位/mL(FPU/mL)是如下计算的:
FPU/mL=0.37/产生2.0mg葡萄糖的酶稀释度
蛋白酶测定法-AU(RH)
蛋白水解活性可以用变性血红蛋白作为底物来测定。在用于测定蛋白酶分解活性的Anson-Hemoglobin法中,将变性的血红蛋白消化,并将未消化的血红蛋白用三氯乙酸(TCA)沉淀。用酚试剂来测定TCA可溶性产物的量,酚试剂与酪氨酸和色氨酸形成蓝色。
1个Anson单位(AU-RH)定义为在标准条件下(即,25℃,pH 5.5和10分钟反应时间)以下述初始速率消化血红蛋白的酶量,该初始速率使得每分钟释放的TCA可溶性产物的量与酚试剂形成的颜色与一毫当量(milliequivalent)酪氨酸与酚试剂形成的颜色相同。
AU(RH)法记载在EAL-SM-0350中,并且可以通过索取从丹麦Novozymes A/S获得。
蛋白酶测定方法(LAPU)
1个亮氨酸氨基肽酶单位(LAPU)是在以下条件每分钟分解1μM底物的酶量:26mM L-亮氨酸-p-硝基苯胺(L-leucine-p-nitroanilide)作为底物,0.1MTris缓冲液(pH 8.0),37℃,10分钟反应时间。
LAPU记载在可通过索取从丹麦Novozymes A/S获得的EB-SM-0298.02/01中。
测定产麦芽糖淀粉酶活性(MANU)
1个MANU(产麦芽糖淀粉酶Novo单位)可以定义为在如下条件下每分钟释放1微摩尔麦芽糖所需的酶量:10mg麦芽三糖(Sigma M 8378)底物每ml 0.1M柠檬酸盐缓冲液pH5.0的浓度,于37℃进行30分钟。
实施例
实施例1:
焦磷酸酶(PPase)在发酵经预处理的玉米秸秆(PCS)水解物以产生乙醇的作用
经由小规模(mini-scale)发酵来评估所有处理。将经NREL稀酸蒸汽爆炸的玉米秸秆(PCS)用水稀释并用NH4OH调节至pH 5.0。在水解前还加入青霉素和柠檬酸盐缓冲液和YP(酵母提取物和蛋白胨)培养基。总固体(TS)水平为20%。然后将样品在50℃用有效量的纤维素酶制备物A水解72小时。水解步骤之后,对样品进行无菌过滤以去除固体并将滤出液用于发酵。发酵在40ml小管中在30℃进行。每个小管含有5.0ml PCS水解物和4.75ml YPDX(酵母提取物、蛋白胨、葡萄糖和木糖)培养基。基于下表中所示剂量,为每个小管按剂量加入合适量的面包酵母PPase,然后接种0.25ml过夜RWB218繁殖物。接种之后,将小管在30℃摇床上以150rpm温育。所有测试以一式三份进行。在发酵过程中和发酵结束时(48小时)取样以通过HPLC测量乙醇(图2)、葡萄糖(图1a)、木糖(图1b)、乙酸和甘油水平。HPLC的准备由如下组成:通过加入40%H2SO4(按1%v/v加入)终止反应,离心,并通过0.20微米滤器过滤。将样品储存在4℃直至分析。使用与RI检测器偶联的AgilentTM 1100HPLC系统。分离柱是来自BioRadTM的Aminex HPX-87H离子排阻柱(300mm x 7.8mm)。
实施例2:
焦磷酸酶(PPase)对一步同步糖化和发酵(SSF)方法中α-淀粉酶(AA1)和葡糖淀粉酶(AMG A)的组合的作用
经由小规模发酵来评估全部处理。将410g经磨制的黄色马齿形玉米(具有约0.5mm的平均粒度)加入590g自来水。这种混合物补充有3.0ml 1g/L青霉素和1g尿素。将这种浆料的pH用40%H2SO4调节至4.5。干固体(DS)水平经测定为大约35wt.%。将约5g这种浆料加入20ml小管。为每个小管按剂量加入下表中所示的合适量的酶剂量,然后加入200微升酵母繁殖物/5g浆料。实际酶剂量基于每个小管中的玉米浆料的精确重量。将小管在32℃温育。每个处理进行九次重复发酵。选择三个重复来进行24小时、48小时和70小时时间点的分析。在24、48和70小时将小管涡旋震荡,并通过HPLC分析。HPLC的准备由如下组成:通过加入50微升40%H2SO4终止反应,离心,再通过0.45微米滤器过滤。将样品储存在4℃直至分析。使用与RI检测器偶联的AgilentTM1100HPLC系统测定乙醇和寡糖浓度。分离柱是来自BioRadTM的AminexHPX-87H离子排阻柱(300mm x 7.8mm)。实验1的结果总结在图3和4中,而实验2和3的结果分别总结在图5和图6中。
实验1
实验2
实验3

Claims (24)

1.一种从含淀粉材料产生发酵产物的方法,包括如下步骤:
i)液化含淀粉材料;
ii)糖化经液化的材料;
iii)用一种或多种发酵生物发酵;
其中向所述发酵培养基中添加或由发酵生物过表达来原位产生一种或多种以0.5-1,000单位/g干固体的浓度存在的焦磷酸酶,
其中所述发酵产物是乙醇,所述发酵生物是酵母。
2.权利要求1的方法,在步骤i)之前还包括如下步骤:
x)通过磨制将含淀粉材料的粒度减小;和
y)形成包含所述含淀粉材料和水的浆料。
3.权利要求1的方法,其中在发酵过程中存在或加入金属离子。
4.权利要求3的方法,其中所述金属离子选自下组:Mg2+、Mn2+和Zn2+,或其中两种或更多种的组合。
5.权利要求1的方法,其中在发酵过程中存在糖源产生酶。
6.权利要求5的方法,其中所述糖源产生酶选自下组:葡糖淀粉酶、β-淀粉酶、产麦芽糖淀粉酶、支链淀粉酶、α-葡糖苷酶、或其中两种或更多种的混合物。
7.权利要求1的方法,其中在发酵过程中存在酸性真菌α-淀粉酶。
8.从含淀粉材料产生发酵产物的方法,包括如下步骤:
(a)在低于含淀粉材料的初始糊化温度的温度糖化所述含淀粉材料,
(b)使用发酵生物发酵,
其中向所述发酵培养基中添加或由发酵生物过表达来原位产生一种或多种以0.5-1,000单位/g干固体的浓度存在的焦磷酸酶,
其中所述发酵产物是乙醇,所述发酵生物是酵母。
9.权利要求8中的方法,其中所述含淀粉材料选自下组:玉米、木薯、小麦、大麦、黑麦、买罗高梁和马铃薯,或其任意组合。
10.权利要求8的方法,其中在发酵过程中存在或加入金属离子。
11.权利要求10的方法,其中所述金属离子选自下组:Mg2+、Mn2+和Zn2+,或其中两种或更多种的组合。
12.权利要求8的方法,其中在发酵过程中存在糖源产生酶。
13.权利要求12的方法,其中所述糖源产生酶选自下组:葡糖淀粉酶、β-淀粉酶、产麦芽糖淀粉酶、支链淀粉酶、α-葡糖苷酶、或其中两种或更多种的混合物。
14.权利要求8的方法,其中在发酵过程中存在酸性真菌α-淀粉酶。
15.从含木素纤维素材料产生发酵产物的方法,包括如下步骤:
(a)预处理含木素纤维素的材料;
(b)水解所述材料;
(c)用发酵生物发酵;
其中向所述发酵培养基中添加或由发酵生物过表达来原位产生一种或多种以0.5-1,000单位/g干固体的浓度存在的焦磷酸酶,
其中所述发酵产物是乙醇,所述发酵生物是酵母。
16.权利要求15的方法,其中所述含木素纤维素的材料来源于选自下组的材料:玉米穗轴、玉米纤维、硬木、软木、谷类的茎秆、柳枝稷、稻壳、芒草属(Miscanthus)、城市固体废物、工业有机废物、甘蔗渣和办公室用纸,或其混合物。
17.权利要求16的方法,其中所述谷类的茎秆为玉米秸秆或麦秆。
18.权利要求15的方法,其中所述酵母是C6或C5糖发酵生物。
19.权利要求15的方法,其中所述发酵产物是在发酵之后通过蒸馏回收的。
20.权利要求15的方法,其中在发酵过程中存在或加入金属离子。
21.权利要求20的方法,其中所述金属离子选自下组:Mg2+、Mn2+和Zn2+,或其中两种或更多种的组合。
22.权利要求15的方法,其中在发酵过程中存在糖源产生酶。
23.权利要求22的方法,其中所述糖源产生酶选自下组:葡糖淀粉酶、β-淀粉酶、产麦芽糖淀粉酶、支链淀粉酶、α-葡糖苷酶、或其中两种或更多种的混合物。
24.权利要求15的方法,其中在发酵过程中存在酸性真菌α-淀粉酶。
CN200880125060.9A 2007-11-19 2008-11-19 产生发酵产物的方法 Expired - Fee Related CN101918571B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US98887307P 2007-11-19 2007-11-19
US60/988,873 2007-11-19
PCT/US2008/083963 WO2009067471A2 (en) 2007-11-19 2008-11-19 Processes of producing fermentation products

Publications (2)

Publication Number Publication Date
CN101918571A CN101918571A (zh) 2010-12-15
CN101918571B true CN101918571B (zh) 2014-07-09

Family

ID=40525532

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880125060.9A Expired - Fee Related CN101918571B (zh) 2007-11-19 2008-11-19 产生发酵产物的方法

Country Status (6)

Country Link
US (1) US8227221B2 (zh)
EP (1) EP2222863B1 (zh)
CN (1) CN101918571B (zh)
AT (1) ATE552345T1 (zh)
ES (1) ES2383117T3 (zh)
WO (1) WO2009067471A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105063099A (zh) * 2007-06-27 2015-11-18 诺维信公司 产生发酵产物的方法
US8906235B2 (en) * 2010-04-28 2014-12-09 E I Du Pont De Nemours And Company Process for liquid/solid separation of lignocellulosic biomass hydrolysate fermentation broth
EP2403861A1 (en) * 2010-05-07 2012-01-11 Abengoa Bioenergy New Technologies, Inc. Process for recovery of values from a fermentation mass obtained in producing ethanol and products thereof
EP2794896B1 (en) * 2011-12-22 2019-05-22 Xyleco, Inc. Method for producing butanol from glucose via fructose
CN102876738B (zh) * 2012-09-14 2014-05-14 日照金禾博源生化有限公司 一种高强度发酵技术生产柠檬酸的方法
BR112016003339B1 (pt) 2013-08-30 2023-02-14 Novozymes A/S Composição de enzima, e, processo de produção de um produto de fermentação a partir de material contendo amido
CN105567567A (zh) * 2016-02-03 2016-05-11 程雪娇 一种甘蔗渣培养基及其制备方法
CN110283870A (zh) * 2019-06-21 2019-09-27 盐城工学院 一种双菌株混合固态发酵玉米秸秆的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314950A (zh) * 1998-06-08 2001-09-26 以生物技术资源的名义经营的Dcv公司 微生物和植物中的维生素c生产
US20020006647A1 (en) * 2000-02-23 2002-01-17 Novozymes A/S Fermentation with a phytase

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1983002952A1 (en) 1982-02-26 1983-09-01 University Of Georgia Research Foundation, Inc. Stimulation of bacterial growth by inorganic pyrophosphate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1314950A (zh) * 1998-06-08 2001-09-26 以生物技术资源的名义经营的Dcv公司 微生物和植物中的维生素c生产
US20020006647A1 (en) * 2000-02-23 2002-01-17 Novozymes A/S Fermentation with a phytase

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Dahabada H. J. Lopes等.Urea Increases Tolerance of Yeast Inorganic Pyrophosphatase Activity to Ethanol: The Other Side of Urea Interaction with Proteins.《Archives of Biochemistry and Biophysics》.2001,第394卷(第1期),61-66.
Dahabada H. J. Lopes等.Urea Increases Tolerance of Yeast Inorganic Pyrophosphatase Activity to Ethanol: The Other Side of Urea Interaction with Proteins.《Archives of Biochemistry and Biophysics》.2001,第394卷(第1期),61-66. *
Jose R.等.Functional complementation of yeast cytosolic pyrophosphatase by bacterial and plant H-translocating pyrophosphatases.《PNAS》.2002,第99卷(第25期),15914-15919. *
Patrick du Jardin等.Molecular Cloning and Characterization of a Soluble lnorganic Pyrophosphatase in Potato.《Plant Physioi.》.1995,第109卷(第3期),853-860. *
RODRIGO GRAZINOLI-GARRIDO等.Inactivation of yeast inorganic pyrophosphatase by organic solvents.《(Annals of the Brazilian Academy of Sciences》.2004,第76卷(第4期),699-705. *
苟萍.酿酒酵母胞内无机焦磷酸酶的分离纯化及性质.《微生物学报》.1998,第38卷(第3期),229-232. *

Also Published As

Publication number Publication date
CN101918571A (zh) 2010-12-15
WO2009067471A3 (en) 2009-07-09
US8227221B2 (en) 2012-07-24
ATE552345T1 (de) 2012-04-15
WO2009067471A2 (en) 2009-05-28
US20100279371A1 (en) 2010-11-04
ES2383117T3 (es) 2012-06-18
EP2222863B1 (en) 2012-04-04
EP2222863A2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
US10640794B2 (en) Processes of producing fermentation products
JP5731194B2 (ja) 発酵製品を生産するための方法
US20110008864A1 (en) Processes for Producing Fermentation Products
CN101641435A (zh) 产生发酵产物的方法
CN101778945A (zh) 用于产生发酵产物的方法
CN101918571B (zh) 产生发酵产物的方法
CN102171354A (zh) 用担子菌菌丝体和酵母细胞对经预处理的含木素纤维素材料酶水解的改进
CN102272315A (zh) 用溶解空气浮选淤渣改进经预处理的含木素纤维素材料的酶水解
CN102171350B (zh) 对用干酒糟预处理含木素纤维素材料的酶水解的改进
CN102171352A (zh) 用农业残余物预处理含木素纤维素材料的酶水解的改进
WO2010014817A2 (en) Producing fermentation products
CN102171358A (zh) 在脱墨纸污泥存在下酶水解经预处理的含木素纤维素材料
CN102197139A (zh) 对通过添加壳聚糖对预处理生物质的酶水解的增强
CN102171359A (zh) 用阳离子多糖预处理的含木素纤维素材料的酶水解的改进
US8349592B2 (en) Producing fermentation products in the presence of aldehyde dehydrogenase
US20100297718A1 (en) Processes of Producing Fermentation Products
WO2015057520A1 (en) Processes of producing fermentation products
WO2015048087A1 (en) Processes of producing fermentation products

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140709

Termination date: 20181119