CN101915639A - 用于离心机的三轴向自适应式动平衡执行方法 - Google Patents

用于离心机的三轴向自适应式动平衡执行方法 Download PDF

Info

Publication number
CN101915639A
CN101915639A CN 201010242178 CN201010242178A CN101915639A CN 101915639 A CN101915639 A CN 101915639A CN 201010242178 CN201010242178 CN 201010242178 CN 201010242178 A CN201010242178 A CN 201010242178A CN 101915639 A CN101915639 A CN 101915639A
Authority
CN
China
Prior art keywords
rotor
dynamic balance
slide block
vibration
execution unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010242178
Other languages
English (en)
Other versions
CN101915639B (zh
Inventor
何闻
荣左超
沈润杰
贾叔仕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN2010102421789A priority Critical patent/CN101915639B/zh
Publication of CN101915639A publication Critical patent/CN101915639A/zh
Application granted granted Critical
Publication of CN101915639B publication Critical patent/CN101915639B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Balance (AREA)

Abstract

用于离心机的三轴向自适应式动平衡执行方法,包括以下步骤:在转子水平方向和竖直方向上分别安装能在水平方向、竖直方向调节其动平衡质量块的动平衡执行单元和控制动平衡执行单元的执行控制器;将驱动转子旋转的驱动机构的当前转速转换成脉冲序列信号;在转子上设标记触发采样;获取转子的加工误差引起的振动信号;获取转子的不平衡量引起的第一振动信号;分别移动的水平动平衡执行单元的滑块,获取第二振动信号;分别移动竖直动平衡执行单元的滑块获取第三振动信号;计算出转子的原始不平衡量使各动平衡执行机构的滑块移动至要求的位置。本发明具有直接安装于转子上、当转子的质量分布或转速发生改变时能实现自适应动平衡调整,控制准确的优点。

Description

用于离心机的三轴向自适应式动平衡执行方法
技术领域
本发明涉及一种用于长径比大的转子的三轴向自适应式动平衡执行方法。
技术背景
目前,对转子的动平衡工作大都是在动平衡机上完成的,也有一部分是使用动平衡仪进行现场动平衡来对转子进行动平衡,动平衡的种类主要分为单面动平衡和双面动平衡,在转子的长径比较大时必须进行双面动平衡。使用动平衡机或动平衡仪消除不平衡量时,需要反复的启动和停止,之后在转子的一个面或者两个面上消除或增加一部分质量,实现过程很复杂,所需要的时间也很长,而且只要转子的转速或质量分布发生改变就需要将转子拿到动平衡机上或者使用动平衡仪重新做动平衡。
发明内容
为了方便实现动平衡工作,更为了在长径比大的转子的质量分布或转速发生改变时,转子能够实现自适应动平衡,本发明提供一种自适应三轴向动平衡方法。
用于离心机的三轴向自适应式动平衡执行方法,包括以下步骤:
(1)、在转子水平方向和竖直方向上分别安装能在水平方向和竖直方向调节其动平衡质量块的动平衡执行单元;在水平方向上设置四个动平衡执行单元,相邻的水平的动平衡执行单元的调节方向相互垂直,相对的水平的动平衡执行单元的调节方向相互共线、滑块的移动方向相反;在竖直方向上设置四个动平衡执行单元,竖直的动平衡执行单元的调节方向相互平行;任意一对水平动平衡执行单元必有一对竖直动平衡执行单元与之共面;
(2)、将驱动转子旋转的驱动机构的当前转速转换成脉冲序列信号,保证转子每转一转,不论转子转速高低,脉冲序列中的脉冲数一样,实时记录所述的脉冲序列信号;
(3)、在转子上设定一个标记,使得转子每转一转,标记发出一个脉冲信号,且标记的位置在一个滑块移动方向上;并规定以转子的回转中心为原点,所述的标记和所述的原点的连线为                                                
Figure 2010102421789100002DEST_PATH_IMAGE001
轴,从所述的原点到所述的标记处的方向为
Figure 727215DEST_PATH_IMAGE002
向,并按照右手定则找到
Figure 2010102421789100002DEST_PATH_IMAGE003
轴和
Figure 774849DEST_PATH_IMAGE004
向、轴和向,现规定
Figure 74429DEST_PATH_IMAGE001
轴和
Figure 826484DEST_PATH_IMAGE003
轴决定的那个面为上校正面,
Figure 835897DEST_PATH_IMAGE001
轴和轴决定的那个面为面,
Figure 364148DEST_PATH_IMAGE003
轴和
Figure 219977DEST_PATH_IMAGE005
轴决定的那个面为
Figure 151024DEST_PATH_IMAGE008
面,
Figure 92304DEST_PATH_IMAGE007
面和
Figure 829316DEST_PATH_IMAGE008
面组成圆柱校正面;在转子外面,在靠近转子上表面的位置安装上振动传感器,在靠近转子下表面的位置安装下振动传感器,上振动传感器所在的面为上测试面,下振动传感器所在的面为下测试面;
(4)、转子在投入使用前,需要获取转子的加工误差曲线,并将所述的加工误差曲线作为系统误差保存下来;使机臂在极低的转速下转
Figure 2010102421789100002DEST_PATH_IMAGE009
转,使不平衡量引起的振动的大小几乎为0,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲信号作为数据采集卡的触发信号,对所述的机臂加工误差曲线进行整周期采样,采样机臂转动的转数为
Figure 477335DEST_PATH_IMAGE009
,机臂每转一转,数据采集卡整周期采样个点,上、下振动传感器分别测得的转子的加工误差曲线:第一加工误差曲线
Figure 2010102421789100002DEST_PATH_IMAGE011
Figure 211122DEST_PATH_IMAGE012
)、第二加工误差曲线
Figure 2010102421789100002DEST_PATH_IMAGE013
Figure 605020DEST_PATH_IMAGE012
),记录所述的第一、第二加工误差曲线;
(5)、使转子处于正常工作状态,获取转子的不平衡量引起的第一振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号,对所述的第一振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 435441DEST_PATH_IMAGE009
Figure 708291DEST_PATH_IMAGE010
,上、下振动传感器分别获得第一振动响应曲线
Figure 624163DEST_PATH_IMAGE014
Figure 2010102421789100002DEST_PATH_IMAGE015
Figure 640661DEST_PATH_IMAGE012
);去除第一振动响应曲线中对应的加工误差
Figure 325589DEST_PATH_IMAGE016
Figure 2010102421789100002DEST_PATH_IMAGE017
),
利用自动跟踪相关滤波法消除干扰信号、并获取第一振动响应曲线的幅值和相位分别为:
Figure 110191DEST_PATH_IMAGE018
Figure 117330DEST_PATH_IMAGE020
Figure 2010102421789100002DEST_PATH_IMAGE021
(6)、分别移动上校正面内的
Figure 594448DEST_PATH_IMAGE001
Figure 536996DEST_PATH_IMAGE003
轴向上的动平衡执行单元的滑块,并记录两个轴向上滑块移动的位移量分别为
Figure 161881DEST_PATH_IMAGE001
Figure 520181DEST_PATH_IMAGE003
Figure 185561DEST_PATH_IMAGE001
轴向的两个滑块移动距离等效,使用时只需移动其中的任意一个即可,
Figure 236694DEST_PATH_IMAGE003
轴向的两个滑块移动距离也等效,使用时只需移动其中的任意一个即可),其中如果位移量为正表示向正方向移动,为负表示向负方向移动;
上、下振动传感器分别获取转子当前的不平衡量引起的第二振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号对所述的第二振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 348875DEST_PATH_IMAGE009
Figure 510866DEST_PATH_IMAGE010
,上、下振动传感器分别获得第二振动响应曲线
Figure 759314DEST_PATH_IMAGE022
Figure 2010102421789100002DEST_PATH_IMAGE023
Figure 168298DEST_PATH_IMAGE012
);去除第二振动响应曲线中的加工误差
Figure 518508DEST_PATH_IMAGE024
Figure 733458DEST_PATH_IMAGE012
),利用自动跟踪相关滤波法消除干扰信号、并获取第二振动响应曲线的幅值和相位:
Figure 852724DEST_PATH_IMAGE026
Figure 2010102421789100002DEST_PATH_IMAGE027
Figure 167030DEST_PATH_IMAGE028
(7)、移动上校正面内的
Figure 191487DEST_PATH_IMAGE001
Figure 944548DEST_PATH_IMAGE003
轴向的动平衡执行单元的滑块,使两个轴向上滑块回到初始位置,之后移动圆柱校正面内的动平衡执行单元的滑块,使面上的动平衡执行单元的滑块分别移动位移
Figure 561503DEST_PATH_IMAGE030
Figure 2010102421789100002DEST_PATH_IMAGE031
,使
Figure 73255DEST_PATH_IMAGE008
面上的动平衡执行单元的滑块分别移动位移
Figure 380740DEST_PATH_IMAGE032
Figure 2010102421789100002DEST_PATH_IMAGE033
,其中如果位移量正值表示向正方向移动,负值表示向负方向移动,保持试验转速不变,上、下振动传感器分别获取转子当前的不平衡量引起的第三振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号对所述的第三振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 458286DEST_PATH_IMAGE009
Figure 193024DEST_PATH_IMAGE010
,并对第三振动信号进行采样获得第三振动响应曲线
Figure 286937DEST_PATH_IMAGE012
);去除第三振动响应曲线中的加工误差
Figure 235301DEST_PATH_IMAGE036
Figure 327891DEST_PATH_IMAGE012
),利用自动跟踪相关滤波消除干扰信号、并获取第三振动响应曲线的幅值和相位:
Figure 610974DEST_PATH_IMAGE038
Figure 2010102421789100002DEST_PATH_IMAGE039
Figure 447212DEST_PATH_IMAGE040
Figure 2010102421789100002DEST_PATH_IMAGE041
(8)使圆柱校正面内的四个竖直动平衡执行单元的滑块移动到初始位置;
(9)、根据步骤(5)、步骤(6)和步骤(7)得出的第一、第二、第三振动响应曲线的幅值和相位,以及各滑块的移动方向和位移量,使用影响系数法计算出转子的上校正和圆柱校正面上的原始不平衡量:
Figure 250082DEST_PATH_IMAGE042
其中:
Figure 2010102421789100002DEST_PATH_IMAGE043
Figure 519433DEST_PATH_IMAGE044
Figure 2010102421789100002DEST_PATH_IMAGE045
Figure 227495DEST_PATH_IMAGE046
Figure 2010102421789100002DEST_PATH_IMAGE047
Figure 601844DEST_PATH_IMAGE048
Figure 2010102421789100002DEST_PATH_IMAGE049
Figure 711752DEST_PATH_IMAGE050
,其中
Figure 2010102421789100002DEST_PATH_IMAGE051
为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母;
设初始不平衡量
Figure 208461DEST_PATH_IMAGE052
轴和
Figure 457226DEST_PATH_IMAGE003
轴上的分量分别为
Figure 2010102421789100002DEST_PATH_IMAGE053
Figure 421639DEST_PATH_IMAGE054
,初始不平衡量
Figure 26933DEST_PATH_IMAGE007
平面和
Figure 257057DEST_PATH_IMAGE008
平面内的分量分别为
Figure 295246DEST_PATH_IMAGE056
Figure 2010102421789100002DEST_PATH_IMAGE057
Figure 114166DEST_PATH_IMAGE058
Figure 765728DEST_PATH_IMAGE001
方向和
Figure 748727DEST_PATH_IMAGE003
方向上的滑块需要移动的距离分别为
Figure 268570DEST_PATH_IMAGE060
,且
Figure 2010102421789100002DEST_PATH_IMAGE061
Figure 941997DEST_PATH_IMAGE062
平面和
Figure 421706DEST_PATH_IMAGE008
平面内的四个滑块需要移动的距离分别为
Figure 2010102421789100002DEST_PATH_IMAGE063
Figure 745240DEST_PATH_IMAGE064
Figure 273173DEST_PATH_IMAGE066
,且
Figure 719067DEST_PATH_IMAGE068
其中
Figure 411079DEST_PATH_IMAGE051
为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母;计算结果为正值时表示向相应坐标轴的正方向移动,为负值时表示向相应坐标轴的负方向移动;
(10)、使各动平衡执行机构的滑块移动至要求的位置;获取当前的振动响应,判断当前振动是否处于振动允许范围内,若是,则保持各滑块的位置;若否,则返回步骤(5)。
进一步,步骤(10)中,在移动滑块前,先判断滑块是否会被移动到导轨之外:若是,则发出报警,并提示无法完成动平衡;若否,则移动滑块。
本发明的技术构思是:通过在转子上安装动平衡执行单元,通过分析转子的由不平衡量引起的振动响应来获取动平衡执行单元的调整参数,使转子达到动平衡。当转子的转速和质量分布发生变化时,转子的振动响应也相应的发生变化,处理器将重新分析、计算振动响应,重新移动动平衡执行机构的滑块,使转子重新达到动平衡。在转子的上表面安装四个动平衡执行单元用来消除转子的力不平衡,在转子的圆柱面安装四个动平衡执行单元用来消除转子的力偶不平衡。
本发明具有直接安装于转子上、当转子的质量分布或转速发生改变时能实现自适应动平衡调整,控制准确的优点。
附图说明
图1为本发明的示意图。
图2为第一种实施方式的示意图。
图3为第二种实施方式的示意图。
图4为动平衡执行单元的剖视图。
图5为本发明的控制流程图。
具体实施方式
实施例一
参照图1、3、4、5
自适应式三轴向动平衡执行方法包括以下步骤:
(1)、在转子水平方向和竖直方向上分别安装能在水平方向和竖直方向调节其动平衡质量块的动平衡执行单元;在水平方向上设置四个动平衡执行单元,相邻的水平的动平衡执行单元的调节方向相互垂直,相对的水平的动平衡执行单元的调节方向相互共线、滑块的移动方向相反;在竖直方向上设置四个动平衡执行单元,竖直的动平衡执行单元的调节方向相互平行;任意一对水平动平衡执行单元必有一对竖直动平衡执行单元与之共面;
(2)、将驱动转子旋转的驱动机构的当前转速转换成脉冲序列信号,保证转子每转一转,不论转子转速高低,脉冲序列中的脉冲数一样,实时记录所述的脉冲序列信号;
(3)、在转子上设定一个标记,使得转子每转一转,标记发出一个脉冲信号,且标记的位置在一个滑块移动方向上;并规定以转子的回转中心为原点,所述的标记和所述的原点的连线为
Figure 340901DEST_PATH_IMAGE001
轴,从所述的原点到所述的标记处的方向为
Figure 801969DEST_PATH_IMAGE002
向,并按照右手定则找到
Figure 418764DEST_PATH_IMAGE003
轴和
Figure 332494DEST_PATH_IMAGE004
向、
Figure 60147DEST_PATH_IMAGE005
轴和向,现规定
Figure 163418DEST_PATH_IMAGE001
轴和轴决定的那个面为上校正面,
Figure 95788DEST_PATH_IMAGE001
轴和
Figure 531449DEST_PATH_IMAGE005
轴决定的那个面为
Figure 224467DEST_PATH_IMAGE007
面,
Figure 378368DEST_PATH_IMAGE003
轴和
Figure 447824DEST_PATH_IMAGE005
轴决定的那个面为
Figure 737991DEST_PATH_IMAGE008
面,
Figure 867490DEST_PATH_IMAGE007
面和
Figure 305425DEST_PATH_IMAGE008
面组成圆柱校正面;在转子外面,在靠近转子上表面的位置安装上振动传感器,在靠近转子下表面的位置安装下振动传感器,上振动传感器所在的面为上测试面,下振动传感器所在的面为下测试面;
(4)、转子在投入使用前,需要获取转子的加工误差曲线,并将所述的加工误差曲线作为系统误差保存下来;使机臂在极低的转速下转
Figure 663725DEST_PATH_IMAGE009
转,使不平衡量引起的振动的大小几乎为0,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲信号作为数据采集卡的触发信号,对所述的机臂加工误差曲线进行整周期采样,采样的转数为
Figure 340823DEST_PATH_IMAGE009
,转子每转一转,数据采集卡整周期采样个点,上、下振动传感器分别测得的转子的加工误差曲线:第一加工误差曲线
Figure 238558DEST_PATH_IMAGE011
)、第二加工误差曲线
Figure 914576DEST_PATH_IMAGE013
Figure 136610DEST_PATH_IMAGE012
),记录所述的第一、第二加工误差曲线;
(5)、使转子处于正常工作状态,获取转子的不平衡量引起的第一振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 736087DEST_PATH_IMAGE009
Figure 436190DEST_PATH_IMAGE010
,上、下振动传感器分别获得第一振动响应曲线
Figure 804723DEST_PATH_IMAGE014
Figure 197658DEST_PATH_IMAGE015
Figure 97481DEST_PATH_IMAGE012
);去除第一振动响应曲线中对应的加工误差
Figure 850543DEST_PATH_IMAGE016
Figure 824315DEST_PATH_IMAGE017
Figure 637419DEST_PATH_IMAGE012
),
利用自动跟踪相关滤波法消除干扰信号、并获取第一振动响应曲线的幅值和相位分别为:
Figure 962221DEST_PATH_IMAGE018
Figure 253394DEST_PATH_IMAGE019
Figure 347252DEST_PATH_IMAGE020
Figure 337117DEST_PATH_IMAGE021
(6)、分别移动上校正面内的
Figure 883636DEST_PATH_IMAGE001
Figure 244079DEST_PATH_IMAGE003
轴向上的动平衡执行单元的滑块,并记录两个轴向上滑块移动的位移量分别为
Figure 192443DEST_PATH_IMAGE001
Figure 347350DEST_PATH_IMAGE003
Figure 381165DEST_PATH_IMAGE001
轴向的两个滑块移动距离等效,使用时只需移动其中的任意一个即可,
Figure 14140DEST_PATH_IMAGE003
轴向的两个滑块移动距离也等效,使用时只需移动其中的任意一个即可),其中如果位移量为正表示向正方向移动,为负表示向负方向移动;
上、下振动传感器分别获取转子当前的不平衡量引起的第二振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号对所述的第二振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 144907DEST_PATH_IMAGE009
,上、下振动传感器分别获得第二振动响应曲线
Figure 991827DEST_PATH_IMAGE022
Figure 179225DEST_PATH_IMAGE023
Figure 351450DEST_PATH_IMAGE012
);去除第二振动响应曲线中的加工误差
Figure 598891DEST_PATH_IMAGE024
Figure 856566DEST_PATH_IMAGE025
Figure 847656DEST_PATH_IMAGE012
),利用自动跟踪相关滤波法消除干扰信号、并获取第二振动响应曲线的幅值和相位:
Figure 874387DEST_PATH_IMAGE026
Figure 292730DEST_PATH_IMAGE027
Figure 623360DEST_PATH_IMAGE029
(7)、移动上校正面内的
Figure 255329DEST_PATH_IMAGE001
Figure 93841DEST_PATH_IMAGE003
轴向的动平衡执行单元的滑块,使两个轴向上滑块回到初始位置,之后移动圆柱校正面内的动平衡执行单元的滑块,使
Figure 76841DEST_PATH_IMAGE007
面上的动平衡执行单元的滑块分别移动位移
Figure 659001DEST_PATH_IMAGE030
Figure 145477DEST_PATH_IMAGE031
,使
Figure 420469DEST_PATH_IMAGE008
面上的动平衡执行单元的滑块分别移动位移
Figure 625186DEST_PATH_IMAGE032
Figure 745457DEST_PATH_IMAGE033
,其中如果位移量正值表示向正方向移动,负值表示向负方向移动,保持试验转速不变,上、下振动传感器分别获取转子当前的不平衡量引起的第三振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号对所述的第三振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 352019DEST_PATH_IMAGE009
Figure 610962DEST_PATH_IMAGE010
,并对第三振动信号进行采样获得第三振动响应曲线
Figure 226937DEST_PATH_IMAGE035
Figure 937273DEST_PATH_IMAGE012
);去除第三振动响应曲线中的加工误差
Figure 467797DEST_PATH_IMAGE037
Figure 946183DEST_PATH_IMAGE012
),利用自动跟踪相关滤波法消除干扰信号、并获取第三振动响应曲线的幅值和相位:
Figure 516885DEST_PATH_IMAGE038
Figure 55314DEST_PATH_IMAGE039
Figure 705607DEST_PATH_IMAGE040
Figure 987684DEST_PATH_IMAGE041
(8)使圆柱校正面内的四个竖直动平衡执行单元的滑块移动到初始位置;
(9)、根据步骤(5)、步骤(6)和步骤(7)得出的第一、第二、第三振动响应曲线的幅值和相位,以及各滑块的移动方向和位移量,使用影响系数法计算出转子的上校正和圆柱校正面上的原始不平衡量:
其中:
Figure 116362DEST_PATH_IMAGE043
Figure 519531DEST_PATH_IMAGE044
Figure 339719DEST_PATH_IMAGE045
Figure 879154DEST_PATH_IMAGE046
Figure 556123DEST_PATH_IMAGE047
Figure 931741DEST_PATH_IMAGE048
Figure 804888DEST_PATH_IMAGE049
Figure 949561DEST_PATH_IMAGE050
,其中为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母;
设初始不平衡量
Figure 112875DEST_PATH_IMAGE052
Figure 524134DEST_PATH_IMAGE001
轴和
Figure 788893DEST_PATH_IMAGE003
轴上的分量分别为
Figure 277773DEST_PATH_IMAGE053
Figure 362403DEST_PATH_IMAGE054
,初始不平衡量
Figure 696618DEST_PATH_IMAGE007
平面和
Figure 338821DEST_PATH_IMAGE008
平面内的分量分别为
Figure 929389DEST_PATH_IMAGE057
Figure 903161DEST_PATH_IMAGE058
Figure 529314DEST_PATH_IMAGE001
方向和
Figure 837805DEST_PATH_IMAGE003
方向上的滑块需要移动的距离分别为
Figure 145289DEST_PATH_IMAGE059
,且
Figure 223153DEST_PATH_IMAGE061
Figure 18939DEST_PATH_IMAGE062
平面和
Figure 62167DEST_PATH_IMAGE008
平面内的四个滑块需要移动的距离分别为
Figure 967806DEST_PATH_IMAGE063
Figure 256748DEST_PATH_IMAGE064
Figure 906036DEST_PATH_IMAGE065
Figure 223753DEST_PATH_IMAGE066
,且
Figure 300294DEST_PATH_IMAGE067
Figure 805093DEST_PATH_IMAGE068
其中
Figure 258071DEST_PATH_IMAGE051
为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母;计算结果为正值时表示向相应坐标轴的正方向移动,为负值时表示向相应坐标轴的负方向移动;
(10)、使各动平衡执行机构的滑块移动至要求的位置;获取当前的振动响应,判断当前振动是否处于振动允许范围内,若是,则保持各滑块的位置;若否,则返回步骤(5)。
步骤(10)中,在移动滑块前,先判断滑块是否会被移动到导轨之外:若是,则发出报警,并提示无法完成动平衡;若否,则移动滑块。
用于实现上述执行方法的动平衡执行装置,包括固定于的转子1的水平方向、分别沿两个轴向调节其动平衡质量块的水平动平衡执行单元2-1、固定于转子的竖直方向的竖直动平衡执行单元2-2和执行控制器7;所述的动平衡执行单元包括固定于所述的转子1上的底座21,固定在所述的底座21上的导轨22,与所述的导轨22滑动连接的滑块23和推动所述的滑块23沿所述的导轨22往复运动的传动机构,所述的动平衡质量块24固接与所述的滑块23上,对于水平方向上的四个动平衡执行单元2-1,相对的两个动平衡执行单元2-1的导轨22共线、滑块23的移动方向相反,相邻的两个动平衡执行单元2-1的导轨22相互垂直;对于竖直方向的四个动平衡执行单元2-2,动平衡执行单元2-2的导轨22相互平行、滑块23的移动相同;动平衡执行单元2-1、2-2受控于执行控制器7。
所述的转子1外设有采集由不平衡量引起的转子1的周期性振动响应的采集装置,所述的采集装置与一能获取不同的平衡量引起的振动响应的幅值和相位、并根据所述的幅值和相位计算出转子的原始不平衡量和各滑块的移动方向和移动距离的处理器3连接,所述的处理器3通过无线通讯装置6与所述的执行控制器7通讯。
所述的转子1上均匀分布四个水平动平衡执行单元2-1,相对的两个水平动平衡执行单元2-1的导轨22共线、滑块23的移动方向相反;相邻的两个水平动平衡执行单元2-1的导轨22相互垂直;
所述的转子1的圆柱表面上均匀分布四个竖直动平衡执行单元2-2,所有的竖直动平衡执行单元2-2的导轨22相互平行;
任意一对水平动平衡执行单元2-1必有一对竖直动平衡执行单元2-2与之共面。
所述的采集装置包括设置在所述的转子1的旋转驱动机构上、能将旋转驱动机构的转速转换成脉冲序列信号的光电编码器41,与所述的光电编码器41连接的数据采集卡42,与所述的数据采集卡42连接、并感应转子1是否发生振动并获取振动信号的振动传感器43和触发所述的数据采集卡42、使其开始采样的触发机构;
将所述的光电编码器41输出的脉冲信号作为数据采集卡42的外时钟信号,将所述的振动传感器43输出的振动信号作为数据采集卡42的输入信号,将根据所述的外时钟信号对所述的振动信号进行整周期采样后得到的采样信号作为所述的数据采集卡42的输出信号,所述的采样信号输入所述的处理器3中。
所述的振动传感器43为电涡流传感器。
所述的触发机构包括固定于所述的转子上的磁钢441和与所述的数据采集卡42连接的霍尔开关442,所述的转子1每转一转,所述的霍尔开关442与所述的磁钢441相遇一次,所述的霍尔开关442与所述的磁钢441相遇时发出的脉冲触发所述的数据采集卡42开始采样。
所述的处理器3包括当机臂低速转动时、获取并记录机臂的加工误差曲线的系统误差记录模块,当转子1正常工作时、分别获取并记录上、下振动传感器43测得的由转子1产生的第一振动信号的第一缓存模块,使水平动平衡执行单元2-1的滑块发生移动、并记录滑块移动方向和距离的执行模块,分别获取并记录滑块23移动后、上、下振动传感器43测得的由转子1产生的第二振动信号的第二缓存模块,使竖直动平衡执行单元2-2的滑块发生移动、并记录滑块移动方向和距离的执行模块,分别获取并记录滑块23移动后、上、下振动传感器感应的由转子1产生的第三振动信号的第三缓存模块;分别将第一、第二、第三振动信号中对应的加工误差去除、并滤除干扰噪声信号、获取振动信号的幅值和相位的去误差模块,根据第一、第二、第三振动信号的幅值和相位及滑块的质量和移动距离、用影响系数法计算得到转子的不平衡量、并将所述的不平衡量转换为各执行机构的滑块23所需移动的方向和距离的计算模块。
所述的传动机构包括步进电机251和丝杠机构,丝杠252与所述的电机251的输出轴连接,丝杆螺母253与所述的质量块24固接;所述的丝杠252的两侧分别上设有限制滑块移动范围的限位开关254,所述的丝杠的两端分别通过支承座255与底座21连接,所述的支承座255与所述的丝杆252之间设有轴承256,所述的支承座255固定于所述的底座21;所述的步进电机251受控于所述的执行控制器7。
所述的旋转驱动机构包括与带动所述的转子1旋转的齿轮机构,大齿轮51与所述的转子1同轴设置,小齿轮52与所述的大齿轮51啮合传动,所述的光电编码器41安装于所述的小齿轮52的转轴53上。
所述的处理器3通过无线通讯装置6与所述的执行控制器7通讯,无线通讯装置6使用RS232与所述的处理器3通讯。
本发明的技术构思是:通过在转子上安装动平衡执行单元2-1,2-2,通过分析转子1的由不平衡量引起的振动响应来获取动平衡执行单元的调整参数,使转子1达到动平衡。当转子1的转速和质量分布发生变化时,转子1的振动响应也相应的发生变化,处理器3将重新分析、计算振动响应,重新移动动平衡执行机构的滑块23,使转子1重新达到动平衡。安装在转子的上表面安装四个水平动平衡执行单元2-1用来消除转子的力不平衡,安装在转子的圆柱面安装四个竖直动平衡执行单元2-2用来消除转子的力偶不平衡。
本发明使用霍尔开关作为动平衡测量的相位基准和数据采集卡开始采集数据的触发信号。转子转动时,霍尔开关平时输出的是高电平,在和磁钢相遇时将输出低电平,所以转子每转一转,霍尔开关输出一个脉冲,这个脉冲输入给采集卡,其上升沿作为数据采集卡开始采集数据的基准信号;驱动机构动作时,驱动电机的动力经小齿轮,大齿轮传递至机臂,从而使机臂转动;联接在小齿轮转轴上的光电编码器将小齿轮转轴的转速转换为脉冲序列输出,这个脉冲序列输入给数据采集卡,作为数据采集卡采样的外时钟信号,保证转子不论转速高低,转子每转一转,数据采集卡整周期采样
Figure 430296DEST_PATH_IMAGE010
个点,而且采样点的位置固定。在有不平衡量的情况下,转子会有周期性振动,上、下电涡流传感器安装在转子的外侧,依靠检测其和转子的间隙变化量来测量出转子的对不平衡量的振动响应;上、下电涡流传感器的输出信号输入给数据采集卡,作为数据采集卡的输入信号;数据采集卡接收到基准信号脉冲后启动,进入准备采样的状态,之后每接收到一个外时钟信号脉冲采集一次输入信号,采集完
Figure DEST_PATH_IMAGE069
个点后通过USB总线将数据传输给计算机,完成一次数据采集过程。
由于的转子直径较大,加工完成后的圆度不可能很好,转子在旋转时,转子的加工误差曲线和不平衡量的振动响应曲线同频率、同相位,所以在投入使用前,应当将转子的加工误差曲线测量出来并将其作为系统的固有参数记录下来;得到转子加工误差曲线的方法是:是转子在极低的转速下转转,使不平衡量的大小几乎为0,系统经过上文所述的数据采集过程后,采集卡将采集到转子的加工误差曲线,并传输给处理器。在计算转子的不平衡量时,先将振动信号中的加工误差去除,提高控制的准确性。
在转子上设定一个标记,使得转子每转一转,标记发出一个脉冲信号,且标记的位置在一个滑块移动方向上;并规定以转子的回转中心为原点,所述的标记和所述的原点的连线为轴,从所述的原点到所述的标记处的方向为
Figure 660923DEST_PATH_IMAGE002
向,并按照右手定则找到
Figure 687653DEST_PATH_IMAGE003
轴和
Figure 105996DEST_PATH_IMAGE004
向、轴和
Figure 380169DEST_PATH_IMAGE006
向,现规定轴和
Figure 116230DEST_PATH_IMAGE003
轴决定的那个面为上校正面,
Figure 77058DEST_PATH_IMAGE001
轴和
Figure 409950DEST_PATH_IMAGE005
轴决定的那个面为
Figure 411273DEST_PATH_IMAGE007
面,
Figure 171419DEST_PATH_IMAGE003
轴和
Figure 438452DEST_PATH_IMAGE005
轴决定的那个面为
Figure 824303DEST_PATH_IMAGE008
面,
Figure 430865DEST_PATH_IMAGE007
面和面组成圆柱校正面;在转子外面,在靠近转子上表面的位置安装上振动传感器,在靠近转子下表面的位置安装下振动传感器,上振动传感器所在的面为上测试面,下振动传感器所在的面为下测试面;数据采集卡每次都采集转臂的
Figure 303192DEST_PATH_IMAGE009
个整转的信号,机臂每转一转,数据采集卡整周期采样
Figure 492734DEST_PATH_IMAGE010
个点,上、下测试面上转子加工误差曲线分别为
Figure 953802DEST_PATH_IMAGE011
Figure 305018DEST_PATH_IMAGE013
Figure 484326DEST_PATH_IMAGE012
),上、下测试面上测得第一振动信号分别为
Figure 211980DEST_PATH_IMAGE070
Figure 527555DEST_PATH_IMAGE015
Figure 315251DEST_PATH_IMAGE012
),上、下测试面上第二振动信号分别为
Figure DEST_PATH_IMAGE071
Figure 253480DEST_PATH_IMAGE012
),上、下测试面上第三振动信号分别为
Figure 423562DEST_PATH_IMAGE034
Figure 382159DEST_PATH_IMAGE072
),移动部分的质量均为
Figure DEST_PATH_IMAGE073
,移动部分包括动平衡质量块、丝杆螺母、滑块以及用于联接的螺栓螺母。
(1)消除加工误差,得到由于不平衡量引起的振动信号:
Figure 277620DEST_PATH_IMAGE016
Figure 817054DEST_PATH_IMAGE012
Figure 322171DEST_PATH_IMAGE012
Figure 946050DEST_PATH_IMAGE024
Figure 339992DEST_PATH_IMAGE012
Figure 503305DEST_PATH_IMAGE012
Figure 665297DEST_PATH_IMAGE036
Figure 179323DEST_PATH_IMAGE012
Figure 135778DEST_PATH_IMAGE037
Figure 752834DEST_PATH_IMAGE012
(2)使用自动跟踪相关滤波法消除干扰信号并得到转子的第一振动信号的振动幅值和相位:
设上测试面上第一振动响应信号的表达式为
Figure 780833DEST_PATH_IMAGE074
、下测试面上第一振动信号的表达式为
Figure DEST_PATH_IMAGE075
Figure 87049DEST_PATH_IMAGE012
),其中
Figure 479984DEST_PATH_IMAGE076
为不平衡信号,
Figure 238862DEST_PATH_IMAGE078
Figure DEST_PATH_IMAGE079
为干扰噪声;
Figure 929606DEST_PATH_IMAGE080
Figure DEST_PATH_IMAGE081
Figure 355908DEST_PATH_IMAGE012
Figure 169012DEST_PATH_IMAGE082
Figure DEST_PATH_IMAGE083
Figure DEST_PATH_IMAGE085
Figure 722670DEST_PATH_IMAGE012
求和:
Figure 65796DEST_PATH_IMAGE086
Figure DEST_PATH_IMAGE087
Figure 993344DEST_PATH_IMAGE088
,其中
Figure DEST_PATH_IMAGE089
,在采样周期足够多的情况下:
Figure 726813DEST_PATH_IMAGE090
Figure DEST_PATH_IMAGE091
,其中,在采样周期足够多的情况下:
Figure 707725DEST_PATH_IMAGE094
Figure DEST_PATH_IMAGE095
所以
Figure 800315DEST_PATH_IMAGE096
Figure DEST_PATH_IMAGE097
所以
Figure 21080DEST_PATH_IMAGE098
, 
Figure DEST_PATH_IMAGE099
所以上测试面第一振动信号的振动的幅值和相位分别为:
Figure 857318DEST_PATH_IMAGE018
Figure 909457DEST_PATH_IMAGE019
同样地,使用上文所述的自动跟踪相关滤波消除干扰信号并得到转子的下测试面上第一振动响应信号的振动幅值和相位分别为:
Figure 985997DEST_PATH_IMAGE020
同样地,使用上文所述的自动跟踪相关滤波消除干扰信号并得到转子的上、下测试面上的第二、第三振动响应信号的振动幅值和相位分别为:
Figure 209354DEST_PATH_IMAGE026
Figure 110140DEST_PATH_IMAGE027
Figure 419898DEST_PATH_IMAGE028
Figure 428305DEST_PATH_IMAGE029
Figure 668663DEST_PATH_IMAGE038
Figure 446126DEST_PATH_IMAGE039
Figure 609440DEST_PATH_IMAGE041
(3)使用影响系数法计算转子的不平衡量:
可以将上、下测试面的第一、第二、第三振动信号写成向量形式:
Figure 387909DEST_PATH_IMAGE043
Figure 19879DEST_PATH_IMAGE044
Figure 123970DEST_PATH_IMAGE045
Figure 423550DEST_PATH_IMAGE047
Figure 237922DEST_PATH_IMAGE048
设初始时转子上校正面和圆柱校正面上的不平衡量分别为
Figure 998068DEST_PATH_IMAGE052
Figure 452052DEST_PATH_IMAGE100
,对应的上、下测试面的振动响应信号分别为第一振动响应信号
Figure DEST_PATH_IMAGE101
Figure 775586DEST_PATH_IMAGE102
,若上校正面和圆柱校正面上的不平衡量对上、下测试面的影响系数分别是
Figure DEST_PATH_IMAGE103
Figure 574958DEST_PATH_IMAGE104
Figure DEST_PATH_IMAGE105
,则
Figure DEST_PATH_IMAGE107
                  (1)
上校正面上
Figure 571918DEST_PATH_IMAGE108
轴向、
Figure 246613DEST_PATH_IMAGE003
轴向动平衡执行单元的滑块移动位移
Figure DEST_PATH_IMAGE109
(其中
Figure 894632DEST_PATH_IMAGE001
Figure 511427DEST_PATH_IMAGE001
轴向的移动距离,
Figure 753053DEST_PATH_IMAGE003
Figure 965859DEST_PATH_IMAGE003
轴向的移动距离,设定正值表示向正方向移动,负值表示向负方向移动),则在由于上校正面上的滑块移动产生力不平衡量的为
Figure 858598DEST_PATH_IMAGE049
,保持试验转速不变,则此时上、下测试面的振动响应信号为第二振动信号:
Figure 380715DEST_PATH_IMAGE110
                     (2)
使上校正面上的
Figure 47320DEST_PATH_IMAGE108
轴向、
Figure 330663DEST_PATH_IMAGE003
轴向动平衡执行单元的滑块移动到初始位置,并使
Figure 766324DEST_PATH_IMAGE007
面上的动平衡执行单元的滑块分别移动位移
Figure 724921DEST_PATH_IMAGE030
Figure 613243DEST_PATH_IMAGE031
,并使
Figure 495748DEST_PATH_IMAGE008
面上的动平衡执行单元的滑块分别移动位移
Figure 35183DEST_PATH_IMAGE032
Figure 915414DEST_PATH_IMAGE033
(设定正值表示向正方向移动,负值表示向负方向移动),则在由于圆柱校正面上的滑块移动产生力偶不平衡量的为
Figure 540299DEST_PATH_IMAGE050
,其中
Figure 898599DEST_PATH_IMAGE051
为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母,保持试验转速不变,则此时上、下测试面的振动响应信号为第三振动信号:
Figure DEST_PATH_IMAGE111
                   (3)
由(1)和(2)可得
Figure 558120DEST_PATH_IMAGE112
                     (4)
由(1)和(3)可得
Figure DEST_PATH_IMAGE113
                     (5)
将(5)代入(1)可得原始不平衡量为:
Figure 796203DEST_PATH_IMAGE114
                   (6)
将(4)和(5)代入(6)可得:
Figure 659117DEST_PATH_IMAGE042
       (7)
(4)使圆柱校正面内的四个动平衡执行单元的滑块移动到初始位置;
(5)计算三轴向动平衡执行单元的滑块的移动距离和方向;
设初始不平衡量
Figure 70375DEST_PATH_IMAGE052
Figure 69555DEST_PATH_IMAGE001
轴和
Figure 353906DEST_PATH_IMAGE003
轴上的分量分别为
Figure 953384DEST_PATH_IMAGE053
Figure 919066DEST_PATH_IMAGE054
,初始不平衡量
Figure 293458DEST_PATH_IMAGE055
Figure 420814DEST_PATH_IMAGE007
平面和平面内的分量分别为
Figure 11382DEST_PATH_IMAGE056
Figure 313050DEST_PATH_IMAGE057
,则初始不平衡量向量可以转化为复数形式:
Figure 860575DEST_PATH_IMAGE058
Figure 185377DEST_PATH_IMAGE001
方向和
Figure 742129DEST_PATH_IMAGE003
方向上的滑块需要移动的距离分别为
Figure 570408DEST_PATH_IMAGE059
Figure 554413DEST_PATH_IMAGE060
,且
Figure 163249DEST_PATH_IMAGE061
Figure 274425DEST_PATH_IMAGE062
平面和
Figure 377696DEST_PATH_IMAGE008
平面内的四个滑块需要移动的距离分别为
Figure 660778DEST_PATH_IMAGE063
Figure 310066DEST_PATH_IMAGE064
Figure 362204DEST_PATH_IMAGE065
Figure 438744DEST_PATH_IMAGE066
,且
Figure 22173DEST_PATH_IMAGE067
Figure 452980DEST_PATH_IMAGE068
其中
Figure 375936DEST_PATH_IMAGE051
为竖直方向动平衡执行单元滑块的回转半径;计算结果为正值时表示向相应坐标轴的正方向移动,为负值时表示向相应坐标轴的负方向移动。
实施例二
参照图2、3、4、5
本实施例与实施例二的区别之处在于:所述的触发机构开设于转子的圆柱面上的凹槽,所述的凹槽与所述的下振动传感器对应。
本实施例的技术构思是:通过在转子的圆周面上开设与振动传感器对应的凹槽来做出数据采集卡的触发机构。当振动传感器遇到凹槽时,传感器的输出信号发生突变,这个突变的信号即作为触发所述的数据采集卡进行采样的触发信号。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (2)

1.用于离心机的三轴向自适应式动平衡执行方法,包括以下步骤:
(1)、在转子水平方向和竖直方向上分别安装能在水平方向和竖直方向调节其动平衡质量块的动平衡执行单元;在水平方向上设置四个动平衡执行单元,相邻的水平的动平衡执行单元的调节方向相互垂直,相对的水平的动平衡执行单元的调节方向相互共线、滑块的移动方向相反;在竖直方向上设置四个动平衡执行单元,竖直的动平衡执行单元的调节方向相互平行;任意一对水平动平衡执行单元必有一对竖直动平衡执行单元与之共面;
(2)、将驱动转子旋转的驱动机构的当前转速转换成脉冲序列信号,保证转子每转一转,不论转子转速高低,脉冲序列中的脉冲数一样,实时记录所述的脉冲序列信号;
(3)、在转子上设定一个标记,使得转子每转一转,标记发出一个脉冲信号,且标记的位置在一个滑块移动方向上;并规定以转子的回转中心为原点,所述的标记和所述的原点的连线为                                                
Figure 2010102421789100001DEST_PATH_IMAGE001
轴,从所述的原点到所述的标记处的方向为
Figure 293468DEST_PATH_IMAGE002
向,并按照右手定则找到
Figure 2010102421789100001DEST_PATH_IMAGE003
轴和
Figure 551143DEST_PATH_IMAGE004
向、
Figure 2010102421789100001DEST_PATH_IMAGE005
轴和
Figure 729183DEST_PATH_IMAGE006
向,现规定
Figure 506646DEST_PATH_IMAGE001
轴和
Figure 174257DEST_PATH_IMAGE003
轴决定的那个面为上校正面,
Figure 404381DEST_PATH_IMAGE001
轴和
Figure 454288DEST_PATH_IMAGE005
轴决定的那个面为
Figure 2010102421789100001DEST_PATH_IMAGE007
面,
Figure 273209DEST_PATH_IMAGE003
轴和
Figure 862453DEST_PATH_IMAGE005
轴决定的那个面为面,
Figure 427613DEST_PATH_IMAGE007
面和
Figure 976406DEST_PATH_IMAGE008
面组成圆柱校正面;在转子外面,在靠近转子上表面的位置安装上振动传感器,在靠近转子下表面的位置安装下振动传感器,上振动传感器所在的面为上测试面,下振动传感器所在的面为下测试面;
(4)、转子在投入使用前,需要获取转子的加工误差曲线,并将所述的加工误差曲线作为系统误差保存下来;使机臂在极低的转速下转转,使不平衡量引起的振动的大小几乎为0,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲信号作为数据采集卡的触发信号,对所述的机臂加工误差曲线进行整周期采样,采样机臂转动的转数为
Figure 189081DEST_PATH_IMAGE009
,机臂每转一转,数据采集卡整周期采样
Figure 643065DEST_PATH_IMAGE010
个点,上、下振动传感器分别测得的转子的加工误差曲线:第一加工误差曲线
Figure 2010102421789100001DEST_PATH_IMAGE011
Figure 966599DEST_PATH_IMAGE012
)、第二加工误差曲线
Figure 2010102421789100001DEST_PATH_IMAGE013
Figure 494532DEST_PATH_IMAGE012
),记录所述的第一、第二加工误差曲线;
(5)、使转子处于正常工作状态,获取转子的不平衡量引起的第一振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号,对所述的第一振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 691158DEST_PATH_IMAGE009
Figure 632438DEST_PATH_IMAGE010
,上、下振动传感器分别获得第一振动响应曲线
Figure 307133DEST_PATH_IMAGE014
Figure 2010102421789100001DEST_PATH_IMAGE015
Figure 972731DEST_PATH_IMAGE012
);去除第一振动响应曲线中对应的加工误差
Figure 2010102421789100001DEST_PATH_IMAGE017
Figure 690206DEST_PATH_IMAGE012
),
利用自动跟踪相关滤波法消除干扰信号、并获取第一振动响应曲线的幅值和相位分别为:
Figure 168591DEST_PATH_IMAGE018
Figure 2010102421789100001DEST_PATH_IMAGE019
Figure 2010102421789100001DEST_PATH_IMAGE021
(6)、分别移动上校正面内的
Figure 396496DEST_PATH_IMAGE001
Figure 312369DEST_PATH_IMAGE003
轴向上的动平衡执行单元的滑块,并记录两个轴向上滑块移动的位移量分别为
Figure 328866DEST_PATH_IMAGE001
Figure 457545DEST_PATH_IMAGE001
轴向的两个滑块移动距离等效,使用时只需移动其中的任意一个即可,
Figure 860714DEST_PATH_IMAGE003
轴向的两个滑块移动距离也等效,使用时只需移动其中的任意一个即可),其中如果位移量为正表示向正方向移动,为负表示向负方向移动;
上、下振动传感器分别获取转子当前的不平衡量引起的第二振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号对所述的第二振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 680902DEST_PATH_IMAGE009
Figure 226196DEST_PATH_IMAGE010
,上、下振动传感器分别获得第二振动响应曲线
Figure 106427DEST_PATH_IMAGE022
Figure 855946DEST_PATH_IMAGE012
);去除第二振动响应曲线中的加工误差
Figure 214247DEST_PATH_IMAGE024
),利用自动跟踪相关滤波法消除干扰信号、并获取第二振动响应曲线的幅值和相位:
Figure DEST_PATH_IMAGE027
Figure DEST_PATH_IMAGE029
(7)、移动上校正面内的
Figure 58126DEST_PATH_IMAGE001
Figure 385203DEST_PATH_IMAGE003
轴向的动平衡执行单元的滑块,使两个轴向上滑块回到初始位置,之后移动圆柱校正面内的动平衡执行单元的滑块,使
Figure 856504DEST_PATH_IMAGE007
面上的动平衡执行单元的滑块分别移动位移
Figure 206714DEST_PATH_IMAGE030
,使
Figure 93767DEST_PATH_IMAGE008
面上的动平衡执行单元的滑块分别移动位移
Figure 456441DEST_PATH_IMAGE032
,其中如果位移量正值表示向正方向移动,负值表示向负方向移动,保持试验转速不变,上、下振动传感器分别获取转子当前的不平衡量引起的第三振动信号,以当前脉冲序列信号作为数据采集卡的外时钟信号,以标记发出的脉冲作为数据采集卡的触发信号对所述的第三振动信号采样,采样机臂转动的转数及每转的采样点数和步骤(4)中一样,分别为
Figure 849377DEST_PATH_IMAGE009
Figure 936150DEST_PATH_IMAGE010
,并对第三振动信号进行采样获得第三振动响应曲线
Figure 439944DEST_PATH_IMAGE034
Figure DEST_PATH_IMAGE035
Figure 600667DEST_PATH_IMAGE012
);去除第三振动响应曲线中的加工误差
Figure DEST_PATH_IMAGE037
Figure 738573DEST_PATH_IMAGE012
),利用自动跟踪相关滤波消除干扰信号、并获取第三振动响应曲线的幅值和相位:
Figure 29746DEST_PATH_IMAGE038
Figure DEST_PATH_IMAGE039
Figure 310554DEST_PATH_IMAGE040
Figure DEST_PATH_IMAGE041
(8)使圆柱校正面内的四个竖直动平衡执行单元的滑块移动到初始位置;
(9)、根据步骤(5)、步骤(6)和步骤(7)得出的第一、第二、第三振动响应曲线的幅值和相位,以及各滑块的移动方向和位移量,使用影响系数法计算出转子的上校正和圆柱校正面上的原始不平衡量:
Figure 45292DEST_PATH_IMAGE042
其中:
Figure DEST_PATH_IMAGE043
Figure DEST_PATH_IMAGE045
Figure 76888DEST_PATH_IMAGE046
Figure DEST_PATH_IMAGE047
Figure DEST_PATH_IMAGE049
,其中
Figure DEST_PATH_IMAGE051
为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母;
设初始不平衡量
Figure 593735DEST_PATH_IMAGE052
Figure 977443DEST_PATH_IMAGE001
轴和
Figure 295161DEST_PATH_IMAGE003
轴上的分量分别为
Figure DEST_PATH_IMAGE053
,初始不平衡量
Figure 79763DEST_PATH_IMAGE007
平面和
Figure 516429DEST_PATH_IMAGE008
平面内的分量分别为
Figure 439386DEST_PATH_IMAGE056
Figure DEST_PATH_IMAGE057
Figure 873778DEST_PATH_IMAGE058
Figure 131453DEST_PATH_IMAGE001
方向和方向上的滑块需要移动的距离分别为
Figure DEST_PATH_IMAGE059
,且
Figure 772146DEST_PATH_IMAGE062
Figure 2270DEST_PATH_IMAGE007
平面和平面内的四个滑块需要移动的距离分别为
Figure DEST_PATH_IMAGE063
Figure 678288DEST_PATH_IMAGE064
Figure DEST_PATH_IMAGE065
Figure 454483DEST_PATH_IMAGE066
,且
Figure DEST_PATH_IMAGE067
Figure 624433DEST_PATH_IMAGE068
其中为竖直方向动平衡执行单元滑块的回转半径,m为移动部分质量,移动部分包括滑块、丝杆螺母、动平衡质量块和联接用的螺栓螺母;计算结果为正值时表示向相应坐标轴的正方向移动,为负值时表示向相应坐标轴的负方向移动;
(10)、使各动平衡执行机构的滑块移动至要求的位置;获取当前的振动响应,判断当前振动是否处于振动允许范围内,若是,则保持各滑块的位置;若否,则返回步骤(5)。
2.如权利要求1所述的用于离心机的三轴向自适应式动平衡执行方法,其特征在于:步骤(10)中,在移动滑块前,先判断滑块是否会被移动到导轨之外:若是,则发出报警,并提示无法完成动平衡;若否,则移动滑块。
 
CN2010102421789A 2010-08-02 2010-08-02 用于离心机的三轴向自适应式动平衡执行方法 Expired - Fee Related CN101915639B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102421789A CN101915639B (zh) 2010-08-02 2010-08-02 用于离心机的三轴向自适应式动平衡执行方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102421789A CN101915639B (zh) 2010-08-02 2010-08-02 用于离心机的三轴向自适应式动平衡执行方法

Publications (2)

Publication Number Publication Date
CN101915639A true CN101915639A (zh) 2010-12-15
CN101915639B CN101915639B (zh) 2012-07-04

Family

ID=43323201

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102421789A Expired - Fee Related CN101915639B (zh) 2010-08-02 2010-08-02 用于离心机的三轴向自适应式动平衡执行方法

Country Status (1)

Country Link
CN (1) CN101915639B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661787A (zh) * 2012-05-22 2012-09-12 国电联合动力技术有限公司 一种变转速风电机组转子振动信号的变换分析方法
CN108772211A (zh) * 2018-07-27 2018-11-09 中国工程物理研究院总体工程研究所 土工离心机动态平衡调节系统
CN108923710A (zh) * 2018-06-08 2018-11-30 合肥工业大学 一种自适应控制时滞转子的主动平衡控制系统及方法
CN113029439A (zh) * 2019-12-24 2021-06-25 苏州宝时得电动工具有限公司 电机转子平衡检测装置和电机转子平衡检测的方法、设备
CN113984283A (zh) * 2021-10-26 2022-01-28 宣城市雍基超镜面精密机械制造有限公司 大型辊的动平衡测试补偿方法
CN117484261A (zh) * 2023-12-29 2024-02-02 四川普什宁江机床有限公司 一种用于高速铣车复合加工中心转台的智能预平衡系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920417A1 (ru) * 1980-07-10 1982-04-15 Государственный Научно-Исследовательский Институт Машиноведения Им.Акад.А.А.Благонравова Устройство дл балансировки роторов
CN1566914A (zh) * 2003-06-27 2005-01-19 盛德恩 动平衡测量方法及高频比硬支承动平衡装置
CN100376881C (zh) * 2004-08-03 2008-03-26 河南科技大学 多轴、多转子动平衡试验方法
WO2008101716A2 (de) * 2007-02-23 2008-08-28 Schenck Rotec Gmbh Verfahren und vorrichtung zur unwuchtmessung von rotoren mit unsymmetrischer massenverteilung
CN100567926C (zh) * 2005-10-24 2009-12-09 中国科学院电工研究所 陀螺仪球形转子三维静平衡测量方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU920417A1 (ru) * 1980-07-10 1982-04-15 Государственный Научно-Исследовательский Институт Машиноведения Им.Акад.А.А.Благонравова Устройство дл балансировки роторов
CN1566914A (zh) * 2003-06-27 2005-01-19 盛德恩 动平衡测量方法及高频比硬支承动平衡装置
CN100376881C (zh) * 2004-08-03 2008-03-26 河南科技大学 多轴、多转子动平衡试验方法
CN100567926C (zh) * 2005-10-24 2009-12-09 中国科学院电工研究所 陀螺仪球形转子三维静平衡测量方法及装置
WO2008101716A2 (de) * 2007-02-23 2008-08-28 Schenck Rotec Gmbh Verfahren und vorrichtung zur unwuchtmessung von rotoren mit unsymmetrischer massenverteilung

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661787A (zh) * 2012-05-22 2012-09-12 国电联合动力技术有限公司 一种变转速风电机组转子振动信号的变换分析方法
CN108923710A (zh) * 2018-06-08 2018-11-30 合肥工业大学 一种自适应控制时滞转子的主动平衡控制系统及方法
CN108772211A (zh) * 2018-07-27 2018-11-09 中国工程物理研究院总体工程研究所 土工离心机动态平衡调节系统
CN113029439A (zh) * 2019-12-24 2021-06-25 苏州宝时得电动工具有限公司 电机转子平衡检测装置和电机转子平衡检测的方法、设备
CN113984283A (zh) * 2021-10-26 2022-01-28 宣城市雍基超镜面精密机械制造有限公司 大型辊的动平衡测试补偿方法
CN117484261A (zh) * 2023-12-29 2024-02-02 四川普什宁江机床有限公司 一种用于高速铣车复合加工中心转台的智能预平衡系统
CN117484261B (zh) * 2023-12-29 2024-04-02 四川普什宁江机床有限公司 一种用于高速铣车复合加工中心转台的智能预平衡系统

Also Published As

Publication number Publication date
CN101915639B (zh) 2012-07-04

Similar Documents

Publication Publication Date Title
CN101949752A (zh) 用于离心机的三轴向自适应式动平衡执行装置
CN101915639A (zh) 用于离心机的三轴向自适应式动平衡执行方法
CN201776187U (zh) 用于离心机的两轴向自适应式动平衡执行装置
CN100469653C (zh) 非平衡螺旋桨振动器的伺服控制系统
CN102501141B (zh) 一种基于内置传感器的数控机床主轴现场动平衡方法
CN101915653B (zh) 用于多参数复合试验环境的离心机
CN100523767C (zh) 非接触式微转子振动位移的激光测量方法
CN109520452B (zh) 位置测量装置和用于运行位置测量装置的方法
US10378991B2 (en) Angle-measuring device and method for operating an angle-measuring device
CN102997887B (zh) 一种多维数的角度传感器检测方法与装置
CN105021352A (zh) 一种主轴内置机械式在线动平衡系统
CN101912825B (zh) 用于离心机的两轴向自适应式动平衡执行装置
CN106482894A (zh) 一种动态扭矩校准装置
CN102980724B (zh) 回转体动平衡仪
CN101915640B (zh) 用于离心机的两轴向自适应式动平衡执行方法
CN201780190U (zh) 用于离心机的三轴向自适应式动平衡执行装置
CN103712746B (zh) 一种转子动平衡试验中机械滞后角的求取方法
KR100941467B1 (ko) 선형 시변 각속도 모델을 이용한 동적 발란싱 장치 및 방법
CN102323057B (zh) 一种多轴同步误差检测装置与检测方法
CN103674221A (zh) 静压液浮陀螺加速度计马达振动信号检测、分析与筛选方法
CN101451882B (zh) 一种用于机械转子单截面轴振分析的短时幅值频谱阵列
CN201780187U (zh) 用于多参数复合试验环境的离心机
CN109163685A (zh) 圆盘刀片轴向和径向跳动检测仪
CN102661787A (zh) 一种变转速风电机组转子振动信号的变换分析方法
CN103217284B (zh) 一种旋转机械模态阻尼系数的测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120704

Termination date: 20170802