CN101902145A - 太阳能逆变器和控制方法 - Google Patents
太阳能逆变器和控制方法 Download PDFInfo
- Publication number
- CN101902145A CN101902145A CN2010101966478A CN201010196647A CN101902145A CN 101902145 A CN101902145 A CN 101902145A CN 2010101966478 A CN2010101966478 A CN 2010101966478A CN 201010196647 A CN201010196647 A CN 201010196647A CN 101902145 A CN101902145 A CN 101902145A
- Authority
- CN
- China
- Prior art keywords
- module
- power
- threshold voltage
- level inverter
- electrical level
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 230000005611 electricity Effects 0.000 claims abstract description 17
- 230000005622 photoelectricity Effects 0.000 claims abstract description 5
- 239000003990 capacitor Substances 0.000 claims description 17
- 238000006243 chemical reaction Methods 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007600 charging Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 241000826860 Trapezium Species 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05F—SYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
- G05F1/00—Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
- G05F1/66—Regulating electric power
- G05F1/67—Regulating electric power to the maximum power available from a generator, e.g. from solar cell
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/02016—Circuit arrangements of general character for the devices
- H01L31/02019—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02021—Circuit arrangements of general character for the devices for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for ac mains or ac distribution networks
- H02J3/38—Arrangements for parallely feeding a single network by two or more generators, converters or transformers
- H02J3/381—Dispersed generators
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
- H02M7/42—Conversion of dc power input into ac power output without possibility of reversal
- H02M7/44—Conversion of dc power input into ac power output without possibility of reversal by static converters
- H02M7/48—Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/483—Converters with outputs that each can have more than two voltages levels
- H02M7/487—Neutral point clamped inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2300/00—Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
- H02J2300/20—The dispersed energy generation being of renewable origin
- H02J2300/22—The renewable source being solar energy
- H02J2300/24—The renewable source being solar energy of photovoltaic origin
- H02J2300/26—The renewable source being solar energy of photovoltaic origin involving maximum power point tracking control for photovoltaic sources
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/0067—Converter structures employing plural converter units, other than for parallel operation of the units on a single load
- H02M1/007—Plural converter units in cascade
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/56—Power conversion systems, e.g. maximum power point trackers
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Automation & Control Theory (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Inverter Devices (AREA)
Abstract
本发明名称为“太阳能逆变器和控制方法”。提供一种包括生成直流(DC)功率的光电(PV)模块(12)的发电系统(40)。该系统包括确定用于发电系统的最大功率点的控制器(50)和用于从控制器(50)接收控制信号以将来自PV模块(12)的功率升压到将正弦电流注入到电网中所要求的阈值电压的升压变换器(42)。在系统中提供DC到交流(AC)多电平逆变器(48)以将功率从PV模块提供到电力网。该系统还包括用于在DC到AC多电平逆变器(48)的输入电压高于或等于阈值电压时旁路升压变换器(42)的旁路电路(44)。
Description
技术领域
本发明主要涉及电能变换,并且更具体来说涉及光电模块到电力网或负载的有效率的连接。
背景技术
随着常规能源的持续上升的成本和稀缺以及对于环境的关注,如太阳能和风力的备选能源中存在大量关注。太阳能发电使用光电(PV)模块以从太阳发电。在此类系统中,将多个PV电池彼此电连接。通过一个或多个功率电子变换器将PV模块发的电传送到电力网。
功率电子变换器的功率损耗是光电系统的单元尺寸设计中的重要问题,因为此类损耗对输送到负载的总能量有影响。功率损耗主要在变换器中出现,因为例如绝缘栅极双极型晶体管(IGBT)、金属氧化物场效应管(MOSFET)和二极管的开关装置中存在损耗,这些装置一般用在例如滤波器电感器的无源组件或变换器中。这些开关装置一般有三种主要类型的损耗:传导损耗、开关损耗和栅极驱动损耗。二极管中不存在栅极驱动损耗,但是传导损耗和开关损耗是二极管损耗中的非常大的部分。快速开关二极管中的损耗通常高于慢速开关二极管。开关损耗对应于开关装置的状态改变期间(接通和断开期间)发生的损耗。传导损耗对应于开关装置的传导(当装置正在传输电流时)期间开关装置中出现的损耗。栅极驱动损耗是指对开关装置的栅极-源极和栅极-漏极电容充电和放电所要求的能量,并且其受开关频率、漏极-源极电容和所跨电压影响。滤波器电感器损耗通常由铜和铁损耗来构成。功率变换器中的铜损耗通常因趋肤和邻近效应而增加。因此,期望确定将解决前面问题的方法和系统。
发明内容
根据本发明的一示范实施例,提供一种发电系统。该系统包括用于生成直流(DC)功率的光电模块和确定用于发电系统的最大功率点的控制器。该系统还包括用于从控制器接收控制信号以将来自PV模块的功率升压到将正弦电流注入到电网中所要求的阈值电压的升压变换器和将功率从PV模块供应到电力网的DC到交流(AC)多电平逆变器。该系统中还提供旁路电路以在DC到AC多电平逆变器的输入电压高于或等于阈值电压时旁路升压变换器。
根据本发明的另一个示范实施例,提供一种用于从包括PV模块的发电系统输送太阳能的方法。该方法包括为发电系统确定用于生成正弦电流的阈值电压,并确定在最大功率产生的PV模块的输出电压是否高于阈值电压。该方法还包括在PV模块的输出电压小于阈值电压时将来自PV模块的功率升压以达到阈值电压电平,并将所升压的功率变换成AC功率。该方法还包括在PV模块的输出电压高于阈值电压时旁路升压并直接将来自PV模块的功率变换成AC功率。
根据本发明的又一个示范实施例,提供一种用于控制发电系统的方法。该方法包括在PV模块的输出电压小于用于为发电系统生成正弦电流的阈值电压时使用升压变换器来控制直流(DC)链路的中心点的稳定性。该方法还包括在PV模块的输出电压高于阈值电压时使用DC到AC多电平变换器来控制中心点的稳定性。
附图说明
当参考附图来阅读下文的详细描述时,本发明的这些和其他特征、方面和优点将变得更好理解,附图中相似的符号表示遍布这些图的相似的部件,其中:
图1是常规太阳能发电系统的示意图表示;
图2是根据本发明的一实施例的太阳能发电系统的示意图表示;
图3是根据本发明的一实施例的两个电感器升压变换器连同分开的DC链路(split DC link)的示意图表示;
图4是根据本发明的一实施例的另一个两个电感器升压变换器和分开的DC链路的示意图表示;以及
图5是根据本发明的一实施例的二极管钳位的多电平逆变器的一个分支(leg)及其输出波形的示意图表示。
具体实施方式
正如下文详细论述的,本发明的实施例用于提供用于从太阳能发电系统到负载或电力网的有效功率传输的系统和方法。
图1示出常规太阳能发电系统10。该发电系统包括PV模块12。PV模块通过DC/DC变换器16、DC链路18和电网侧三相DC/AC变换器20连接到电力网14。DC/AC变换器20保持DC链路18处的恒定DC电压,并因此从DC链路18到电力网14的能量流被管理。DC/DC变换器16由控制器22控制,而电网侧变换器20由电网侧控制器24来控制。系统控制器26为DC/DC变换器22和电网侧变换器20生成参考DC电压命令、参考输出电压幅度命令以及参考频率命令。在其他系统中,可以采用多个单相变换器来替换电网侧三相变换器和/或对于图1中所示的多个控制功能可以使用单个控制器。
图2示出根据本发明的一实施例的太阳能发电系统40。在一个实施例中,该系统包括PV模块12、升压变换器42、旁路电路44、分开的DC链路46、多电平三相逆变器48、升压侧最大功率点控制器(MPPT)控制器50和逆变器侧MPPT控制器52。电网电压Vac一般地确定最小DC链路电压。只要DC链路电压高于通常由最大峰值线到线电压设置的阈值或阈值电压,则由多电平逆变器48注入到电网中的电流将具有正弦波形。如果PV模块的最大功率点操作与低于阈值电压的电压关联,则使用升压侧MPPT控制器50来确定对于PV模块的电流电压(I-V)特性的最大功率点,以及向升压变换器提供开 关信号以操作模块总是靠近该点。因此,升压变换器用于提升DC链路电压以使它至少等于阈值电压,以便从PV模块提取最大功率。
在一个实施例中,MPPT控制器50利用扰动和观察方法。在扰动和观察方法中,扰动从太阳能电池阵列汲取的电流,并观察功率变化。如果扰动导致功率的增加,则以相同方向来进行后续扰动,反之亦然。
当在最大功率输出的PV模块电压高于将正弦电流注入到电网中所需的阈值电压时,旁路电路44旁路升压变换器。换言之,当光电(PV)模块处的DC电压高于分开的DC链路处的最小电压时,旁路升压变换器。因为太阳能发电系统中的升压变换器对于某个持续时间被旁路,所以它通过对于该持续时间消除升压变换器和升压电感器中的损耗来提高系统的效率。在一个实施例中,旁路电路包括功率二极管或受电压控制的开关。在另一个实施例中,功率二极管包括碳化硅(SiC)二极管来进一步提高太阳能发电系统的效率。在提出的太阳能发电系统的一个实施例中,当旁路电路44旁路升压变换器42时,对多电平逆变器48操作MPPT。逆变器侧MPPT控制器52从PV模块感测电压和电流,并且它还从旁路电路44接收信号以确定电路44何时正在工作。如果旁路升压变换器,则控制器52向多电平逆变器48提供开关命令信号,以便多电平逆变器48将从PV模块提取最大功率。在一个实施例中,可以将控制器50和52组合成单个控制器。
图3示出根据本发明的一实施例的两个电感器升压变换器连同分开的DC链路的示意图60。升压变换器42包括开关装置62、64、升压电感器66、68以及二极管70、72和74。在一个实施例中,开关装置包括绝缘栅极双极晶体管(IGBT)或功率金属氧化物半导体场效应晶体管(MOSFET)。开关装置通常由栅极驱动电路来接通和断开,并且在一个实施例中,其包括碳化硅装置以提高电路的效率。分开的DC链路46包括两个电容器76和78。在操作中,在一个步骤中,接通开关装置62和64,这使得能量被存储在升压电感器66和68中。 在另一个步骤中,当开关装置64仍接通时,开关装置62被断开。此步骤导致通过由升压电感器66、二极管70、电容器76、装置64和升压电感器68形成的充电路径对电容器76充电。在又一个步骤中,当装置62被接通时,开关装置64被断开。这导致通过由升压电感器66、装置62、电容器78、二极管72和升压电感器68形成的充电路径对电容器78充电。当装置62和64均被断开时,可以通过由升压电感器66、二极管70、电容器76、78、二极管72和升压电感器68形成的充电路径对电容器76和78充电。
图4示出根据本发明的一实施例的另一个两个电感器升压变换器和分开的DC链路的示意图90。在图4的实施例中,将单个开关装置92与两个二极管94和96一起使用,而非像图3的实施例中那样使用两个开关装置62和64。在操作中,当装置92被接通时,电流从升压电感器66、装置92和升压电感器68流动。因此,将能量存储在两个电感器中。在此时间期间,二极管70和72分别阻挡电压V1和V2。当装置92被断开时,电流从升压电感器66、二极管70、电容器76和78、二极管72和升压电感器68流动。因此,对电容器76和78充电。
图5示出根据本发明的一实施例的二极管钳位的多电平逆变器的一个分支或一个相及其输出波形的示意图110。在一个实施例中,多电平逆变器的一个分支112包括四个开关装置114、116、118和120和两个二极管122和124。电压V1和V2由图3或图4的升压变换器42来控制以保持在Vdc/2,并且电压V3是相位A电压。而且,装置114是装置118的互补,即,当装置114正在传导时,装置118不在传导,并且反之亦然。相似地,装置116和120是彼此的互补。
在操作中,二极管钳位的多电平逆变器的一个分支具有三个开关级。在第一开关级中,装置114和116被接通,并且装置118和120被断开。假定稳定操作VI=V2=Vdc/2,V3变成Vdc。在第二开关级中,当装置112和120被断开时,装置116和118被接通。在此级中, V3等于Vdc/2。在此级中,输出电压等于多电平变换器的中心抽头(tap)或中心点126处的电压。中心点126是指两个DC链路电容器之间的连接点。在其中有多于两个DC链路电容器的一个实施例中,根据所利用的DC链路电容器的数量,可能有多于一个中心点。在操作中,根据由多电平变换器供应到电力网的负载电流,中心点电压不可保持稳定,并且因此电压V1和V2可从值Vdc/2波动。在一个实施例中,在PV模块的输出电压小于阈值电压时,中心点的稳定性由升压变换器来控制;而在PV模块的输出电压高于阈值电压时,中心点的稳定性由多电平变换器来控制。
在第三开关级中,装置114和116被接通,而装置118和120被断开。这导致V3变成零,如波形130中所示。因此,能看到相位电压V3具有三个电平Vdc、Vdc/2和0。然后将二极管钳位的三相逆变器的所有三个分支组合,并且将所得到的线电压(其具有五个电平,即Vdc、Vdc/2、0、-Vdc/2和-Vdc)馈送到电力网,如图2中所示。在另一个实施例(未示出)中,多电平逆变器可以包括快速电容器逆变器,该快速电容器逆变器包括梯形结构的DC电容器或级联的H桥逆变器,其中各个单相逆变器被串联。本领域技术人员将认识到,能根据电路拓扑并由此根据电路中的装置和二极管的数量将图5的三电平逆变器112增加到任何电平。随着逆变器中的电平数量增加,逆变器的输出波形接近纯正弦波,从而导致输出电压中的谐波更低。
多电平逆变器的优点是降低对无源装置(例如电感器)的dv/dt应力,这是因为电压步阶中小的增量、降低的电磁兼容性、开关装置和滤波器组件的更小的额定值以及输出电压在更少的失真、更低的谐波内容和更低的开关损耗方面的更好特征所引起的。
虽然本文仅示出并描述了本发明的某些特征,但是本领域技术人员将想到许多修改和改变。因此,要理解所附权利要求旨在涵盖落在本发明真正精神内的所有此类修改和改变。
要素列表
10常规太阳能发电系统
12PV阵列
14电力网
16DC/DC变换器
18DC链路
20电网侧变换器
22DC/DC控制器
24电网侧控制器
26系统控制器
40太阳能发电系统
42升压变换器
44旁路电路
46分开的DC链路
48多电平三相逆变器
50升压侧最大功率点跟踪(MPPT)控制器
52逆变器侧MPPT控制器
60两个电感器升压变换器的示意图
62,64开关装置
66,68升压电感器
70,72,74二极管
76,78电容器
90两个电感器升压变换器的示意图
92开关装置
94,96二极管
110包括分开的DC链路的二极管钳位的多电平逆变器的一个分支的示意图
112二极管钳位的多电平逆变器的一个分支
114,116,118,120开关装置
122,124二极管
126中心点
130多电平逆变器的一个分支的输出波形。
Claims (10)
1.一种发电系统(40),包括:
光电(PV)模块(12),生成直流(DC)功率;
控制器(50),用于确定用于所述发电系统的最大功率点;
升压变换器(42),用于从所述控制器(50)接收控制信号以将来自所述PV模块(12)的功率升压到将正弦电流注入到电网中所要求的阈值电压;
直流(DC)到交流(AC)多电平逆变器(48),将所述功率从所述PV模块(12)供应到电力网;以及
旁路电路(44),用于在所述DC到AC多电平逆变器(48)的输入电压高于或等于所述阈值电压时旁路所述升压变换器(42)。
2.如权利要求1所述的系统,其中所述控制器还配置成在正常操作状况下向所述升压变换器(42)发送MPPT控制信号,以及在旁路操作状况期间向所述多电平逆变器(48)发送MPPT控制信号。
3.如权利要求1所述的系统,其中所述升压变换器的输出级包括分开的DC链路(46)。
4.如权利要求1所述的系统,其中所述多电平逆变器(48)是从二极管钳位的多电平逆变器、快速电容器多电平逆变器和级联的H桥多电平逆变器中选择的。
5.如权利要求1所述的系统,其中所述多电平逆变器(48)包括三电平逆变器。
6.如权利要求1所述的系统,其中所述旁路电路包括功率二极管。
7.如权利要求1所述的系统,其中所述旁路电路包括两个碳化硅二极管。
8.如权利要求1所述的系统,其中所述多电平逆变器(48)配置成在所述升压变换器(42)被旁路时从所述PV模块直接获取最大功率。
9.一种从包括光电(PV)模块(12)的发电系统输送太阳能的方法,所述方法包括:
为所述发电系统确定用于获取最大功率点的阈值电压;
确定所述PV模块的输出电压是否高于阈值电压;
在所述PV模块的输出电压小于所述阈值电压时,将来自所述PV模块的功率升压以达到所述阈值电压电平,并且然后将所升压的功率变换成交流(AC)功率;以及
在所述PV模块的输出电压高于所述阈值电压时,旁路所述升压并直接将来自所述PV模块的功率变换成交流(AC)功率。
10.一种控制发电系统(40)的方法,所述方法包括:
在PV模块的输出电压小于用于为所述发电系统生成正弦电流的阈值电压时,使用升压变换器(42)来控制直流(DC)链路(46)的中心点(126)的稳定性;以及
在所述PV模块的输出电压高于所述阈值电压时,使用DC到交流(AC)多电平变换器(48)来控制所述中心点(126)的稳定性。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/473,700 US8184460B2 (en) | 2009-05-28 | 2009-05-28 | Solar inverter and control method |
US12/473700 | 2009-05-28 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101902145A true CN101902145A (zh) | 2010-12-01 |
CN101902145B CN101902145B (zh) | 2016-06-01 |
Family
ID=42289553
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010196647.8A Active CN101902145B (zh) | 2009-05-28 | 2010-05-28 | 太阳能逆变器和控制方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US8184460B2 (zh) |
EP (1) | EP2256579B1 (zh) |
CN (1) | CN101902145B (zh) |
AU (1) | AU2010202078B2 (zh) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315798A (zh) * | 2010-06-29 | 2012-01-11 | 通用电气公司 | 太阳能发电系统和方法 |
CN103186160A (zh) * | 2011-12-31 | 2013-07-03 | 上海亿福新能源技术有限公司 | 一种光伏发电最大功率点跟踪的自调节控制方法 |
WO2014043980A1 (zh) * | 2012-09-21 | 2014-03-27 | 纽福克斯光电科技(上海)有限公司 | 一种应急启动机动车电路 |
CN103875172A (zh) * | 2011-07-08 | 2014-06-18 | Sma太阳能技术股份公司 | 用于dc电源、发电站的电网耦合的集成升压/3级逆变器及其操作方法 |
CN104158208A (zh) * | 2014-07-15 | 2014-11-19 | 阳光电源股份有限公司 | 一种单级光伏并网逆变器及其控制方法和应用 |
CN104969139A (zh) * | 2013-03-20 | 2015-10-07 | 富士电机株式会社 | 太阳能发电系统 |
CN105048854A (zh) * | 2015-07-21 | 2015-11-11 | 珠海格力电器股份有限公司 | 三相非隔离并网变换器及空调系统 |
CN105186901A (zh) * | 2015-09-06 | 2015-12-23 | 阳光电源股份有限公司 | 一种五电平逆变器输入电压控制方法及装置 |
CN105340180A (zh) * | 2013-03-15 | 2016-02-17 | 先进地球科学股份有限公司 | 高功率电流开关 |
CN105431992A (zh) * | 2013-07-23 | 2016-03-23 | 东芝三菱电机产业系统株式会社 | 太阳能发电用逆变器的控制装置 |
CN105490303A (zh) * | 2016-01-22 | 2016-04-13 | 国家电网公司 | 一种无需交直流电流传感器的多电平储能功率转换控制装置 |
CN105490302A (zh) * | 2016-01-22 | 2016-04-13 | 国家电网公司 | 一种无需交直流电流传感器的多电平光伏逆变装置 |
CN105515513A (zh) * | 2016-01-29 | 2016-04-20 | 阳光电源股份有限公司 | 一种光伏逆变器及其控制方法 |
CN105531898A (zh) * | 2013-07-15 | 2016-04-27 | 普利茅斯大学 | 控制结构 |
CN102545673B (zh) * | 2010-12-21 | 2016-08-03 | 通用电气公司 | 用于操作两级功率转换器的方法和系统 |
CN105826915A (zh) * | 2015-01-23 | 2016-08-03 | 通用电气公司 | 直流电力系统 |
CN107302319A (zh) * | 2017-06-14 | 2017-10-27 | 珠海格力电器股份有限公司 | 单相正弦波逆变器及其控制方法 |
CN107317343A (zh) * | 2017-08-24 | 2017-11-03 | 长沙理工大学 | 高效级联h桥型动态电压恢复器及其控制方法 |
Families Citing this family (115)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11881814B2 (en) | 2005-12-05 | 2024-01-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US10693415B2 (en) | 2007-12-05 | 2020-06-23 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
GB2434490B (en) | 2006-01-13 | 2009-04-01 | Enecsys Ltd | Power conditioning unit |
US8405367B2 (en) | 2006-01-13 | 2013-03-26 | Enecsys Limited | Power conditioning units |
US11687112B2 (en) | 2006-12-06 | 2023-06-27 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8473250B2 (en) | 2006-12-06 | 2013-06-25 | Solaredge, Ltd. | Monitoring of distributed power harvesting systems using DC power sources |
US9088178B2 (en) | 2006-12-06 | 2015-07-21 | Solaredge Technologies Ltd | Distributed power harvesting systems using DC power sources |
US8816535B2 (en) * | 2007-10-10 | 2014-08-26 | Solaredge Technologies, Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11855231B2 (en) | 2006-12-06 | 2023-12-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11888387B2 (en) | 2006-12-06 | 2024-01-30 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
US8947194B2 (en) | 2009-05-26 | 2015-02-03 | Solaredge Technologies Ltd. | Theft detection and prevention in a power generation system |
US9130401B2 (en) | 2006-12-06 | 2015-09-08 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8963369B2 (en) | 2007-12-04 | 2015-02-24 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
US8319483B2 (en) | 2007-08-06 | 2012-11-27 | Solaredge Technologies Ltd. | Digital average input current control in power converter |
US8618692B2 (en) | 2007-12-04 | 2013-12-31 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US9112379B2 (en) | 2006-12-06 | 2015-08-18 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US8384243B2 (en) | 2007-12-04 | 2013-02-26 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US8319471B2 (en) | 2006-12-06 | 2012-11-27 | Solaredge, Ltd. | Battery power delivery module |
US11309832B2 (en) | 2006-12-06 | 2022-04-19 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11735910B2 (en) | 2006-12-06 | 2023-08-22 | Solaredge Technologies Ltd. | Distributed power system using direct current power sources |
US11296650B2 (en) | 2006-12-06 | 2022-04-05 | Solaredge Technologies Ltd. | System and method for protection during inverter shutdown in distributed power installations |
US11728768B2 (en) | 2006-12-06 | 2023-08-15 | Solaredge Technologies Ltd. | Pairing of components in a direct current distributed power generation system |
US11569659B2 (en) | 2006-12-06 | 2023-01-31 | Solaredge Technologies Ltd. | Distributed power harvesting systems using DC power sources |
US11264947B2 (en) | 2007-12-05 | 2022-03-01 | Solaredge Technologies Ltd. | Testing of a photovoltaic panel |
US8049523B2 (en) | 2007-12-05 | 2011-11-01 | Solaredge Technologies Ltd. | Current sensing on a MOSFET |
WO2009073867A1 (en) | 2007-12-05 | 2009-06-11 | Solaredge, Ltd. | Parallel connected inverters |
EP2232663B2 (en) | 2007-12-05 | 2021-05-26 | Solaredge Technologies Ltd. | Safety mechanisms, wake up and shutdown methods in distributed power installations |
EP2269290B1 (en) | 2008-03-24 | 2018-12-19 | Solaredge Technologies Ltd. | Switch mode converter including active clamp for achieving zero voltage switching |
EP2294669B8 (en) | 2008-05-05 | 2016-12-07 | Solaredge Technologies Ltd. | Direct current power combiner |
FR2952482B1 (fr) * | 2009-11-06 | 2011-11-18 | Mge Ups Systems | Dispositif convertisseur comprenant au moins cinq niveaux de tension continue et alimentation sans interruption pourvue dudit dispositif. |
US8710699B2 (en) | 2009-12-01 | 2014-04-29 | Solaredge Technologies Ltd. | Dual use photovoltaic system |
KR101094002B1 (ko) * | 2009-12-16 | 2011-12-15 | 삼성에스디아이 주식회사 | 전원 변환 장치 |
US8766696B2 (en) | 2010-01-27 | 2014-07-01 | Solaredge Technologies Ltd. | Fast voltage level shifter circuit |
US9142960B2 (en) * | 2010-02-03 | 2015-09-22 | Draker, Inc. | Constraint weighted regulation of DC/DC converters |
ES2714215T3 (es) * | 2010-04-19 | 2019-05-27 | Abb Schweiz Ag | Convertidor de CC/CA multinivel |
US8390261B2 (en) | 2010-05-21 | 2013-03-05 | Infineon Technologies Austria Ag | Maximum power point tracker bypass |
KR101106413B1 (ko) * | 2010-06-14 | 2012-01-17 | 삼성에스디아이 주식회사 | 에너지 저장 시스템의 인버터 |
EP2410648A1 (en) * | 2010-07-20 | 2012-01-25 | Vincotech Holdings S.a.r.l. | DC/DC converter circuit and method for controlling a DC/DC converter circuit |
US9350166B2 (en) | 2010-10-05 | 2016-05-24 | Alencon Acquisition Co., Llc | High voltage energy harvesting and conversion renewable energy utility size electric power systems and visual monitoring and control systems for said systems |
CN103238259B (zh) | 2010-10-05 | 2016-03-23 | 艾利肯获取有限公司 | 高压能源采集和转换可回收能源实用规模的电力系统及用于该系统的可视监控和控制系统 |
US10673229B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
GB2485527B (en) | 2010-11-09 | 2012-12-19 | Solaredge Technologies Ltd | Arc detection and prevention in a power generation system |
US10673222B2 (en) | 2010-11-09 | 2020-06-02 | Solaredge Technologies Ltd. | Arc detection and prevention in a power generation system |
US10230310B2 (en) | 2016-04-05 | 2019-03-12 | Solaredge Technologies Ltd | Safety switch for photovoltaic systems |
GB2486408A (en) | 2010-12-09 | 2012-06-20 | Solaredge Technologies Ltd | Disconnection of a string carrying direct current |
GB2496140B (en) | 2011-11-01 | 2016-05-04 | Solarcity Corp | Photovoltaic power conditioning units |
GB2483317B (en) | 2011-01-12 | 2012-08-22 | Solaredge Technologies Ltd | Serially connected inverters |
GB2487368B (en) | 2011-01-18 | 2012-12-05 | Enecsys Ltd | Inverters |
FR2976405B1 (fr) * | 2011-06-08 | 2014-04-04 | Commissariat Energie Atomique | Dispositif de generation d'energie photovoltaique avec gestion individuelle des cellules |
US8599587B2 (en) | 2011-04-27 | 2013-12-03 | Solarbridge Technologies, Inc. | Modular photovoltaic power supply assembly |
WO2012149387A1 (en) * | 2011-04-27 | 2012-11-01 | Solarbridge Technologies, Inc. | Configurable power supply assembly |
US11460488B2 (en) | 2017-08-14 | 2022-10-04 | Koolbridge Solar, Inc. | AC electrical power measurements |
US8937822B2 (en) | 2011-05-08 | 2015-01-20 | Paul Wilkinson Dent | Solar energy conversion and utilization system |
US11901810B2 (en) | 2011-05-08 | 2024-02-13 | Koolbridge Solar, Inc. | Adaptive electrical power distribution panel |
EP2707933A4 (en) | 2011-05-12 | 2015-05-20 | Alencon Acquisition Co Llc | POWER SYSTEM FOR HIGH VOLTAGE ENERGY EFFICIENCY USING RENEWABLE ENERGY AND SYSTEMS FOR ITS VISUAL MONITORING AND CONTROL |
US8842397B2 (en) * | 2011-05-23 | 2014-09-23 | Microsemi Corporation | Photo-voltaic safety de-energizing device |
KR101906895B1 (ko) * | 2011-06-08 | 2018-10-11 | 엘에스산전 주식회사 | 태양광 전력 변환 장치 |
US8570005B2 (en) | 2011-09-12 | 2013-10-29 | Solaredge Technologies Ltd. | Direct current link circuit |
WO2013043862A1 (en) * | 2011-09-21 | 2013-03-28 | Enphase Energy, Inc. | Method and apparatus for power module output power regulation |
US8624411B2 (en) | 2011-10-14 | 2014-01-07 | General Electric Company | Power generation system including predictive control apparatus to reduce influences of weather-varying factors |
GB2496139B (en) | 2011-11-01 | 2016-05-04 | Solarcity Corp | Photovoltaic power conditioning units |
CN102403920B (zh) * | 2011-11-16 | 2014-05-14 | 广东易事特电源股份有限公司 | 三电平半桥光伏并网逆变器 |
TW201328118A (zh) * | 2011-12-28 | 2013-07-01 | Hon Hai Prec Ind Co Ltd | 不間斷電源系統 |
GB2498365A (en) | 2012-01-11 | 2013-07-17 | Solaredge Technologies Ltd | Photovoltaic module |
US9853565B2 (en) | 2012-01-30 | 2017-12-26 | Solaredge Technologies Ltd. | Maximized power in a photovoltaic distributed power system |
GB2498791A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Photovoltaic panel circuitry |
GB2498790A (en) | 2012-01-30 | 2013-07-31 | Solaredge Technologies Ltd | Maximising power in a photovoltaic distributed power system |
US20130200709A1 (en) * | 2012-02-03 | 2013-08-08 | International Business Machines Corporation | Techniques for Grid Coupling Photovoltaic Cells Using Ratiometric Voltage Conversion |
GB2499991A (en) | 2012-03-05 | 2013-09-11 | Solaredge Technologies Ltd | DC link circuit for photovoltaic array |
US8885373B1 (en) * | 2012-03-07 | 2014-11-11 | Power-One Italy S.pA. | Earth leakage current control for a multi-level grounded inverter |
US9413268B2 (en) | 2012-05-10 | 2016-08-09 | Futurewei Technologies, Inc. | Multilevel inverter device and method |
EP3168971B2 (en) | 2012-05-25 | 2022-11-23 | Solaredge Technologies Ltd. | Circuit for interconnected direct current power sources |
KR20130133413A (ko) * | 2012-05-29 | 2013-12-09 | 엘에스산전 주식회사 | 태양광 발전 장치 |
US10115841B2 (en) | 2012-06-04 | 2018-10-30 | Solaredge Technologies Ltd. | Integrated photovoltaic panel circuitry |
WO2014028873A2 (en) * | 2012-08-16 | 2014-02-20 | Perfect Galaxy International Limited | Dc to ac power converter |
US20140070614A1 (en) * | 2012-09-07 | 2014-03-13 | Atomic Energy Council-Institute Of Nuclear Energy Research | Household Grid-Connected Inverter Applied to Solar Power Generation System with Maximum Power Tracking Function |
CA2883843A1 (en) | 2012-09-18 | 2014-03-27 | Ge Energy Power Conversion Technology Ltd | System and method for providing periodic electrical isolation in a power system, such as a solar power generation system |
US9557758B2 (en) * | 2012-10-16 | 2017-01-31 | Volterra Semiconductor LLC | Systems and methods for controlling maximum power point tracking controllers |
US9548619B2 (en) | 2013-03-14 | 2017-01-17 | Solaredge Technologies Ltd. | Method and apparatus for storing and depleting energy |
US9941813B2 (en) | 2013-03-14 | 2018-04-10 | Solaredge Technologies Ltd. | High frequency multi-level inverter |
EP3506370B1 (en) | 2013-03-15 | 2023-12-20 | Solaredge Technologies Ltd. | Bypass mechanism |
US9634560B2 (en) | 2013-03-26 | 2017-04-25 | Telefonaktiebolaget Lm Ericsson (Publ) | Voltage modulator |
WO2014182818A1 (en) * | 2013-05-07 | 2014-11-13 | University Of Central Florida Research Foundation, Inc. | Variable frequency iteration mppt for resonant power converters |
US9270164B2 (en) | 2013-06-19 | 2016-02-23 | Tmeic Corporation | Methods, systems, computer program products, and devices for renewable energy site power limit control |
US9647571B2 (en) * | 2013-08-02 | 2017-05-09 | Solantro Semiconductor Corp. | Internal inverter communications |
US9337748B2 (en) * | 2013-08-02 | 2016-05-10 | Infineon Technologies Austria Ag | System and method for a DC-to-DC power converter with inverter stage coupled to the DC input |
KR101741075B1 (ko) * | 2013-09-02 | 2017-05-29 | 엘에스산전 주식회사 | 태양광 인버터 |
US9728974B2 (en) | 2013-10-10 | 2017-08-08 | Tmeic Corporation | Renewable energy site reactive power control |
ITBZ20130050A1 (it) * | 2013-10-10 | 2015-04-11 | Sunforlife S R L | Ottimizzatore per stringhe fotovoltaiche, tramite metodo innovativo di condivisione della carica che agisce in parallelo alle stringhe ovvero preservandone l'originale collegamento serie |
EP3061174B1 (en) * | 2013-10-21 | 2018-04-25 | ABB Schweiz AG | Double-stage inverter apparatus for energy conversion systems and control method thereof |
US9318974B2 (en) | 2014-03-26 | 2016-04-19 | Solaredge Technologies Ltd. | Multi-level inverter with flying capacitor topology |
US9555711B2 (en) * | 2014-06-03 | 2017-01-31 | Hamilton Sundstrand Corporation | Power converters |
CN104038036B (zh) * | 2014-06-30 | 2016-08-24 | 阳光电源股份有限公司 | 悬浮电压抑制方法、装置、逆变器控制系统及其逆变器 |
CN104269914A (zh) * | 2014-10-15 | 2015-01-07 | 四川东方电气自动控制工程有限公司 | 一种风光互补控制逆变一体机 |
CN104377977A (zh) * | 2014-12-08 | 2015-02-25 | 国家电网公司 | 一种三电平逆变器及其控制方法 |
US9806601B2 (en) * | 2015-03-27 | 2017-10-31 | Futurewei Technologies, Inc. | Boost converter and method |
GB201513549D0 (en) * | 2015-07-31 | 2015-09-16 | Siemens Ag | Inverter |
US10938218B2 (en) | 2015-12-28 | 2021-03-02 | Sunpower Corporation | Solar tracker system |
CN107153212B (zh) | 2016-03-03 | 2023-07-28 | 太阳能安吉科技有限公司 | 用于映射发电设施的方法 |
US11081608B2 (en) | 2016-03-03 | 2021-08-03 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US10599113B2 (en) | 2016-03-03 | 2020-03-24 | Solaredge Technologies Ltd. | Apparatus and method for determining an order of power devices in power generation systems |
US11018623B2 (en) | 2016-04-05 | 2021-05-25 | Solaredge Technologies Ltd. | Safety switch for photovoltaic systems |
US11177663B2 (en) | 2016-04-05 | 2021-11-16 | Solaredge Technologies Ltd. | Chain of power devices |
US12057807B2 (en) | 2016-04-05 | 2024-08-06 | Solaredge Technologies Ltd. | Chain of power devices |
US10483759B2 (en) | 2016-04-07 | 2019-11-19 | Alencon Acquisition Co., Llc | Integrated multi-mode large-scale electric power support system for an electrical grid |
US10236690B2 (en) * | 2016-06-30 | 2019-03-19 | Sunpower Corporation | Backfeed power supply for solar power system |
JP6952245B2 (ja) | 2016-09-30 | 2021-10-20 | パナソニックIpマネジメント株式会社 | 電力変換システム |
CN110350812B (zh) * | 2018-04-08 | 2024-08-13 | 佛山科学技术学院 | 一种用于ups的逆变器模块 |
US10516365B1 (en) * | 2018-06-20 | 2019-12-24 | Schneider Electric Solar Inverters Usa, Inc. | DC voltage control in renewable energy based multilevel power converter |
FR3084798B1 (fr) * | 2018-08-03 | 2020-10-30 | Schneider Electric Ind Sas | Convertisseur de puissance multiniveaux |
US10651739B1 (en) * | 2019-02-25 | 2020-05-12 | Nextracker Inc. | Power converters and methods of controlling same |
CN110994975B (zh) * | 2019-12-18 | 2020-11-10 | 阳光电源股份有限公司 | 一种电容钳位式直流变换电路 |
EP4170887A4 (en) * | 2020-07-07 | 2023-08-02 | Huawei Digital Power Technologies Co., Ltd. | POWER SUPPLY SYSTEM |
CN112234649A (zh) * | 2020-10-15 | 2021-01-15 | 珠海格力电器股份有限公司 | 自适应的光伏供电系统及其控制方法、空调机组 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060174939A1 (en) * | 2004-12-29 | 2006-08-10 | Isg Technologies Llc | Efficiency booster circuit and technique for maximizing power point tracking |
CN101350569A (zh) * | 2008-09-03 | 2009-01-21 | 深圳职业技术学院 | 太阳能光伏逆变器拓扑结构 |
CN101436833A (zh) * | 2007-11-14 | 2009-05-20 | 通用电气公司 | 采用光伏逆变器将直流电转换成交流电的方法和系统 |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5389158A (en) | 1989-04-17 | 1995-02-14 | The Boeing Company | Low bandgap photovoltaic cell with inherent bypass diode |
US5179508A (en) | 1991-10-15 | 1993-01-12 | International Business Machines Corp. | Standby boost converter |
US6111767A (en) * | 1998-06-22 | 2000-08-29 | Heliotronics, Inc. | Inverter integrated instrumentation having a current-voltage curve tracer |
AUPS143902A0 (en) * | 2002-03-28 | 2002-05-09 | Curtin University Of Technology | Power conversion system and method of converting power |
US7227278B2 (en) * | 2004-01-21 | 2007-06-05 | Nextek Power Systems Inc. | Multiple bi-directional input/output power control system |
EP1852963B1 (en) | 2005-02-25 | 2016-04-06 | Mitsubishi Denki Kabushiki Kaisha | Power conversion apparatus |
US8013472B2 (en) | 2006-12-06 | 2011-09-06 | Solaredge, Ltd. | Method for distributed power harvesting using DC power sources |
GB0625121D0 (en) * | 2006-12-18 | 2007-01-24 | Gendrive Ltd | Electrical energy converter |
US7772716B2 (en) | 2007-03-27 | 2010-08-10 | Newdoll Enterprises Llc | Distributed maximum power point tracking system, structure and process |
US20090000654A1 (en) * | 2007-05-17 | 2009-01-01 | Larankelo, Inc. | Distributed inverter and intelligent gateway |
US20090014050A1 (en) | 2007-07-13 | 2009-01-15 | Peter Haaf | Solar module system and method using transistors for bypass |
EP2104200B1 (de) | 2008-03-22 | 2019-02-27 | SMA Solar Technology AG | Verfahren zur ansteuerung eines multi-string-wechselrichters für photovoltaikanlagen |
US8334616B2 (en) * | 2008-09-19 | 2012-12-18 | Electric Power Research Institute, Inc. | Photovoltaic integrated variable frequency drive |
US20100157632A1 (en) * | 2008-12-20 | 2010-06-24 | Azuray Technologies, Inc. | Energy Conversion Systems With Power Control |
US8400134B2 (en) * | 2009-11-12 | 2013-03-19 | Intersil Americas Inc. | Apparatus and methodology for maximum power point tracking for a solar panel |
-
2009
- 2009-05-28 US US12/473,700 patent/US8184460B2/en active Active
-
2010
- 2010-05-19 EP EP10163331.1A patent/EP2256579B1/en active Active
- 2010-05-21 AU AU2010202078A patent/AU2010202078B2/en active Active
- 2010-05-28 CN CN201010196647.8A patent/CN101902145B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060174939A1 (en) * | 2004-12-29 | 2006-08-10 | Isg Technologies Llc | Efficiency booster circuit and technique for maximizing power point tracking |
CN101436833A (zh) * | 2007-11-14 | 2009-05-20 | 通用电气公司 | 采用光伏逆变器将直流电转换成交流电的方法和系统 |
CN101350569A (zh) * | 2008-09-03 | 2009-01-21 | 深圳职业技术学院 | 太阳能光伏逆变器拓扑结构 |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102315798A (zh) * | 2010-06-29 | 2012-01-11 | 通用电气公司 | 太阳能发电系统和方法 |
CN102545673B (zh) * | 2010-12-21 | 2016-08-03 | 通用电气公司 | 用于操作两级功率转换器的方法和系统 |
CN103875172A (zh) * | 2011-07-08 | 2014-06-18 | Sma太阳能技术股份公司 | 用于dc电源、发电站的电网耦合的集成升压/3级逆变器及其操作方法 |
CN103875172B (zh) * | 2011-07-08 | 2017-02-22 | Sma太阳能技术股份公司 | Dc/ac转换器、发电站和用于dc/ac转换器的操作方法 |
CN103186160A (zh) * | 2011-12-31 | 2013-07-03 | 上海亿福新能源技术有限公司 | 一种光伏发电最大功率点跟踪的自调节控制方法 |
CN103186160B (zh) * | 2011-12-31 | 2015-02-11 | 上海亿福新能源技术有限公司 | 一种光伏发电最大功率点跟踪的自调节控制方法 |
WO2014043980A1 (zh) * | 2012-09-21 | 2014-03-27 | 纽福克斯光电科技(上海)有限公司 | 一种应急启动机动车电路 |
CN105340180A (zh) * | 2013-03-15 | 2016-02-17 | 先进地球科学股份有限公司 | 高功率电流开关 |
CN105340180B (zh) * | 2013-03-15 | 2019-01-29 | 先进地球科学股份有限公司 | 高功率电流开关 |
CN104969139A (zh) * | 2013-03-20 | 2015-10-07 | 富士电机株式会社 | 太阳能发电系统 |
CN104969139B (zh) * | 2013-03-20 | 2016-10-05 | 富士电机株式会社 | 太阳能发电系统 |
CN105531898A (zh) * | 2013-07-15 | 2016-04-27 | 普利茅斯大学 | 控制结构 |
CN105431992B (zh) * | 2013-07-23 | 2019-01-15 | 东芝三菱电机产业系统株式会社 | 太阳能发电用逆变器的控制装置 |
CN105431992A (zh) * | 2013-07-23 | 2016-03-23 | 东芝三菱电机产业系统株式会社 | 太阳能发电用逆变器的控制装置 |
CN104158208A (zh) * | 2014-07-15 | 2014-11-19 | 阳光电源股份有限公司 | 一种单级光伏并网逆变器及其控制方法和应用 |
CN105826915A (zh) * | 2015-01-23 | 2016-08-03 | 通用电气公司 | 直流电力系统 |
CN105048854A (zh) * | 2015-07-21 | 2015-11-11 | 珠海格力电器股份有限公司 | 三相非隔离并网变换器及空调系统 |
CN105186901A (zh) * | 2015-09-06 | 2015-12-23 | 阳光电源股份有限公司 | 一种五电平逆变器输入电压控制方法及装置 |
CN105186901B (zh) * | 2015-09-06 | 2017-10-27 | 阳光电源股份有限公司 | 一种五电平逆变器输入电压控制方法及装置 |
CN105490302B (zh) * | 2016-01-22 | 2018-03-13 | 国家电网公司 | 一种无需交直流电流传感器的多电平光伏逆变装置 |
CN105490303B (zh) * | 2016-01-22 | 2018-10-16 | 国家电网公司 | 一种无需交直流电流传感器的多电平储能功率转换控制装置 |
CN105490302A (zh) * | 2016-01-22 | 2016-04-13 | 国家电网公司 | 一种无需交直流电流传感器的多电平光伏逆变装置 |
CN105490303A (zh) * | 2016-01-22 | 2016-04-13 | 国家电网公司 | 一种无需交直流电流传感器的多电平储能功率转换控制装置 |
CN105515513A (zh) * | 2016-01-29 | 2016-04-20 | 阳光电源股份有限公司 | 一种光伏逆变器及其控制方法 |
CN107302319A (zh) * | 2017-06-14 | 2017-10-27 | 珠海格力电器股份有限公司 | 单相正弦波逆变器及其控制方法 |
CN107317343A (zh) * | 2017-08-24 | 2017-11-03 | 长沙理工大学 | 高效级联h桥型动态电压恢复器及其控制方法 |
CN107317343B (zh) * | 2017-08-24 | 2023-05-12 | 长沙理工大学 | 高效级联h桥型动态电压恢复器及其控制方法 |
Also Published As
Publication number | Publication date |
---|---|
US8184460B2 (en) | 2012-05-22 |
CN101902145B (zh) | 2016-06-01 |
AU2010202078B2 (en) | 2015-07-23 |
EP2256579B1 (en) | 2017-09-27 |
AU2010202078A1 (en) | 2010-12-16 |
EP2256579A1 (en) | 2010-12-01 |
US20100302819A1 (en) | 2010-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101902145A (zh) | 太阳能逆变器和控制方法 | |
EP2323248B1 (en) | Operation of a three level converter | |
EP2713495B1 (en) | Multilevel converter system | |
US9344005B2 (en) | Method and apparatus for producing three-phase current | |
US9431918B2 (en) | Grounding scheme for modular embedded multilevel converter | |
US9515568B2 (en) | Power converter with a first string having diodes and a second string having switching units | |
CA2942007A1 (en) | Hybrid three-level npc thyristor converter with chain-link strings as inner ac switches | |
Anandababu et al. | Neutral point clamped MOSFET inverter with full-bridge configuration for nonisolated grid-tied photovoltaic system | |
CN104702252A (zh) | 开关模组、变换器及电能变换装置 | |
Farivar et al. | Cascaded H-bridge low capacitance static compensator with modular switched capacitors | |
EP2993777B1 (en) | Multilevel converter | |
US9325273B2 (en) | Method and system for driving electric machines | |
EP2840699A2 (en) | Multilevel converter system | |
CN110729896A (zh) | 基于mmc的双向直流变换器及其控制系统 | |
Ahmad et al. | A high gain and compact size asymmetrical 17‐level inverter for medium‐and high‐power applications | |
Alemi et al. | Performance analysis of high‐power three‐phase current source inverters in photovoltaic applications | |
Mudadla et al. | Simplified configuration with reduced part count and improved total harmonic distortion for DC–AC conversion | |
PRASANNA et al. | PV Cell Fed 3-Level Full-MOSFET Inverter for Induction Machine Drive Applications | |
JP2014220882A (ja) | 電力変換装置並びにそれを用いた蓄電システム | |
Nisha et al. | Operational Analysis, Performance Evaluation and Simulation of Solar Cell Powered Embedded EZ-Source Inverter Fed Induction Motor | |
Begum et al. | A Study of High Gain DC-DC Boost Converters for Renewable Energy Sources |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240328 Address after: American Georgia Patentee after: General Electric Grid Solutions LLC Country or region after: U.S.A. Address before: New York, United States Patentee before: General Electric Co. Country or region before: U.S.A. |