CN101903497A - 去除全原油中的氮和硫化物的改质工艺 - Google Patents

去除全原油中的氮和硫化物的改质工艺 Download PDF

Info

Publication number
CN101903497A
CN101903497A CN2008801162472A CN200880116247A CN101903497A CN 101903497 A CN101903497 A CN 101903497A CN 2008801162472 A CN2008801162472 A CN 2008801162472A CN 200880116247 A CN200880116247 A CN 200880116247A CN 101903497 A CN101903497 A CN 101903497A
Authority
CN
China
Prior art keywords
container
compound
crude oil
sorbing material
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2008801162472A
Other languages
English (en)
Other versions
CN101903497B (zh
Inventor
O·R·科索格卢
A·阿尔-哈吉
J·H·阿尔-努费利
D·A·S·艾哈迈德
H·穆勒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saudi Arabian Oil Co
Original Assignee
Saudi Arabian Oil Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saudi Arabian Oil Co filed Critical Saudi Arabian Oil Co
Publication of CN101903497A publication Critical patent/CN101903497A/zh
Application granted granted Critical
Publication of CN101903497B publication Critical patent/CN101903497B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/003Specific sorbent material, not covered by C10G25/02 or C10G25/03
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/06Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with moving sorbents or sorbents dispersed in the oil
    • C10G25/11Distillation in the presence of moving sorbents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/02Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material
    • C10G25/03Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents with ion-exchange material with crystalline alumino-silicates, e.g. molecular sieves
    • C10G25/05Removal of non-hydrocarbon compounds, e.g. sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G25/00Refining of hydrocarbon oils in the absence of hydrogen, with solid sorbents
    • C10G25/12Recovery of used adsorbent
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G7/00Distillation of hydrocarbon oils
    • C10G7/06Vacuum distillation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/202Heteroatoms content, i.e. S, N, O, P
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/201Impurities
    • C10G2300/205Metal content

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

通过在混合容器中将原料料流与一种或几种固体吸附材料接触一段时间对原油原料流进行处理来移除或降低已知不希望的杂原子化合物和包含硫和氮的多核芳烃化合物的含量,固体吸附材料选自凹凸棒石粘土,氧化铝,硅胶和活性炭,该一段时间足够使从原油中吸附不希望的化合物最优化,再对该混合物进行常压闪蒸,然后进行真空闪蒸,从而回收含有低含量不希望化合物的预吸附的沸程产物,并优选再生至少一部分的固体吸附材料供工艺中重复使用。

Description

去除全原油中的氮和硫化物的改质工艺
发明领域
本发明涉及去除不希望化合物的全原油原料流的处理以改质处理后的原油,并由此加强和提供更加高效的处理后料流的下游加工。
发明背景
从储油岩石(reservoir rock)中提炼出来的原油中包含大量的不需要的化合物或者杂质。为了满足环保要求和规范,要求降低机动车燃料和其他精制烃中硫化合物的含量。这些杂质反过来也会影响精制厂操作,例如会毒化催化剂。
原油中包含杂原子例如硫、氮、镍,钒和其他,其含量影响原油馏分的精制加工。轻质原油或冷凝物(codensate)中含有的浓度低至0.01W%。相比之下,重质原油中含有高达5-6W%。原油中氮的含量可以在0.001-1.0W%之间。表1中列举的是典型的阿拉伯原油中杂原子的含量,从中可以发现,相同族内的原油的杂原子含量随着API比重(API gravity)的减少或重量的增加而增加。
表1
  特性   ASL   AEL   AL   AM   AH
  比重   51.4   39.5   33.0   31.1   27.6
  硫,W%   0.05   1.07   1.83   2.42   2.94
  氮,ppmw   70   446   1064   1417   1651
  RCR,W%   0.51   1.72   3.87   5.27   7.62
  镍+钒,ppmw   <0.1   2.9   21   34.0   67
以下是表1中所用到的缩写词:
ASL-阿拉伯高级轻油;AEL-阿拉伯超轻油;AL-阿拉伯轻油;AM-阿拉伯中油;AH-阿拉伯重油。W%为质量百分比;ppmw为重量的百万分之一。
原油馏分中杂原子含量也随着沸点的增加而增加,典型数据列举在表2中。
表2
    馏分,℃     硫,WT%     氮,ppmw
    C5-90     0.01
    93-160     0.03
    160-204     0.06
    204-260     0.34
    260-315     1.11
    315-370     2.00     253
    370-430     2.06     412
    430-482     2.65     848
    482-570     3.09     1337
这些杂质必须在精制操作中移除以满足最终产品(如汽油、柴油,燃料油)或为了进一步改质,例如异构化重整,需要进行处理的中间精制料流的环境规定。
在一个典型的炼油厂,原油首先在常压蒸馏塔中分馏,以便分离并回收酸性气体和轻质烃,包括甲烷、乙烷、丙烷、丁烷和硫化氢、石脑油(36-180℃)、煤油(180-240℃)、瓦斯油(gas oil)(240-370℃)、和常压渣油,后者为在370℃以上沸腾的残留烃馏分。根据炼油厂的构造,从常压蒸馏塔中得到的常压渣油通常被用作燃料油或被送往真空蒸馏装置。真空蒸馏的主要产品是真空瓦斯油,其为在370-520℃之间沸腾的烃,以及由在520℃以上沸腾的由烃组成的减压渣油(vacuum residue)。
在原油馏分中的杂质如硫、氮和多核芳烃会影响这些下游工序以及其他的工序,包括加氢处理、加氢裂化和FCC。这些杂质以不同的结构和浓度存在于原油馏分中。
对从原油或从其他自然资源,如页岩油、沥青和沥青砂中获得的石脑油、煤油和瓦斯油进行处理以去除含量超出规定的杂质,例如主要是硫。加氢处理是去除杂质最常采用的精制处理工艺。真空瓦斯油一般是在加氢裂化装置中进行处理生成汽油和柴油,或者在流化催化裂化装置进行处理生产汽油,伴随副产品LCO和HCO。LCO通常在柴油池中被用作掺混组分或被用作燃料油,而HCO一般被直接送入燃料油池。减压渣油馏分有几种处理选择,包括加氢处理、焦化、减黏裂化、气化和溶剂脱沥青。
已经公开了在去除包括含氮和硫化合物的不希望化合物的烃原料流处理中采用固体吸附材料的方法。。例如USP4846962公开了通过其在固体酸性极性吸附材料上的吸附选择地从溶剂抽提油中去除碱性氮化合物的方法。在溶剂抽提工艺中,和所需油馏分共存的碱性氮化合物与氧化硅-氧化铝型吸附剂接触,Ketjen高氧化铝基底(base)(无定形)和H-Y沸石(结晶)被认为是优选的。此外,吸附剂经过各种不同的处理从而提高它们的有效性。还公开这些吸附剂可以再生,例如利用热氢气流吹洗。
在USP5843300描述的方法中,利用X沸石从FCC原料流中去除有机硫化合物特别是芳香硫化合物,仅吸附最少量的芳香烃,X沸石用碱金属或者碱土金属的阳离子交换,KX是特别有效的吸附剂。它也指出吸附剂可以通过与加热的氢气流接触再生。公开的在含有特定种类含硫物质的FCC原料的处理中所用的方法是尤其有效的。
USP6248230公开了通过从馏出物原料流中首次萃取天然极性化合物来提高加氢脱硫工艺的高效性的方法。这种提高基于已声明的发现,即甚至极少量的天然极性化合物也会对深度脱硫区域的加氢脱硫工艺带来严重的负面影响。天然极性化合物包括比硫芴具有相对更高极性的含氮和硫化合物。吸附剂包括活性氧化铝、酸性白土(acid white clay)、漂白土、活性炭、沸石、水合氧化铝、硅胶、离子交换树脂和它们的组合。在公开的工艺中,处理后的原料流经过催化加氢工艺生产烃燃料。
杂质的去除取决于它们的分子特性,因此,对原料和产品中的硫成分的详细了解对于任何脱硫工艺的优化都非常重要。大量的分析工具被用于检测硫化合物。有硫特定检测器的气相色谱(GC)通常用于检测沸点低于370℃原油馏分。作为重石油馏分和全原油分析的有力手段,超高分辨率的傅里叶变换离子回旋共振(FT-ICR)质谱仪的使用近期已被推进。在文(1)Choudhary,T.V..Malandra,J.,Green J.,Parrott,S.,Johnson,B.,Angew.Chem.,Int.Ed.2006,45,3299-3303;(2)Hughey,C.A.,Rodgers,R.P.,Marshall,A.G.,Anal.Chem.2002,74,4145-4149;and(3)Müller,H.,Schrader,W.,Andersson,J.T.,Anal.Chem.,2005;77,2536-2543.中描述了这种方法的使用。
已经成功应用于芳香硫和和极性氮石油组分的两种离子化分析方法为电喷雾离子化(electrospray ionization)(ESI)和常压光电离(atmospheric pressure photoionization)(APPI)。它们都是公知的分析方法且实现它们的设备是市售的。
通过上面的讨论,很明显在工艺初始阶段通过去除特定的不希望化合物从而使得接下来回收的馏分中没有这些化合物来改质原油是希望的。
因此,本发明的主要目标是提供一个新颖的方法来处理原油以便能够充分的降低不希望的硫和氮化合物的含量。
本发明的另一个目标是提供需要相对低的设备投资成本且操作经济的从原油中去除不希望的硫和氮化合物的方法。
发明内容
上述目标和其他益处可以通过本发明的方法实现,该方法可以改质原油以降低特定的杂原子化合物和含有硫和氮的多核芳烃(PNA)化合物的含量,该方法包括:
a.在使得不希望的化合物被吸附的条件下将原油和固体吸附材料混合足够的时间,该固体吸附材料是用于特定的杂原子化合物和多核芳烃化合物的吸附剂;
b.对包含固体吸附材料的原油混合物进行常压闪蒸,以及分离并移除初沸点为36℃和终沸点在350℃和400℃之间的馏出物;
c.将(b)步骤中的常压蒸馏的塔底产物转移到真空蒸馏容器并将该混合物进行真空闪蒸,并分离和移除初沸点在350℃和480℃之间以及终沸点在480℃和560℃之间的馏出物;
d.再生真空蒸馏容器的塔底产物中含有的吸附材料;和
e.回收并返还再生的吸附材料,供步骤(a)中再使用。
此处所用的术语“原油”应被理解为包括传统来源的全原油,和从含高浓度氮和PNA分子的油砂和页岩油中回收的烃。
氮、硫和多核芳香烃化合物杂质被用固体颗粒选择性地从原油中去除,其中固体颗粒优选的表面积为至少100m2/g,孔径至少为10埃,且孔容积为0.1cc/g。
在进行精制去除杂质之前,在油田或炼油厂使用该工艺对原油进行预处理将会提高下游精制工艺的效率。该工艺通过使油与一种或多种固体吸附剂接触来预处理原油。对下游精制工艺有害的杂质会被预分离,它会提高整个加工单元的总效率。
优选的吸附剂有凹凸棒石粘土(attapulgus clay),氧化铝,硅胶和活性炭,其相关的性能见下表所示。
表3
  性能   单位   活性炭   凹凸棒石粘土   硅胶
  表面积   M2/g   770   108   424
  孔径   °A   12.7   146   17.4
  孔径分布   °A-cc/g   46.4   97.1   176.3
  孔容积   cc/g   0.442   0.392   0.368
根据Hildebrand溶解度参数,吸附剂能够用极性不同的溶剂再生,Hildebrand溶解度参数是公知的对极性的量度,且大量化合物已经被测定成表。例如参见Journal of Paint Technology,vol.39,no.505(Feb 1967).。
大多数再生的固体吸附材料(90-95W%)能够被再循环回到接触容器,且剩余的吸附材料(大约5-10%)被作为废物处理掉。新鲜的吸附材料不断的按照预定的速率被添加,且在再生步骤之前或之后,等量比例的用过的固体吸附材料被排出而废弃。监控工艺的效率并做出决定来替代所有或更大比例的用过的吸附材料,它在其孔内积聚金属和其他颗粒物质达到工艺不能满意地运行的程度。
附图简介
下面进一步描述本发明的方法,并参照所附的示意图。
优选实施例详述
现在参照图,对适合实施本发明的实施方式进行示意性说明,其包含5个容器,按功能其被描述为接触容器10,常压闪蒸分离容器20,真空闪蒸分离容器30,过滤/再生容器40,和溶剂处理容器50。
在特别优选的实施方式中,所有这些容器作为连续工艺中的组件运行。原油原料流11和固态吸附剂12被送往接触容器10中并混合形成淤浆。接触容器10可以作为沸腾床或固定床反应器、管式反应器或连续搅拌釜式反应器运行。
然后固态吸附剂/原油的淤浆混合物13送往常压闪蒸分离容器20从而分离和回收常压馏出物21。来自容器20的常压渣油底部产物流22被送往真空闪蒸分离容器30。真空馏出物流31从容器30的顶部排出,以及包含减压闪蒸渣油和固体吸附剂的底部产物流32被送往溶剂吸附再生单元容器40。减压渣油产物41从容器40顶部排出,以及底部产物42被移除并分离以便使可再次使用的再生吸附剂43能够被循环回并且和新鲜原料12一起引入容器10;再生吸附剂的未使用部分44被移除废弃。
在特别优选的实施方式中,吸附剂再生单元40在交替模式(swing mode)下运行使得再生吸附剂的生产是连续的。当被引入一个再生单元例如40A的来自真空蒸馏单元30的料流32中的吸附材料达到容量后,原料料流32然后会导入另一个塔40B。被吸附的化合物通过加热或溶剂处理被脱附。被吸附的含氮和PNA的化合物通过在压力为1-10Kg/cm2下用惰性氮气流加热进行脱附,或通过可用的新鲜或在循环的溶剂料流46或52,或精制厂料流如石脑油、柴油、甲苯、丙酮、二氯甲烷、二甲苯,苯或四氢呋喃在从20℃到250℃的温度范围内进行脱附。
在加热脱附情况中,被脱附的化合物作为料流48从塔底部被移除以用于其它的精制工艺中,例如渣油改质设备,包括加氢处理、焦化、沥青厂,或者直接应用于燃料油混合。
溶剂是基于Hildebrand溶解度因子或它们的两维溶解度因子选择的。总Hildebrand溶解度参数是公知的对极性的量度,且已经用于计算大量化合物。例如参见Journal of Paint Technology,vol.39,no.505(Feb 1967).。适宜溶剂可用包含复合溶解度参数(complexing solubility parameter)和场力溶解度参数(field forcesolubility parameter)的两维溶解度参数描述。例如参见I.A.Wiehe,Ind. & Eng.Res.,34(1995),661。用于描述氢键和电子供体-受体相互作用的复合溶解度参数组分可以测量相互作用能,其需要一个分子的原子和一个不同分子的第二个原子之间的具体取向。用于描述范德华力和偶极相互作用力的场力溶解度参数可以测量不因分子取向改变而破坏的液体相互作用能。
根据本发明,如果使用多于一种的非极性溶剂,优选其具有低于约8.0的总Hildebrand溶解度参数或者低于0.5的复合溶解度参数和低于7.5的场力溶解度参数。合适的非极性溶剂包括,例如饱和脂肪烃如戊烷、己烷、庚烷、链烷石脑油,C5-C11、煤油C12-C15、柴油C16-C20、正常的和支化的石蜡、以及任意这些溶剂的混合物。优选的溶剂是C5-C7石蜡和C5-C11链烷石脑油。
根据本发明,极性溶剂的总溶解参数大于约8.5,或者复合溶解度参数大于1以及场力溶解参数大于8。满足所需的最小溶解参数的极性溶剂例子是甲苯(8.91)、苯(9.15)、二甲苯(8.85)和四氢呋喃(9.52)。在下面例子中使用的优选极性溶剂是甲苯和四氢呋喃。
在溶剂脱附情况中,溶剂和来自吸附塔的废弃料流被送往界区内的分馏单元50。回收溶剂料流52被再循环至吸附剂再生单元40,或40A和40B,以便重复使用。来自分馏单元50的底部产物流54被送往其他精制工序。
本发明利用固体微粒从原油原料流中去除预定的杂质。这项工艺不复杂,以及设备也是常规的且能够作为预处理工艺被安装在产油地或炼油厂。
实施例:
将含碳84.6W%,氢12W%,硫3.27W%和氮0.25W%的重质油在40℃下和凹凸棒石粘土在模拟淤浆塔的容器中接触30min。然后这种淤浆混合物被过滤,并用在36-180℃之间沸腾的包含97W%的石蜡的直馏石脑油料流冲洗该固体混合物,剩余物为1∶5V∶V%油-剂比的芳香烃和石脑油。在石脑油股流分馏以后,90.5W%的产物被收集。吸附剂处理过的产物中含氢12.19W%(增加1.9%),硫3.00W%(降低8W%)和氮1445ppmw(降低42W%)。在1∶5V∶V%固体-溶剂比下,用甲苯和四氢呋喃对吸附剂进一步清洗,且分别得到7.2W%和2.3W%的废弃馏分。改质工艺的物料平衡以及原料和产物的元素组成列于表3。
表3
  馏分   质量W%   CW%   HW%   SW%   NW%
  原油   100.0   84.6   12.0   3.27   0.250
  改质原油   90.5   84.7   12.2   3.00   0.145
  渣油   9.5   84.2   10.0   5.05   0.677
  物料平衡   100.0   100.1   100.2   98.5   78.15
一种特制的装备有9.4特斯拉超导磁铁的FT-ICR超高分辨率质谱仪被用于表征原油和改质产品。利用三种离子化模式观察到的原料和产品的质谱值(massin the spectra)介于200到高达800道尔顿之间。中性物质,即芳香烃和硫芳香物质(sulfur aromatic species)用APPI离子化模式进行检测。极性的氮和氧物质分别利用正和负模式下电喷雾来进行离子化。
原料和产品中的芳香烃、硫、氮和氧物质都被识别出来。在原料中发现具有高度芳香族特性,即五到七缩合芳香环的单-、双-和三-硫物质,但是轻易地被改质处理去除。本发明改质工艺的结果是具有低于五个缩合芳香环的分子成比例的增加。
本发明利用固体吸附剂从原油中选择性的去除能毒害下游催化工艺单元催化剂的化合物。选择用于本发明方法的固体颗粒具有足够的表面积、孔容积和孔径从而吸附有毒化合物。
本发明工艺及其优点利用实施例进行了详细描绘和说明。然而,对于本领域技术人员来说显而易见的是,可以从这种描述中做进一步的修改以及本发明的保护范围通过如下的权利要求确定。

Claims (13)

1.改质原油以降低已知不希望的杂原子化合物和含有硫和氮的多核芳烃(PNA)化合物的含量的方法,其包括:
a.在吸附不希望的化合物的条件下将原油和固体吸附材料混合足够的时间,该固体吸附材料是对杂原子化合物和包含硫和氮的多核芳烃化合物的吸附剂;
b.对包含固体吸附材料的混合物进行常压闪蒸,以及分离并移除初沸点为36℃和终沸点在350℃和400℃之间的馏出物;
c.将(b)步骤中的常压蒸馏的塔底产物转移到真空闪蒸容器并将该混合物进行真空闪蒸,并分离和移除初沸点在350℃和480℃之间以及终沸点在480℃和560℃之间的馏出物;
d.再生真空蒸馏容器的塔底产物中含有的吸附材料的至少一部分;和
e.回收并返还再生的吸附材料,供步骤(a)中再使用。
2.如权利要求1所述的方法,包括分析原油样品从而确定存在的不希望的化合物以及选择所用吸附材料的步骤,该吸附材料的选择基于它吸附已知的存在于原油中的不希望化合物的能力。
3.如权利要求1所述的方法,其中的固体吸附材料选自凹凸棒石粘土、氧化铝、硅胶和活性炭。
4.如权利要求1所述的方法,其中步骤(a)中混合物的的温度为20℃和200℃之间。
5.如权利要求1所述的方法,其中步骤(a)中的混合在压力保持在从1到100kg/cm2范围内,且优选在从1到10kg/cm2范围内的容器中进行。
6.如权利要求1所述的方法,该方法是连续的。
7.如权利要求1所述的方法,其中步骤(a)的混合在选自搅拌釜、沸腾床反应器、有挡板的淤浆槽(baffled slurry tank),固定床和旋转管式反应器的容器中进行。
8.如权利要求1所述的方法,其中吸附材料在步骤(d)中利用溶剂再生工艺再生。
9.如权利要求8所述的方法,其中基于其Hildebrand溶解度,选择多种具有不同极性的溶剂用于再生。
10.如权利要求1所述的方法,其中在步骤(d)中进行再生的高达90%的吸附材料被回收和再循环以在步骤(a)中使用。
11.处理原油原料流从而降低不希望的杂原子化合物和含有硫和氮的多核芳烃化合物的含量的设备,该系统包括:
a.混合容器,其具有固体吸附材料的连续进料以用于接收原油原料流并将其与吸附材料混合制成淤浆;
b.常压闪蒸容器,其与该混合容器流体连通用于接收淤浆,且具有用于排放在第一指定温度范围内产物的馏出物出口,和用于排放吸附剂和来自常压蒸馏的塔底产物的塔底产物出口;
c.真空蒸馏容器,其与常压蒸馏容器流体连通用于接收吸附剂和来自常压蒸馏容器的塔底产物,且具有用于排放在第二指定温度范围内产物的馏出物出口和用于排放吸附材料的塔底产物出口;
d.吸附剂再生容器,其与真空闪蒸容器流体连通用于接收吸附材料;和
e.回收至少一部分来自再生容器的再生吸附剂的装置。
12.如权利要求11所述的设备,其中吸附剂再生容器含有用于不希望化合物的液体溶剂。
13.如权利要求12所述的设备,其包括与吸附剂再生容器流体连通的溶剂再生容器。
CN200880116247.2A 2007-11-14 2008-11-07 去除全原油中的氮和硫化物的改质工艺 Expired - Fee Related CN101903497B (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/985,533 2007-11-14
US11/985533 2007-11-14
US11/985,533 US7799211B2 (en) 2006-10-20 2007-11-14 Process for upgrading whole crude oil to remove nitrogen and sulfur compounds
PCT/US2008/012629 WO2009064377A1 (en) 2007-11-14 2008-11-07 Process for upgrading whole crude oil to remove nitrogen and sulfur compounds

Publications (2)

Publication Number Publication Date
CN101903497A true CN101903497A (zh) 2010-12-01
CN101903497B CN101903497B (zh) 2013-10-30

Family

ID=40622702

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880116247.2A Expired - Fee Related CN101903497B (zh) 2007-11-14 2008-11-07 去除全原油中的氮和硫化物的改质工艺

Country Status (5)

Country Link
US (2) US7799211B2 (zh)
EP (1) EP2225349B1 (zh)
CN (1) CN101903497B (zh)
NO (1) NO2225349T3 (zh)
WO (1) WO2009064377A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109762470A (zh) * 2019-01-23 2019-05-17 厦门中坤化学有限公司 一种超低硫含量的硫酸盐松节油脱硫精制方法
CN110662962A (zh) * 2017-03-14 2020-01-07 沙特阿拉伯石油公司 烃源岩属性的协同感测与预测
CN111148556A (zh) * 2017-09-27 2020-05-12 Rj利格鲁普公司 用于澄清热解油的方法和装置

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8246814B2 (en) * 2006-10-20 2012-08-21 Saudi Arabian Oil Company Process for upgrading hydrocarbon feedstocks using solid adsorbent and membrane separation of treated product stream
US20110253595A1 (en) * 2010-04-20 2011-10-20 Esam Zaki Hamad Combined solid adsorption-hydrotreating process for whole crude oil desulfurization
US20160045841A1 (en) * 2013-03-15 2016-02-18 Transtar Group, Ltd. New and improved system for processing various chemicals and materials
CN105765027A (zh) 2013-09-30 2016-07-13 马士基橄榄和气体公司 利用使用磁性粒子耗尽离子的水来提高油回收的方法和系统
CN105992808B (zh) 2013-09-30 2018-10-19 综合E&P丹麦股份有限公司 磁性纳米粒子用于耗尽油中的芳族化合物的用途
WO2015044444A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Water treatment suited for oil production wells
WO2015044446A1 (en) 2013-09-30 2015-04-02 Mærsk Olie Og Gas A/S Method and system for the recovery of oil, using water that has been treated using magnetic particles
RU2551361C1 (ru) * 2014-08-12 2015-05-20 Общество с ограниченной ответственностью "Алтайский центр прикладной химии" Способ регенерации отработанного адсорбента
US10310457B2 (en) * 2014-11-24 2019-06-04 Aspen Technology, Inc. Runtime modeling approach to updating refinery planning models
US10627407B2 (en) 2015-03-12 2020-04-21 Mars, Incorporated Ultra high resolution mass spectrometry and methods of using the same
US10233394B2 (en) 2016-04-26 2019-03-19 Saudi Arabian Oil Company Integrated multi-stage solvent deasphalting and delayed coking process to produce high quality coke
US10125318B2 (en) 2016-04-26 2018-11-13 Saudi Arabian Oil Company Process for producing high quality coke in delayed coker utilizing mixed solvent deasphalting
WO2018006155A1 (en) * 2016-07-07 2018-01-11 Adven Industries, Inc. Methods for enhancing efficiency of bitumen extraction from oilsands using activated carbon containing additives
FR3060406B1 (fr) 2016-12-16 2021-02-12 Total Marketing Services Procede de traitement des huiles usagees
CN106710433B (zh) * 2017-03-22 2023-11-17 中国石油大学(华东) 一种常减压深拔评价的实验装置
US11377605B2 (en) * 2019-04-12 2022-07-05 ExxonMobil Technology and Engineering Company Molecular separations process
US11066607B1 (en) * 2020-04-17 2021-07-20 Saudi Arabian Oil Company Process for producing deasphalted and demetallized oil
US11180701B2 (en) * 2019-08-02 2021-11-23 Saudi Arabian Oil Company Hydrocracking process and system including separation of heavy poly nuclear aromatics from recycle by extraction
US20210179945A1 (en) * 2019-12-11 2021-06-17 Saudi Arabian Oil Company Needle coke production from hpna recovered from hydrocracking unit
US11384300B2 (en) 2019-12-19 2022-07-12 Saudi Arabian Oil Company Integrated process and system to upgrade crude oil
US20210198586A1 (en) 2019-12-26 2021-07-01 Saudi Arabian Oil Company Hydrocracking process and system including removal of heavy poly nuclear aromatics from hydrocracker bottoms by coking
US11130920B1 (en) 2020-04-04 2021-09-28 Saudi Arabian Oil Company Integrated process and system for treatment of hydrocarbon feedstocks using stripping solvent
US11286429B2 (en) 2020-06-25 2022-03-29 Saudi Arabian Oil Company Process for heavy oil upgrading utilizing hydrogen and water
CN112162056A (zh) * 2020-09-27 2021-01-01 江苏集萃托普索清洁能源研发有限公司 石油产品中超低氮含量的检测方法
US11549065B2 (en) 2021-01-07 2023-01-10 Saudi Arabian Oil Company Adsorption systems and processes for recovering PNA and HPNA compounds from petroleum based materials and regenerating adsorbents
US11326112B1 (en) * 2021-01-07 2022-05-10 Saudi Arabian Oil Company Integrated hydrocracking/adsorption and aromatic recovery complex to utilize the aromatic bottoms stream
US11773338B1 (en) * 2022-11-03 2023-10-03 Saudi Arabian Oil Company Methods of processing whole crude oils that include sulfur

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996130A (en) * 1974-01-03 1976-12-07 Nikolai Sergeevich Nametkin Method of purifying crude petroleum and primary refining products
US4804457A (en) * 1987-07-22 1989-02-14 Shell Oil Company Process for removal of polynuclear aromatics from a hydrocarbon in an endothermic reformer reaction system
CN1394938A (zh) * 2001-06-28 2003-02-05 切夫里昂美国公司 原油脱硫
US20070102323A1 (en) * 2004-11-23 2007-05-10 Chinese Petroleum Corporation Oxidative desulfurization and denitrogenation of petroleum oils

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1836947A (en) * 1926-06-01 1931-12-15 Winfield S Zehrung Process of refining crude mineral oils
US1788654A (en) * 1927-11-12 1931-01-13 Filtrol Company Of California Process of treating crude oil of the pennsylvania type
US3315003A (en) * 1960-08-26 1967-04-18 Sun Oil Co Process for removing carbonyl sulfide from normally gaseous hydrocarbons
US4119530A (en) * 1975-09-04 1978-10-10 Uop Inc. Moving-bed reactor startup process
US4172842A (en) * 1977-12-29 1979-10-30 Texaco Inc. Conversion of hydrogen and carbon monoxide into C1 -C4 range hydrocarbons
DE2965767D1 (en) * 1979-03-21 1983-07-28 Davy Mckee London Process for the production of a sulphur-free butene-1 rich stream
US4332671A (en) * 1981-06-08 1982-06-01 Conoco Inc. Processing of heavy high-sulfur crude oil
US4894141A (en) * 1981-09-01 1990-01-16 Ashland Oil, Inc. Combination process for upgrading residual oils
US4468316A (en) * 1983-03-03 1984-08-28 Chemroll Enterprises, Inc. Hydrogenation of asphaltenes and the like
GB2142930B (en) * 1983-03-19 1987-07-01 Asahi Chemical Ind A process for cracking a heavy hydrocarbon
US4836993A (en) * 1983-09-27 1989-06-06 Amoco Corporation Process for removing sulfur oxides from a gas
FR2608451B1 (fr) * 1986-12-19 1990-12-21 Spie Batignolles Procede et installation pour distiller des produits liquides thermosensibles
US4846962A (en) * 1987-02-12 1989-07-11 Exxon Research And Engineering Company Removal of basic nitrogen compounds from extracted oils by use of acidic polar adsorbents and the regeneration of said adsorbents
US4831208A (en) * 1987-03-05 1989-05-16 Uop Chemical processing with an operational step sensitive to a feedstream component
US4831207A (en) * 1987-03-05 1989-05-16 Uop Chemical processing with an operational step sensitive to a feedstream component
US4835338A (en) * 1987-08-31 1989-05-30 Aluminum Company Of America Process for removal of carbonyl sulfide from organic liquid by adsorption using alumina adsorbent capable of regeneration
US4944862A (en) * 1988-10-26 1990-07-31 Mobil Oil Corporation Integrated catalytic dewaxing and catalytic cracking process
US6245223B1 (en) * 1997-12-16 2001-06-12 Exxonmobil Research And Engineering Company Selective adsorption process for resid upgrading (law815)
US5843300A (en) * 1997-12-29 1998-12-01 Uop Llc Removal of organic sulfur compounds from FCC gasoline using regenerable adsorbents
US6248230B1 (en) * 1998-06-25 2001-06-19 Sk Corporation Method for manufacturing cleaner fuels
CA2386599A1 (en) * 1999-10-14 2001-04-19 Exxon Research And Engineering Company Two-stage process for converting residua to gasoline blendstocks and light olefins
EP1148112A3 (en) * 2000-04-19 2003-01-22 Japan Energy Corporation Rubber process oil, high-viscosity base oil, and process for the production thereof
US6402940B1 (en) * 2000-09-01 2002-06-11 Unipure Corporation Process for removing low amounts of organic sulfur from hydrocarbon fuels
US20030089638A1 (en) * 2001-11-12 2003-05-15 Institut Francais Du Petrole Process for converting heavy petroleum fractions including an ebulliated bed for producing middle distillates with a low sulfur content
EP1485335B1 (en) * 2002-02-28 2015-04-08 Badger Licensing LLC Production of alkyl aromatic compounds
EA004234B1 (ru) * 2003-03-28 2004-02-26 Ай Ку Эдванс Текнолоджи Лимитед Способ очистки жидких сред
US7144498B2 (en) * 2004-01-30 2006-12-05 Kellogg Brown & Root Llc Supercritical hydrocarbon conversion process

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3996130A (en) * 1974-01-03 1976-12-07 Nikolai Sergeevich Nametkin Method of purifying crude petroleum and primary refining products
US4804457A (en) * 1987-07-22 1989-02-14 Shell Oil Company Process for removal of polynuclear aromatics from a hydrocarbon in an endothermic reformer reaction system
CN1394938A (zh) * 2001-06-28 2003-02-05 切夫里昂美国公司 原油脱硫
US20070102323A1 (en) * 2004-11-23 2007-05-10 Chinese Petroleum Corporation Oxidative desulfurization and denitrogenation of petroleum oils

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110662962A (zh) * 2017-03-14 2020-01-07 沙特阿拉伯石油公司 烃源岩属性的协同感测与预测
CN111148556A (zh) * 2017-09-27 2020-05-12 Rj利格鲁普公司 用于澄清热解油的方法和装置
CN109762470A (zh) * 2019-01-23 2019-05-17 厦门中坤化学有限公司 一种超低硫含量的硫酸盐松节油脱硫精制方法

Also Published As

Publication number Publication date
EP2225349B1 (en) 2018-03-14
WO2009064377A1 (en) 2009-05-22
CN101903497B (zh) 2013-10-30
EP2225349A1 (en) 2010-09-08
US8986622B2 (en) 2015-03-24
US7799211B2 (en) 2010-09-21
US20090120842A1 (en) 2009-05-14
NO2225349T3 (zh) 2018-08-11
US20100147647A1 (en) 2010-06-17
EP2225349A4 (en) 2015-04-29

Similar Documents

Publication Publication Date Title
CN101903497B (zh) 去除全原油中的氮和硫化物的改质工艺
KR101895091B1 (ko) 피드/버텀 처리를 갖는 수소화 분해 공정
KR102271840B1 (ko) 이온성 액체 및 고체 흡착에 의한 재순환으로부터 중질 다핵 방향족화합물의 분리를 포함하는 수소첨가분해 공정 및 시스템
US7566394B2 (en) Enhanced solvent deasphalting process for heavy hydrocarbon feedstocks utilizing solid adsorbent
CN101243161B (zh) 生产超低氮含量的石油的方法
CN103289737B (zh) 借助氢再循环来消除烃供料中所含的汞的方法
US8951410B2 (en) Process for demetallization of whole crude oil
KR20140064799A (ko) 방향족 분리를 이용한 수소화처리 및 이성화 통합 공정
KR101973703B1 (ko) 방향족 추출 탄화수소 스트림의 수소화처리
US6358402B1 (en) Extractive distillation process for the reduction of sulfur species in hydrocarbons streams
EP1261681A1 (en) Process for desulfurization of petroleum distillates
WO2000064556A1 (en) Liquid-phase adsorption process for removing and concentrating heteroatom compounds in hydrocarbons
KR101186726B1 (ko) 수지 제거를 포함하는 탄화수소 공급원료의 처리 방법
US11326112B1 (en) Integrated hydrocracking/adsorption and aromatic recovery complex to utilize the aromatic bottoms stream
KR100651356B1 (ko) 중질 탄화수소 및 탈아스팔트유로부터 불순물을 제거하는방법
US12006482B2 (en) Systems and processes for upgrading crude oil through hydrocracking and solvent assisted on-line solid adsorption of asphaltenes
CA3042972A1 (en) Process for producing lighter distillates
US20230272294A1 (en) Systems and processes for upgrading crude oil through hydrocracking and solvent assisted on-line solid adsorption of asphaltenes
KR100524447B1 (ko) 천연 헤테로 화합물의 제조방법 및 이의 용도
CN103468312A (zh) 一种低硫汽油的生产方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20131030

Termination date: 20201107

CF01 Termination of patent right due to non-payment of annual fee