CN101901335B - 用于自动识别3d数据集中图像视图的方法和设备 - Google Patents

用于自动识别3d数据集中图像视图的方法和设备 Download PDF

Info

Publication number
CN101901335B
CN101901335B CN201010118743.0A CN201010118743A CN101901335B CN 101901335 B CN101901335 B CN 101901335B CN 201010118743 A CN201010118743 A CN 201010118743A CN 101901335 B CN101901335 B CN 101901335B
Authority
CN
China
Prior art keywords
image
model
picture frame
matching
views
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201010118743.0A
Other languages
English (en)
Other versions
CN101901335A (zh
Inventor
F·奥尔德鲁德
S·拉本
H·托尔普
V·隆伯格
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101901335A publication Critical patent/CN101901335A/zh
Application granted granted Critical
Publication of CN101901335B publication Critical patent/CN101901335B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/08Detecting organic movements or changes, e.g. tumours, cysts, swellings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/48Diagnostic techniques
    • A61B8/483Diagnostic techniques involving the acquisition of a 3D volume of data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • G06T7/251Analysis of motion using feature-based methods, e.g. the tracking of corners or segments involving models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/277Analysis of motion involving stochastic approaches, e.g. using Kalman filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10132Ultrasound image
    • G06T2207/101363D ultrasound image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30048Heart; Cardiac

Abstract

提供一种用于自动识别三维数据集中的图像视图的方法,包括:用处理器(110)访问包含多个图像帧的三维数据集,并且用处理器(110)使至少一个可变形模型(370,372,374)与每个图像帧内的至少一个结构拟合(152)。该方法还包括:用处理器(110)根据至少一个可变形模型(370,372,374)在每个图像帧内识别(154)至少一个特征点,并且根据所述至少一个特征点在显示器(112)上显示至少一个图像视图(230-246)。

Description

用于自动识别3D数据集中图像视图的方法和设备
技术领域
一般来说,本发明涉及超声波,更具体来说,涉及从三维(3D)数据集(dataset)中自动识别图像视图。
背景技术
用于3D心回波图(echocardiogram)的定量分析的许多工具是可用的。具体来说,左心室的评估受到关注。通过3D心回波描记术,可从可作为包含心动周期的一系列图像帧来获取的所获取体(volume)提取任意图像切片(slice)。但是需要来自用户的某种等级的输入。例如,现有工具要求左心室长轴的手动对齐(alignment),这增加了检查时间。由于所需的时间,用户可在一个图像帧上识别心脏的顶点和基部(base)、即顶部和底部。然后将这些界标(landmark)应用到其余图像帧。因此,其余图像帧或切片在整个心动周期保持在图像体中的固定空间位置。
但是,心脏在收缩期间移动,因而心脏的位置在图像帧内移动。因此,所显示的心肌组织在心动周期期间有所不同。这对于其中纵向缩短在心动周期期间可高达1.2厘米的基部短轴切片特别成问题。所产生的平面外运动可引起与心收缩不相关的人为(artificial)壁增厚,并且基部切片在收缩末期可结束于心房。
发明内容
在一个实施例中,一种用于自动识别三维数据集中的图像视图的方法包括:用处理器访问包含多个图像帧的三维数据集,并且用处理器使至少一个可变形模型与图像帧中每个图像帧内的至少一个结构拟合(fit)。该方法还包括:用处理器根据至少一个可变形模型在所述图像帧中每个图像帧内识别至少一个特征点,并且根据所述至少一个特征点在显示器上显示至少一个图像视图。
在另一个实施例中,一种用于自动识别三维数据集中的图像视图的系统包括处理器和显示器。处理器配置成访问包含多个图像帧的三维数据集,使至少两个耦合的可变形模型与所述图像帧中每个图像帧内的结构拟合,并且根据可变形模型中至少之一在所述图像帧中每个图像帧内识别至少一个特征点。显示器配置成根据所述至少一个特征点显示至少一个图像视图。
附图说明
图1示出根据本发明的一个实施例形成的超声波成像系统的框图。
图2示出根据本发明的一个实施例使用基于可变形模型的对齐算法来自动创建预期图像视图的方法。
图3示出根据本发明的一个实施例、装入示出多个控制顶点的线框网格(wire frame mesh)的Doo-Sabin细分模型。
图4示出根据本发明的一个实施例、其上具有所识别特征点的在舒张末期和收缩末期的示范分段相交切片。
图5示出根据本发明的一个实施例、基于特征点来识别短轴切片的一个示例。
图6示出根据本发明的一个实施例、基于短轴切片的一系列中间壁图像视图。
图7示出根据本发明的一个实施例、基于短轴切片的一系列基部图像视图。
图8示出根据本发明的一个实施例、多个模型如何按照跟踪分级结构中的相互关系进行排列。
图9示出根据本发明的一个实施例、包括跟踪分级结构的示范卡尔曼(Kalman)跟踪框架。
图10示出根据本发明的一个实施例、基于来自耦合模型的特征点提取标准顶端视图的一个示例。
图11示出根据本发明的一个实施例所形成的三个标准顶端视图。
图12示出根据本发明的一个实施例、在获取期间可用于指导用户调整探头取向的心脏图像的比较。
图13示出根据本发明的一个实施例、来自应力回波检查的顶端长轴图像的后处理(post-processing)。
图14示出根据本发明的一个实施例、来自应力回波检查的短轴图像的后处理。
具体实施方式
上述发明内容以及对本发明的某些实施例的以下详细描述在结合附图阅读时,将会被更好地理解。在附图示出各个实施例的功能块的简图的意义上,功能块不一定表示硬件电路之间的划分。因此,例如,这些功能块中的一个或多个(例如处理器或存储器)可在单片硬件(例如,通用信号处理器或随机存取存储器、硬盘等)中实现。类似地,程序可以是独立程序,可以结合为操作系统中的子程序(subroutine),可以是已安装软件包中的功能,等。应当理解,各个实施例并不局限于附图所示的布置和工具。
本文所使用的、以单数形式所述并且冠有词“一个”的单元或步骤应该被理解为不排除多个所述单元或步骤的情况,除非明确说明了这种排除情况。此外,本发明的“一个实施例”的引用不是意在被解释为排除也结合了所述特征的其它实施例的存在。此外,除非明确相反地说明,否则,“包括”或“具有”含特定性质的一个单元或多个单元的实施例可包括附加的不具有该性质的这类单元。
本文所公开的至少一个实施例利用用于使可变形模型自动适合结构的方法。在一些实施例中,这些方法可以是有计算效率的。例如,结构可以是左心室、右心室、左心室流出道和/或其它心脏结构。在另一个示例中,该结构可以是将对其生成一组标准化视图的人体或其它对象中的另一种结构。
在转让给同一申请人、于2007年7月11日提交的标题为“Methodfor Real-Time Tracking of Cardiac Structures in 3D Echocardiography”的美国专利申请号11/775903中描述了一种方法,并且通过引用将其完整地结合于此。11/775903专利申请涉及一种跟踪与体测(volumetric)图像序列的边缘拟合的可变形模型的运动和形状变化的方法。该方法利用扩展的卡尔曼滤波器来估计可变形模型的位置、取向和变形参数。首先使用运动学(kinematic)模型对每个新帧预测可变形模型的形状和位置。然后在这个模型附近执行边缘检测。通过在模型上的常规间隔位置搜索与模型表面垂直的边缘来进行边缘检测。可变形模型的所预测边缘与所测量边缘之间的所确定距离被看作是对最小平方算法、如卡尔曼滤波器的测量。将距离测量与指定局部边缘检测的空间不确定性的关联测量噪声值相耦合。对各边缘检测点计算关于边缘测量的模型参数灵敏度。将灵敏度与边缘测量组合。随后测量数据在信息空间中被合计在一起,并且被与卡尔曼滤波器中的预测相组合以便估计可变形模型的位置和变形参数。
在转让给同一申请人、于2008年3月18日提交的标题为“Methods for Using Deformable Models for Tracking Structures inVolumetric Data”的美国专利申请号12/050715中描述了另一种方法,通过引用将其完整地结合于此。12/050715专利申请涉及一种用于跟踪3D图像中的3D结构的计算机化方法,所述3D图像包含其中之一是当前图像帧的多个顺序图像帧。该方法包括采用具有局部形状变形的参数的参数模型来表示被跟踪的3D结构。使用运动学模型对参数模型创建预测状态向量。使用预测状态向量使参数模型变形,并且使用3D图像的当前帧来确定3D结构的多个实际点,以及使用多个实际点与多个预测点之间的差来确定位移(displacement)值和测量向量。位移值和测量向量经过滤波以生成更新状态向量和更新协方差矩阵,并且使用更新状态向量对当前图像帧生成更新的参数模型。
以上结合的专利申请可利用卡尔曼滤波器跟踪框架来执行模型与图像数据的拟合。卡尔曼滤波器跟踪框架是有计算效率的,也就是说,模型以单次迭代(iteration)被更新或者与图像数据拟合。因此,拟合可实时或者准实时地实现。应当理解,可用其它拟合方法来实现本发明的至少一个实施例,例如但不限于利用最小平方方法的其它方法。可使用能够以单次迭代或数次迭代使模型与图像数据拟合、从而允许拟合实时或准实时地进行的其它拟合方法。在另一个实施例中,可用没有实时或准实时操作的其它拟合方法和算法来使模型与心脏结构或其它结构拟合。
图1示出根据本发明的一个实施例形成的超声波成像系统100的框图。超声波成像系统100包括超声波发送器102和超声波接收器104,超声波接收器104配置成接收从对象106的感兴趣区域所反射的反射超声波辐射并将接收的超声波辐射转换成图像数据。对象106可以是例如医疗患者,并且感兴趣区域例如可包括患者的心脏。为了将超声波辐射发射到对象106并从其接收反射的超声波辐射,使用超声波探头108来获得连续的图像数据帧。超声波成像系统100还包括配置成分析图像数据的处理器110以及配置成显示来自图像数据分析的结果的显示器。处理器110可以是包括图1中未单独示出的计算/逻辑引擎(例如微处理器或CPU)连同存储器的模块。可提供用户接口118,以便允许用户输入数据、选择图像、调整和细化图像数据和成像参数等。用户接口118可以是任何已知的输入装置,包括但不限于键盘、轨迹球(trackball)、鼠标、触摸屏、拨动(toggle)开关、滑块和按钮。
在本发明的一些实施例中,存储装置116配置成从例如CD-ROM、DVD、软盘或者本领域已知的其它类型的机器可读媒体的外部介质或媒体114读取指令。介质或媒体114上的指令配置成例如经由处理器110指示超声波成像系统100执行本发明的方法实施例。
本发明的一些实施例不一定通过使用超声波成像系统来实现。对于某些实施例,图1所示系统的子集就足够。例如,包括处理器、存储器和显示器的计算机适合实现本发明的许多实施例。在充分提供计算机的一些实施例中,适当的方法可用于传递来自例如图1的超声波成像系统100的成像系统的图像数据。在其它实施例中,图像数据的传递可实时实现。此外,只要可提供图像帧序列,成像系统不需要是超声波成像系统或医疗成像系统。在其中至少一个实施例在超声波成像系统100中实现的情况下,成像系统的物理尺寸不受限制。例如,超声波成像系统100可按照控制台形式、便携形式或手持形式来提供。
图2示出使用基于可变形模型的对齐算法来自动创建预期图像视图的方法。术语“图像视图”是一般术语,它可用于表示例如来自体测(volumetric)图像的2D切片等2D切片、体测切片、例如心瓣或其它预期解剖体的透视图(rendering)的体透视图、解剖M模式图像、弯曲的解剖M模式图像、时间运动曲线(例如位移、速度、应变率、应变、扭力等)或者可在评估和/或比较图像数据时使用的任何其它所提取图像视图或表示或可视化技术。图像视图还可表示由于可能作为下文所述对齐的结果的位移、缩放和/或旋转而被校正的成像视图。例如,可创建由于平面外运动(例如心跳周期期间的位移)而被校正的短轴切片。可从多个图像提取一个或多个这类经校正的切片。
在150,在一些实施例中,系统100可获取N个图像帧的序列。在一些实施例中,图像帧可包括体测图像数据,或者可称作三维(3D)数据集。在一个实施例中,3D数据集可包括:灰度级数据,标量(scalar)的灰度级数据,例如颜色、位移、速度、温度、材料应变的参数或分量(component),或者可编码到图像的其它信息或信息源。例如,可在心动周期的持续时间获取图像帧。图像帧的数量N可从患者到患者而变化,并且可取决于单个患者的心动周期的长度以及成像系统100的帧率(frame rate)。
在一个实施例中,可用先前获取的图像来在获取期间指导用户获取大致具有相同探头取向的图像帧。探头取向是探头108相对于感兴趣解剖体、如心脏的相对取向。探头取向是用户相关的,并且可基于用户的知识、经验、技术、可用设备以及其它因素而改变。另外,心脏(或其它解剖体)的不同部分可被成像,并且图像体可因探头108旋转而旋转例如90或180度。
探头取向对于例如应力心回波描记术(应力回波)的研究是相关的,其中静息(rest)图像和应力图像被大致相同地定向,即心脏的同一部分没有相对旋转地进行成像。例如,为了获取顶端四室视图,探头108可通过在患者的肋骨之间进行成像并且沿左心室长轴的方向、即大致通过顶点和通过二尖瓣中间进行指向来定向,并且被旋转使得通过右、左心室和右、左心房的切片被显示在显示器112上。
随当前图像数据同时在显示器112上查看先前获取的图像帮助用户在获取期间对齐图像。图12示出可用于指导用户在获取期间调整探头取向使得新获取的图像与参考图像对齐的心脏图像的比较。先前获取的参考图像400与即时(live)图像402并排示出。虽然在400和402的每个中示出4个不同图像,但是应当理解,可使用一个或者一个以上图像。在一个实施例中,参考图像400可以是先前获取的基线(baseline)图像,而即时图像402是应力图像。在另一个实施例中,参考图像400可以是应力图像,而即时图像402是基线图像或者其它应力级的图像。图像可来自相同的检查或者不同的检查。在一个实施例中,参考图像400可来自另一患者,从而提供一般图像来指导用户以特定探头取向获取图像。另外,图像400和402可以是静止(still)图像或电影环(cine-loop)或者捕捉活动对象的运动的其它电影剪辑(movie clip)。可在显示器112上显示例如关联ECG轨迹404和406的其它信息,以及可识别心脏周期中的位置的图像408或其它指示。
探头取向可基于定义图像顺序以及图像间关系的协议。因此,可指示用户以第一探头取向获取一组图像帧,然后附加的一组或多组图像帧可使用不同的探头取向来获取。在另一实施例中,可自动设置例如几何形状、频率、帧率、增益等的成像参数,使得基线和任何关联应力图像使用相同的获取参数来获取,因而指导用户获取近似相等对齐的图像。
在152,处理器110使一个或数个可变形模块与第一图像帧中例如左心室、右心室和/或左心室流出道的结构拟合。在一个实施例中,为了实现左心室的拟合,可使用卡尔曼滤波器框架来执行跟踪,以便使用可变形Doo-Sabin细分模型对心内膜壁进行分段。类似拟合可采用右心室和左心室流出道的可变形模型来实现。下文在图8和图9中进一步论述多个可变形模型相互之间的跟踪。
在一些实施例中,由于跟踪框架有计算效率,因此,当获取图像帧时,可实时地实现拟合。在另一个实施例中,可对先前已经获取的图像数据实现拟合。例如,图像数据可在系统100获取,然后被传递给不同系统并在其上进行处理,或者可在获取完成之后的任何时间在系统100进行处理。
在一些实施例中,附加信息可用作发起拟合的输入,这可因而增加拟合的鲁棒性。虽然在大多数情况下,探头108相对调查对象的取向可通过对齐算法来确定,但是在一些检查中,图像可采用已知探头取向来获取。因此,探头取向的知识可用作到对齐算法的输入,以便例如初始化用于对齐图像的模型。
在另一个实施例中,用作发起拟合的输入的附加信息可基于相对调查对象大致具有相同探头取向的先前所获图像数据。例如,一个图像的所产生对齐可用于初始化用于对齐另一图像的模型。图像的对齐在例如应力回波的研究中较为重要,使得相似切片可被显示并且在应力图像与静息之间进行比较。图像可来自同一研究(例如遵循规定在静息且接着在一个或多个应力级的图像获取的协议),或者来自不同的研究(例如可例如在不同日期或在不同时间进行获取的两个不同协议)。
因此,不同图像数据集的拟合大致相同。例如,如果被处理的当前研究是应力心脏研究,则与拟合同一患者的静息心脏研究时所使用的可变形模型相关的数据可用于提高拟合的鲁棒性。例如,使用来自源于静息的拟合模型的信息来初始化应力的模型拟合(或者反过来)可产生比开始于图像中心的平均模型更好的初始化。在各个实施例中,先前获取的图像可以是在前一次检查时获取的来自同一患者的图像、来自同一患者和同一次检查的图像或者甚至来自另一患者的图像。
例如,在应力回波中,基线图像通常以低或静息心率来获取。因此,相对于心率的时间图像分辨率(resolution)比以受应力或较高心率所获取的图像更好。例如,与以每分钟180次心搏每秒获取20帧相比,以每分钟60次心搏每秒获取20帧可产生更好的时间图像分辨率,因为后者在帧之间产生更大的心肌运动。因此,在一些实施例中,可能希望在处理应力图像时使用与基线图像关联的数据。
即使用户可利用先前的图像来增加获取间探头取向之间的相似性,但也可能存在一些差异。例如,当获取应力图像时,用户可能具有较少时间来将探头108调整到预期成像位置。因此,算法可使用拟合模型来改进图像对齐,使得来自不同研究的图像显示或者基于相同的解剖结构。
与拟合相关,图3示出装入示出多个控制顶点184的线框网格182的Doo-Sabin细分模型180。例如,34个控制顶点184可按这种方式来建模:网格182可与心内膜表面准确拟合。跟踪完全是自动的,并且可通过将具有平均形状的模型放入图像扇区的中心和/或通过上文所述输入来初始化。在各图像帧中执行边缘检测测量,以便按照在表面上均匀分布的搜索法线(normal)检测心内膜壁。将模型形状的参数与全局平移(translation)、旋转和缩放的参数进行组合,以便形成状态空间表示。卡尔曼滤波器可用于吸收所有边缘检测测量,并且可根据边缘测量和来自运动学模型的预测来计算模型的贝叶斯(Bayesian)最小平方估计。
回到图2,在154,处理器110从分段模型识别特征点或界标。特征点可以是例如左心室模型上分别识别顶点和基部或者顶部和底部的预定义点。例如,顶点可对应于在模型180的顶部186的点,而基部可对应于在模型180的底部188的中心或者近似中心。应当理解,可使用任何其它预定点,例如模型质心、力矩/中心轴等。另外,预定点可从其它模型提取,例如右心室模型中的顶点、基部或者任何其它预定点、左和/或右心房模型中的预定点、左心室流出道模型中的预定点或者其它感兴趣结构的其它模型中的其它点。
图4示出其上具有所识别特征点的在舒张末期(end diastole:ED)190和收缩末期(end systole:ES)192的示范分段相交切片。在ED切片190中已经识别顶点194和基部196,可从ED切片190提取顶点-基部长轴(LA)线202。同样,在ES切片192中识别顶点198和基部200,并且可提取顶点-基部LA线204。顶点194和顶点198没有位于同一位置,并且基部196和基部200没有位于同一位置。与顶点-基部LA线202相比,顶点-基部LA线204反映顶点198与基部200之间的更短距离。这种距离差别表示可在心脏周期期间在短轴切片经历的平面外运动。
回到图2,在156,处理器110可自动识别图像视图。在一些实施例中,关于先前所获研究中图像视图之间的相似取向的知识可用于识别另一研究中的图像视图。例如,由于平面外运动而被校正的LV短轴切片可被识别并且显示在显示器112上。下文进一步详细论述LV短轴切片以及其它不同类型的示范图像视图。在一些实施例中,例如通过利用彩色编码或其它指示,前面所述的例如温度、位移、速度、应变等的附加维度可被包含在图像视图内。
在158,处理器110确定是否应当处理任何其它图像帧。如果不是,则该方法完成,并且图像视图可被显示在显示器112上、保存到存储装置116等。如果将要处理更多图像帧,则在160,处理器110使可变形模型与下一图像帧中的结构拟合,并且该方法返回到154,以便根据当前图像帧识别模型中的特征点。
图5示出根据特征点来识别短轴切片的一个示例。示出拟合模型210,并且顶点212和基部214已经被处理器110识别。在模型210上相对特征点、顶点212和基部214识别多个短轴切片216。在一个实施例中,短轴切片216可在顶点212与基部214之间彼此均匀间隔。图5示出数据的单个图像帧。在N个图像帧的每个上,多个短轴切片216根据在特定图像帧内识别的顶点和基部来定义。因此,短轴切片216跟踪心脏的组织和/或解剖结构,因而解剖体是逐帧一致的。
图6示出基于短轴切片的一系列中间壁图像视图。图像视图230和240表示与在ED的第一图像帧对应的图像切片内的图像数据。图像视图232和242表示第四图像帧内的图像数据,图像视图234和244表示第七图像帧内的图像数据,而图像视图236和246表示与ES对应的第十图像帧内的图像数据。图像视图230、232、234和236未经校正,也就是说,图像视图230-236基于通过选择一个图像帧内例如顶点和基部的特征点并且将相同特征点应用到其它N个图像帧进行处理的图像数据。图像视图240、242、244和246由于左心室的纵向缩短所引起的平面外运动而被校正,也就是说,处理器110已经在图像帧中的每个内识别了特征点,并且在生成图像视图240-246之前自动调整了短轴切片的位置。经校正的中间壁图像视图240-246表明,乳头肌250的同一部分被跟踪,而在未经校正的中间壁图像视图230-236中,乳头肌250移入和移出图像视图230-236。
图7示出基于短轴切片的一系列基部图像视图。与图6相似,图像视图260和270表示与ED对应的第一图像帧内的图像数据。图像视图262和272表示第四图像帧内的图像数据,图像视图264和274表示第七图像帧内的图像数据,而图像视图266和276表示与ES对应的第十图像帧内的图像数据。基于在N个图像帧中仅一个图像帧内已被识别的特征点,图像视图260、262、264和266再次未被校正。图像视图270、272、274和276由于平面外运动而被校正,其中在N个图像帧的每个上已经识别特征点,并且短轴切片基于对应的特征点。经校正的基部图像视图270-276表明,在整个图像视图270-276中跟随二尖瓣280,而未经校正的基部图像视图260-266显示收缩期间的心房。
在一些实施例中,一些标准视图的自动对齐可通过使若干耦合的可变形模型与心脏结构拟合来实现。如前面所述,可使用同样有计算效率的跟踪框架。跟踪框架可使用扩展卡尔曼滤波器来执行时间预测,并且可吸收来自各模型的边缘检测测量,以便以非迭代方式计算模型的贝叶斯最小平方拟合。然后,可从拟合模型提取特征点,并且将其用作提取对齐的标准视图的基础。
为了使用自动对齐来生成某些标准视图,可能需要与心室长轴和心脏的圆周取向有关的信息。在一些情况下,仅从LV模型提取的圆周信息可能不充分,因为该圆周信息只基于形状的不对称属性,其可在受检者之间变化并且取决于病理学。因此,两个或更多可变形模型的耦合可用于同时跟踪若干心脏结构。通过计算不同结构的模型之间的角度,可实现取向的更可靠评估。
在一个实施例中,为了实现长轴和圆周取向二者的检测,可将LV模型与右心室(RV)下壁的帆状(sail-like)结构耦合。在另一实施例中,左心室流出道(ourflow tract:OT)的管线结构可与LV模型和帆状结构耦合在一起。可变形Doo-Sabin细分表面可用作LV模型,如前面所述。对于RV,可选择RV下壁,因为与可能遭受漏失(drop-out)的前壁相比,这是RV中通常最可见的部分。所有模型可共享平移、旋转和缩放的全局变换。流出道模型另外还可连接到铰接(hinge)变换(H),它允许模型旋转以便适合流出道的解剖体中的受检者间(inter-subject)差异。
图8示出模型可如何按照跟踪分级结构中的相互关系来排列。示出全局变换Tg 300、RV帆Mrv 302、LV模型Mlv 304、LV流出道Mot306和铰接变换Th 308。跟踪分级结构的状态空间表示可通过把来自所有变换和模型的参数级联到状态向量来构成。RV帆和流出道柱面(cylinder)没有任何形状参数,并且仅受其关联变换影响,因此级联的状态向量变成:
x = x g T x lv T x h T T
虽然图8中未示出,但是例如基于先前获取的一系列图像的知识或者前面所述的与探头108的取向相关的知识的知识可被输入到全局变换300。在一个实施例中,用户可用用户接口118来输入参数,例如可由对齐算法用于最好地对齐模型的探头108的当前取向。在另一实施例中,可使用来自先前获取的一系列图像、如静息图像的知识来提供用于处理应力图像的输入,并且还可将其用于更新例如旋转的全局参数。
图9示出包括跟踪分级结构的示范卡尔曼跟踪框架。如图9所示,在预测步骤324中使用先前图像帧的状态向量320和协方差矩阵322来创建预测状态向量326和预测协方差矩阵328。如下文所述,在测量步骤330使用预测状态向量326和预测协方差矩阵328生成信息向量332和信息矩阵334。信息向量332和信息矩阵334在更新步骤336中使用。
使用运动学模型来预测连续图像帧之间的轮廓(contour)状态。这类模型通过利用先验知识、产生状态向量和协方差矩阵的预测、指定预测不确定性来起作用。然后,预测可用作被称作更新的更准确细化的起始点,其中预测与来自当前帧的测量组合,以便形成更准确的估计。
因此,在预测步骤324,合成状态向量的时间预测:
x ‾ k + 1 = f ( x ^ k , x 0 )
可基于来自前一帧的更新状态和预测函数f,协方差矩阵322中有关联增加,以便生成预测状态向量326和协方差矩阵328。在一个实施例中,时间函数可以是线性自回归(auto-regressive)模型。
如图9所示,对于模型步骤338、测量步骤330和吸收步骤340,存在相互之间堆叠的三个框。这些框中的每个表示不同的可变形模型,因此,在一个实施例中可存在两个模型,而在另一实施例中可存在超过三个模型。在本例中使用的三个模型如图8所示,即RV帆302、LV模型304以及LV流出道306和铰接变换308的组合。因此,对于各模型,单独执行跟踪分级结构中的模型步骤338、测量步骤330和吸收步骤340。
在模型步骤,处理器110可根据预测状态向量326来对跟踪分级结构中的所有模型评估表面点p 350、法向量n 342和雅可比(Jacobian)矩阵J。在测量步骤330,处理器110可根据图像体中的边缘检测相对于来自预测模型中每个的表面点来检测法线(normal)位移测量v344、测量噪声r 346和测量向量h 348,其中h=nTJ。在吸收步骤340,处理器110通过在信息空间中合计来自各模型的测量结果、例如下式来吸收这些结果:
H T R - 1 v = Σ i h i r i - 1 v i , H T R - 1 H = Σ i h i r i - 1 h i T
在更新步骤336,处理器110根据预测和测量信息、例如下式来计算更新状态估计:
x ^ k = x ‾ k + P ^ k H T R - 1 v k , P ^ k - 1 = P ‾ k - 1 + H T R - 1 H
跟踪可被完全自动地执行,以及在一个实施例中,可通过将具有平均形状的模型定位在图像扇区的中心来初始化。在其它实施例中,可根据用户输入、其它图像、来自协议的输入等使用其它初始化数据。在各帧中执行边缘检测测量,以便按照在表面上均匀分布的搜索法线检测心内膜壁。将模型形状的参数与全局平移、旋转和缩放的参数进行组合,以便形成分段问题的状态空间表示。
然后,处理器110可从可用于生成标准顶端和短轴切片的所耦合拟合模型来识别特征点。如前面随单模式所述,在各帧中进行跟踪之后自动更新短轴切片,以便对LV的纵向缩短所引起的平面外运动进行校正。
在跟踪期间,在各帧中进行拟合之后,从分段模型提取来自LV模型的顶点和基部的特征点。这与如图2的154所述的特征点的识别相似。因此,可生成与顶点-基部长轴垂直的均匀分布的短轴切片,如前面所述以及如图5所示。
另外,LV模型、RV帆和流出道柱面上特征点之间的角度和/或取向也根据N个图像帧中的每个来计算,以便推断心脏的圆周取向。仅作为示例,可创建从LA线202(如图4所示)到其它结构中的每个(例如RV帆和流出道柱面)的向量。向量是取向相关的。然后,圆周取向可用于自动生成通过顶点-基部长轴向量居中的标准顶端4室、2室和长轴视图。
图10示出根据来自耦合模型的特征点提取标准顶端视图的一个示例。在这个示例中,LV模型370、RV帆模型372和LV流出道模型374耦合在一起。
如图10所示,与预期标准视图对应的三个切片376、378和380可根据模型之间的角度和/或距离来定位。不存在切片376、378和380之间的固定角度的假设,以及在一些实施例中角度382、384和386可相互不同。基于模型之间的相对距离或角度、例如RV帆与LV流出道模型372、374之间的距离,角度382、384和386也可以是自适应的。因此,切片376、378、380之间的角度382、384、386至少部分与模型370、372、374之间的角度相关。另外,其它结构可用于定位和调整切片376、378、380,例如乳头肌、左和/或右心房、右心室和其它结构、特征点和/或界标。
图11示出三个标准顶端视图,与三个切片376、378、380对应的顶端4室视图282、顶端2室视图284和顶端长轴视图286。例如,N个图像视图的自动对齐可确保二尖瓣288和三尖瓣290均在对应于4室视图282的每个图像中示出。N个图像视图的自动对齐还可确保二尖瓣288和流出道292均在对应于长轴视图286的每个图像中示出。
在一些实施例中,用户可能想要手动调整对齐。例如,自动对齐可能不正确地对齐模型,因而所得图像可能没有包含预期图像数据。例如,用户可审视4室视图,并且寻找左、右心室和左、右心房以及二尖瓣和三尖瓣的存在。如果预期解剖体没有包含在视图中,则用户可手动调整对齐。
在一个实施例中,处理器110可在显示器112上显示两个或三个长轴切片。例如,与切片376、378和380对应的三个长轴切片可被显示在显示器112上。也可显示一个或多个短轴切片、例如与图5的短轴切片216对应的图像。用户则可使用用户接口118来旋转、拖曳(drag)、平移和/或以其它方式调整视图之间的图像,以便校正对齐。换言之,用户可通过相对于感兴趣对象旋转和平移模型来调整或校正对齐。在另一实施例中,手动校正可包括相对于感兴趣对象旋转、平移和/或缩放模型。在又一实施例中,手动校正可包括相对于感兴趣对象调整各个控制顶点184(如图3所示)的位置。
在又一实施例中,图像、如应力图像可根据来自生成静息图像所用的模型的对齐信息来生成。因此,可不用对齐算法来使模型与应力数据拟合。例如,对于瓣和其它解剖体,例如心脏的大小或长度的参数以及坐标或其它位置信息可能是已知的。因此,可假定几何形状、大小、位置和取向对于静息和应力情况是相同的,即使后一种情况中心脏跳动更快。相应地,可用已知对齐位置生成例如长轴、4室和2室的视图。因此,可仅对一个记录或者一组图像帧进行模型拟合,然后将参数应用于其它组的图像帧。在一些情况下,可能希望探头取向对图像帧中的每个相同或者近似相同。
经对齐的切片可在后处理期间示出,以便比较来自不同研究、序列或视频剪辑的图像。例如,如果探头取向相对左心室纵轴不正确(即探头主轴没有沿着LV主纵轴),或者如果探头取向在不同应力级所获取的研究之间不相等,则可能需要对齐。应当理解,许多不同类型的图像可被生成、显示和进行比较,因而并不局限于本文所述的那些特定示例。
图13示出来自应力回波检查的顶端长轴图像的后处理。在这个示例中,应力回波检查包括在不同应力级获取多组图像帧。基线图像420、低剂量(low dose)图像422、峰值剂量图像424和恢复图像426在显示器上一起示出。从图像帧的4个不同序列自动提取了图像420-426。还示出壁运动记分图428,其中用户可输入分段壁运动分析的结果。因此,用户能够比较包括相同解剖数据但在不同应力级和/或时间获取的图像。
还可显示ECG轨迹430、432、434和436。例如,当调查对象(例如心脏)具有循环运动模式时,则图像电影环或电影可随时间被同步。当根据心回波描记术来查看图像时,例如在获取期间以及在处理期间,通过使用ECG信号或其它检测方法使图像同步。因此,所有图像电影环的收缩部分被同时显示在显示器上,并且舒张部分被同时显示。
在另一实施例中,例如,图像420-426中的一个或多个可与来自同一患者、在例如相隔数月的不同时间拍摄的相似图像一起显示,因而与所述相似图像、与另一患者或者与示例正常图像进行比较。
图14示出来自应力回波检查的短轴图像的后处理。在这个示例中,短轴图像来自LV的中间级,但是可类似地显示其它位置。基线图像440、低剂量图像442、峰值剂量图像444和恢复图像446在显示器112上一起示出。从图像帧的4个不同序列自动提取了图像440-444。还可显示壁运动记分图448(即例如牛眼(Bulls-Eys)图,但可使用其它图),从而允许用户通过用户接口118输入分段壁运动分析的结果。
至少一个实施例的技术效果是使用基于可变形模型的对齐来自动创建预期图像视图。在一些实施例中,基于可变形模型的算法可以具有计算效率。可用一个模型来创建图像视图,或者可将一个以上模型耦合在一起。在一些实施例中,因而可生成随时间、例如随心跳周期来显示相似解剖体的图像视图。在另一实施例中,可生成并相互比较来自不同组或序列的图像帧的相似解剖体的图像视图。
大家要理解,以上描述只是说明性的而不是限制性的。例如,上述实施例(和/或其方面)可相互结合使用。另外,在没有背离其范围的情况下,可对本发明的理论进行多种修改以适合具体情况或材料。虽然本文所述的材料的尺寸和类型意在定义本发明的参数,但是它们决不是限制性的,而只是示范实施例。通过审视以上描述,其它许多实施例对本领域技术人员将是显而易见的。因此,本发明的范围应当参照随附权利要求书以及授予给该权利要求书的全部等效的范围来确定。在随附权利要求书中,术语“包括”和“在其中”用作相应术语“包含”和“其中”的普通英语等效形式。此外,在随附权利要求书中,术语“第一”、“第二”和“第三”等只用作标记,而不是意在对其对象施加数字要求。此外,随附权利要求书的限制并不是按照部件加功能格式撰写的,并且不是意在根据35U.S.C.§112第六节来解释,除非这类权利要求的限制明确使用在没有其它结构的功能描述之前的词语“用于...的部件”。
本书面描述使用包括最佳模式的示例来公开本发明,并且还使本领域技术人员能够实施本发明,包括制作和使用任何装置或系统,以及执行任何结合方法。本发明的专利范围由权利要求书定义,并且可包括本领域技术人员想到的其它示例。如果这类其它示例具有与权利要求书的文字语言完全相同的结构单元,或者如果它们包括具有与权利要求书的文字语言的非实质差异的等效结构单元,则它们意在处于权利要求书的范围之内。
零件表
  超声波成像系统   100
  发送器   102
  接收器   104
  对象   106
  探头   108
  处理器   110
  显示器   112
  介质或媒体   114
  存储装置   116
  用户接口   118
  获取图像帧   150
  使可变形模型与第一图像帧中的结构拟合   152
  识别特征点   154
  自动识别图像视图   156
  处理更多图像帧?   158
  使可变形模型与下一图像帧中的结构拟合   160
  Doo-Sabin细分模型   180
  框网格   182
  控制顶点   184
  顶部   186
  底部   188
  舒张末期(ED)切片   190
  收缩末期(ES)切片   192
  顶点   194
  基部   196
  顶点   198
  基部   200
  长轴(LA)线   202
  LA线   204
  拟合模型   210
  顶点   212
  基部   214
  短轴切片   216
  未经校正的中间壁图像视图   230
  图像视图   232
  图像视图   234
  图像视图   236
  经校正的中间壁图像视图   240
  图像视图   242
  图像视图   244
  图像视图   246
  乳头肌   250
  未经校正的基部图像视图   260
  图像视图   262
  图像视图   264
  图像视图   266
  经校正的基部图像视图   270
  图像视图   272
  图像视图   274
  图像视图   276
  二尖瓣   280
 4室视图   282
 2室视图   284
 长轴视图   286
 顶端长轴视图   286
 二尖瓣   288
 三尖瓣   290
 流出道   292
 全局变换Tg   300
 右心室(RV)帧Mrv   302
 左心室(LV)LV模型Mlv   304
 左心室(LV)流出道Mot   306
 铰接变换Th   308
 状态向量   320
 协方差矩阵   322
 预测步骤   324
 预测状态向量   326
 预测协方差矩阵   328
 测量步骤   330
 信息向量   332
 信息矩阵   334
 更新步骤   336
 模型步骤   338
 吸收步骤   340
 法向量n   342
 法线位移测量v   344
 测量噪声r   346
 测量向量h   348
  表面点p   350
  左心室(LV)模型   370
  右心室(RV)帆模型   372
  左心室(LV)流出道模型   374
  切片   376
  切片   378
  切片   380
  角度   382
  角度   384
  角度   386
  参考图像   400
  即时图像   402
  ECG轨迹   404
  ECG轨迹   406
  图像   408
  基线图像   420
  低剂量图像   422
  峰值剂量图像   424
  恢复图像   426
  壁运动记分图   428
  ECG轨迹   430
  ECG轨迹   432
  ECG轨迹   434
  ECG轨迹   436
  基线图像   440
  低剂量图像   442
  峰值剂量图像   444
  恢复图像  446
  壁运动记分图  448

Claims (10)

1.一种用于自动识别三维数据集中的图像视图的方法,包括:
用处理器(110)访问包含多个图像帧的三维(3D)数据集;
用所述处理器(110)使至少一个可变形模型(370,372,374)与所述图像帧中每个图像帧内的至少一个结构拟合(152);
用所述处理器(110)根据所述至少一个可变形模型(370,372,374)在所述图像帧中每个图像帧内识别(154)至少一个特征点;以及
根据所述至少一个特征点在显示器(112)上显示至少一个图像视图(230-246)。
2.如权利要求1所述的方法,其中,所述拟合(152)包括根据卡尔曼滤波器拟合所述至少一个可变形模型。
3.如权利要求1所述的方法,其中,所述至少一个可变形模型(320,372,374)包括帆(302)、柱面、左心室模型(304)和右心室模型中至少之一。
4.如权利要求1所述的方法,其中,所述拟合(152)使用最小平方方法以一次迭代来实现。
5.如权利要求1所述的方法,其中,在图像帧的获取期间实时执行所述方法。
6.如权利要求1所述的方法,其中,根据来自第二多个图像帧的拟合模型初始化所述拟合(152),并且其中以相似取向获取所述多个图像帧和所述第二多个图像帧。
7.如权利要求1所述的方法,还包括:与所述至少一个图像视图(230-246)同时地显示至少一个对应图像视图,所述至少一个对应图像视图基于第二多个图像帧。
8.一种用于自动识别三维数据集中的图像视图的装置,包括:
用于访问包含多个图像帧的三维数据集的部件;
用于使至少两个耦合的可变形模型(370,372,374)与所述图像帧中每个图像帧内的结构拟合(152)的部件;
用于根据所述可变形模型(370,372,374)中至少之一在所述图像帧中每个图像帧内识别(154)至少一个特征点的部件;以及
用于在显示器(112)上根据所述至少一个特征点显示至少一个图像视图(230-246)的部件。
9.如权利要求8所述的装置,还包括:
配置成获取所述多个图像帧的探取部件,所述探取部件具有相对于所述结构中至少之一的探取取向,
用于根据所述探取取向初始化所述模型(370,372,374)中至少之一的所述拟合(152)的部件。
10.如权利要求8所述的装置,还包括:
配置成接受输入的用户接口(118),
用于根据所述输入调整所述可变形模型(370,372,374)中至少之一的所述拟合(152)的部件。
CN201010118743.0A 2009-02-04 2010-02-04 用于自动识别3d数据集中图像视图的方法和设备 Active CN101901335B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/365,738 US8265363B2 (en) 2009-02-04 2009-02-04 Method and apparatus for automatically identifying image views in a 3D dataset
US12/365738 2009-02-04

Publications (2)

Publication Number Publication Date
CN101901335A CN101901335A (zh) 2010-12-01
CN101901335B true CN101901335B (zh) 2014-08-20

Family

ID=42309093

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010118743.0A Active CN101901335B (zh) 2009-02-04 2010-02-04 用于自动识别3d数据集中图像视图的方法和设备

Country Status (4)

Country Link
US (1) US8265363B2 (zh)
JP (1) JP5108905B2 (zh)
CN (1) CN101901335B (zh)
DE (1) DE102010000274A1 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6438638B1 (en) 2000-07-06 2002-08-20 Onspec Electronic, Inc. Flashtoaster for reading several types of flash-memory cards with or without a PC
JP5438936B2 (ja) * 2008-08-29 2014-03-12 株式会社東芝 超音波診断装置、画像処理装置及び画像処理プログラム
US8265363B2 (en) * 2009-02-04 2012-09-11 General Electric Company Method and apparatus for automatically identifying image views in a 3D dataset
EP2275020B1 (en) * 2009-07-16 2018-02-21 Tobii AB Eye detection system and method using sequential data flow
US8750375B2 (en) * 2010-06-19 2014-06-10 International Business Machines Corporation Echocardiogram view classification using edge filtered scale-invariant motion features
JP5797197B2 (ja) * 2010-07-14 2015-10-21 国立大学法人東北大学 信号処理装置、信号処理プログラム及び信号処理プログラムを記録したコンピュータ読み取り可能な記録媒体
US10485490B2 (en) * 2010-11-11 2019-11-26 Zoll Medical Corporation Acute care treatment systems dashboard
US20120155727A1 (en) * 2010-12-15 2012-06-21 General Electric Company Method and apparatus for providing motion-compensated images
US8657750B2 (en) 2010-12-20 2014-02-25 General Electric Company Method and apparatus for motion-compensated ultrasound imaging
JP5087694B2 (ja) * 2011-04-14 2012-12-05 日立アロカメディカル株式会社 超音波診断装置
US9153033B2 (en) 2011-05-11 2015-10-06 Kabushiki Kaisha Toshiba Medical image processing apparatus and method thereof
JP5788230B2 (ja) * 2011-06-09 2015-09-30 株式会社東芝 超音波診断装置、超音波画像処理装置、超音波画像処理プログラム
US8777856B2 (en) 2012-06-26 2014-07-15 General Electric Company Diagnostic system and method for obtaining an ultrasound image frame
KR101517752B1 (ko) 2012-06-28 2015-05-06 삼성메디슨 주식회사 진단 영상 장치 및 그 동작 방법
US9612656B2 (en) 2012-11-27 2017-04-04 Facebook, Inc. Systems and methods of eye tracking control on mobile device
JP2014144156A (ja) * 2013-01-30 2014-08-14 Fujifilm Corp 医用画像表示制御装置および方法並びにプログラム
US8989472B2 (en) * 2013-02-13 2015-03-24 Mitsubishi Electric Research Laboratories, Inc. Method for simulating thoracic 4DCT
WO2014139032A1 (en) * 2013-03-15 2014-09-18 Colibri Technologies Inc. Data display and processing algorithms for 3d imaging systems
JP6396420B2 (ja) * 2013-04-03 2018-09-26 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 3d超音波撮像システム、対応する方法、及び、そのような方法を実施するためのコンピュータプログラム
RU2677055C2 (ru) * 2013-11-05 2019-01-15 Конинклейке Филипс Н.В. Автоматическая сегментация трехплоскостных изображений для ультразвуковой визуализации в реальном времени
WO2015124388A1 (en) * 2014-02-19 2015-08-27 Koninklijke Philips N.V. Motion adaptive visualization in medical 4d imaging
US9436995B2 (en) 2014-04-27 2016-09-06 International Business Machines Corporation Discriminating between normal and abnormal left ventricles in echocardiography
JP6581605B2 (ja) * 2014-06-12 2019-09-25 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 医療用画像処理デバイス及び方法
US11191519B2 (en) * 2014-08-05 2021-12-07 HABICO, Inc. Device, system, and method for hemispheric breast imaging
JP6382050B2 (ja) * 2014-09-29 2018-08-29 キヤノンメディカルシステムズ株式会社 医用画像診断装置、画像処理装置、画像処理方法及び画像処理プログラム
US9345454B2 (en) * 2014-10-08 2016-05-24 General Electric Company Cine-loop adjustment
JP6372696B2 (ja) 2014-10-14 2018-08-15 ソニー株式会社 情報処理装置、情報処理方法、並びにプログラム
CN107072638B (zh) 2014-10-27 2020-11-06 皇家飞利浦有限公司 对超声图像的序列进行可视化的方法、计算机程序产品和超声系统
US11109842B2 (en) * 2014-12-10 2021-09-07 General Electric Company Method and system for enhanced visualization of individual images in a real-time scan
US20190015076A1 (en) * 2015-12-21 2019-01-17 Koninklijke Philips N.V. Ultrasound imaging apparatus and ultrasound imaging method for inspecting a volume of a subject
US20200015777A1 (en) * 2016-12-19 2020-01-16 Koninklijke Philips N.V. Fetal ultrasound imaging
US10402969B2 (en) 2017-03-10 2019-09-03 General Electric Company Methods and systems for model driven multi-modal medical imaging
EP3608872B1 (en) * 2017-05-05 2023-07-12 Shanghai United Imaging Healthcare Co., Ltd. Image segmentation method and system
CN108898654B (zh) * 2018-06-28 2022-07-26 苏州乐米信息科技股份有限公司 一种三维物体的移动方法和系统
JP7165541B2 (ja) * 2018-09-14 2022-11-04 富士フイルムヘルスケア株式会社 ボリュームデータ処理装置、方法及びプログラム
JP6727363B2 (ja) * 2019-02-28 2020-07-22 キヤノンメディカルシステムズ株式会社 医用診断装置、医用画像処理装置及び医用画像処理方法
US20230419602A1 (en) * 2020-11-05 2023-12-28 Koninklijke Philips N.V. Rendering and displaying a 3d representation of an anatomical structure
US20220367048A1 (en) * 2020-12-24 2022-11-17 Purdue Research Foundation System and methods for machine learning driven contouring cardiac ultrasound data
US20220301240A1 (en) * 2021-03-22 2022-09-22 GE Precision Healthcare LLC Automatic Model-Based Navigation System And Method For Ultrasound Images

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906634A (zh) * 2003-11-19 2007-01-31 西门子共同研究公司 利用外观和形状来检测和匹配解剖结构的系统和方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5768413A (en) * 1995-10-04 1998-06-16 Arch Development Corp. Method and apparatus for segmenting images using stochastically deformable contours
US7477768B2 (en) * 1999-06-29 2009-01-13 The Research Foundation Of State University Of New York System and method for performing a three-dimensional virtual examination of objects, such as internal organs
US6500123B1 (en) 1999-11-05 2002-12-31 Volumetrics Medical Imaging Methods and systems for aligning views of image data
FR2808326B1 (fr) * 2000-04-27 2002-07-12 Commissariat Energie Atomique Procede de mesurage d'un objet tridimentionnel, ou d'un ensemble d'objets
KR20020087946A (ko) * 2001-01-30 2002-11-23 코닌클리케 필립스 일렉트로닉스 엔.브이. 변형 가능한 3-d 대상의 이미지 시퀀스를 대상 벽 운동의표시들로 디스플레이하는 이미지 프로세싱 방법
US6488629B1 (en) 2001-07-31 2002-12-03 Ge Medical Systems Global Technology Company, Llc Ultrasound image acquisition with synchronized reference image
DE10144004A1 (de) * 2001-09-07 2003-03-27 Philips Corp Intellectual Pty Verfahren zur Messung geometrischer Größen einer in einem Bild enthaltenen Struktur
WO2004010374A2 (en) * 2002-07-19 2004-01-29 Philips Intellectual Property & Standards Gmbh Simultaneous segmentation of multiple or composed objects by mesh adaptation
AU2003278538A1 (en) * 2002-11-20 2004-06-15 Koninklijke Philips Electronics N.V. Image processing system for automatic adaptation of a 3-d mesh model onto a 3-d surface of an object
JP4373682B2 (ja) * 2003-01-31 2009-11-25 独立行政法人理化学研究所 関心組織領域抽出方法、関心組織領域抽出プログラム及び画像処理装置
US7558402B2 (en) * 2003-03-07 2009-07-07 Siemens Medical Solutions Usa, Inc. System and method for tracking a global shape of an object in motion
US7391893B2 (en) * 2003-06-27 2008-06-24 Siemens Medical Solutions Usa, Inc. System and method for the detection of shapes in images
US7536044B2 (en) * 2003-11-19 2009-05-19 Siemens Medical Solutions Usa, Inc. System and method for detecting and matching anatomical structures using appearance and shape
US7428334B2 (en) * 2004-08-27 2008-09-23 General Electric Company Methods and systems for 3D segmentation of ultrasound images
US7460733B2 (en) * 2004-09-02 2008-12-02 Siemens Medical Solutions Usa, Inc. System and method for registration and modeling of deformable shapes by direct factorization
US7555151B2 (en) * 2004-09-02 2009-06-30 Siemens Medical Solutions Usa, Inc. System and method for tracking anatomical structures in three dimensional images
US7764838B2 (en) * 2004-09-14 2010-07-27 Siemens Medical Solutions Usa, Inc. System and method for extracting an object of interest from an image using a robust active shape model
US7602970B2 (en) * 2005-03-21 2009-10-13 Siemens Medical Solutions Usa, Inc. System and method for Kalman filtering in vascular segmentation
US20060253024A1 (en) * 2005-04-26 2006-11-09 Altmann Andres C Software product for three-dimensional cardiac imaging using ultrasound contour reconstruction
WO2007034425A2 (en) * 2005-09-23 2007-03-29 Philips Intellectual Property & Standards Gmbh A method of and a system for adapting a geometric model using multiple partial transformations
US20070106147A1 (en) * 2005-11-01 2007-05-10 Altmann Andres C Controlling direction of ultrasound imaging catheter
US7889912B2 (en) * 2006-09-15 2011-02-15 The General Electric Company Method for real-time tracking of cardiac structures in 3D echocardiography
CA2670261A1 (en) * 2006-11-16 2008-05-29 Vanderbilt University Apparatus and methods of compensating for organ deformation, registration of internal structures to images, and applications of same
US8574157B2 (en) * 2007-02-14 2013-11-05 General Electric Company Method and apparatus for generating an ultrasound image of moving objects using deformable models
US9275190B2 (en) * 2007-04-23 2016-03-01 Siemens Aktiengesellschaft Method and system for generating a four-chamber heart model
US20090171201A1 (en) * 2007-12-31 2009-07-02 Olson Eric S Method and apparatus for real-time hemodynamic monitoring
US20090226057A1 (en) * 2008-03-04 2009-09-10 Adi Mashiach Segmentation device and method
US20090238404A1 (en) * 2008-03-18 2009-09-24 Fredrik Orderud Methods for using deformable models for tracking structures in volumetric data
US8180125B2 (en) * 2008-05-20 2012-05-15 General Electric Company Medical data processing and visualization technique
US8010381B2 (en) * 2008-05-20 2011-08-30 General Electric Company System and method for disease diagnosis from patient structural deviation data
US20100123715A1 (en) * 2008-11-14 2010-05-20 General Electric Company Method and system for navigating volumetric images
US8265363B2 (en) * 2009-02-04 2012-09-11 General Electric Company Method and apparatus for automatically identifying image views in a 3D dataset

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1906634A (zh) * 2003-11-19 2007-01-31 西门子共同研究公司 利用外观和形状来检测和匹配解剖结构的系统和方法

Also Published As

Publication number Publication date
JP5108905B2 (ja) 2012-12-26
US8265363B2 (en) 2012-09-11
CN101901335A (zh) 2010-12-01
DE102010000274A1 (de) 2010-08-05
JP2010179098A (ja) 2010-08-19
US20100195881A1 (en) 2010-08-05

Similar Documents

Publication Publication Date Title
CN101901335B (zh) 用于自动识别3d数据集中图像视图的方法和设备
CN101103377B (zh) 进行局部可变形运动分析的系统和方法
US8942423B2 (en) Methods for automatic segmentation and temporal tracking
CN102920477B (zh) 医学影像的目标区域边界确定装置和方法
Gee et al. Processing and visualizing three-dimensional ultrasound data
Ledesma-Carbayo et al. Spatio-temporal nonrigid registration for ultrasound cardiac motion estimation
US8199994B2 (en) Automatic analysis of cardiac M-mode views
US8675940B2 (en) Generation of moving vascular models and blood flow analysis from moving vascular models and phase contrast MRI
Bistoquet et al. Left ventricular deformation recovery from cine MRI using an incompressible model
US20030160786A1 (en) Automatic determination of borders of body structures
US20110019886A1 (en) Medical image processing apparatus, method, and program
US20030038802A1 (en) Automatic delineation of heart borders and surfaces from images
US20220370033A1 (en) Three-dimensional modeling and assessment of cardiac tissue
De Luca et al. Estimation of large-scale organ motion in B-mode ultrasound image sequences: a survey
China et al. Anatomical structure segmentation in ultrasound volumes using cross frame belief propagating iterative random walks
US20130195335A1 (en) Automatic quantification of mitral valve dynamics with real-time 3d ultrasound
Tavakoli et al. Tissue Doppler imaging optical flow (TDIOF): A combined B-mode and tissue Doppler approach for cardiac motion estimation in echocardiographic images
Wang et al. Echocardiography Segmentation by Fractional Differential and Improved Canny, Analysis by Fourier Descriptor
Chen QUiLT (Quantitative Ultrasound in Longitudinal Tissue Tracking): Stitching 2D images into 3D Volumes for Organ Health Monitoring
Ta Multi-Task Learning for Cardiac Motion Analysis and Segmentation in Echocardiography
LETTEBOER et al. Non-rigid registration of intraoperatively acquired 3D ultrasound data of brain tumors
De Luca Liver motion tracking in ultrasound sequences for tumor therapy
Jia A computer-aided tracking and motion analysis with ultrasound system for describing hip joint kinematics
Publico Tensorial biomorphometrics: Continuum, discrete and statistical aspects
Leung Automated Analysis of 3D Stress Echocardiography

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant