CN101893593B - 无线自集能腐蚀传感器及其制作方法 - Google Patents

无线自集能腐蚀传感器及其制作方法 Download PDF

Info

Publication number
CN101893593B
CN101893593B CN 200910073053 CN200910073053A CN101893593B CN 101893593 B CN101893593 B CN 101893593B CN 200910073053 CN200910073053 CN 200910073053 CN 200910073053 A CN200910073053 A CN 200910073053A CN 101893593 B CN101893593 B CN 101893593B
Authority
CN
China
Prior art keywords
wireless
energy accumulation
corrosion sensor
wireless self
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 200910073053
Other languages
English (en)
Other versions
CN101893593A (zh
Inventor
欧进萍
乔国富
寓言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology
Original Assignee
Harbin Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology filed Critical Harbin Institute of Technology
Priority to CN 200910073053 priority Critical patent/CN101893593B/zh
Publication of CN101893593A publication Critical patent/CN101893593A/zh
Application granted granted Critical
Publication of CN101893593B publication Critical patent/CN101893593B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Abstract

本发明提供一种用于大规模钢混结构钢筋腐蚀监测的无线自集能腐蚀传感器及其制作方法。它是由高惰性辅助电极、工作电极、传感单元和无线平台组成的,传感单元连接无线平台,无线平台密封于无线自集能腐蚀传感器壳体内,高惰性辅助电极和工作电极的所在部露于大气中。无线自集能腐蚀传感器的制作方法步骤:高惰性辅助电极的制备;工作电极的加工;传感单元的封装;无线自集能腐蚀传感器的组装。本发明具有无线功能,避免了实际工程中大规模布线的不便和由于布线对结构本身造成的损伤,自集能技术解决了无线传感器的能源供给问题,解决了无线传感器各种算法中的节能限制,进而真正实现了对大规模土木工程结构腐蚀的无线监测。

Description

无线自集能腐蚀传感器及其制作方法
技术领域
本发明涉及土木工程技术,具体说就是一种无线自集能腐蚀传感器及其制作方法。
背景技术
在土木工程中钢筋腐蚀是造成钢混结构损伤以及失效的原因之一,全世界对腐蚀结构的维护维修以及更换构件投入了大量的费用,钢筋腐蚀的监测是结构健康监测以及全寿命设计的重要组成部分。在混凝土环境下,由于混凝土的多孔性,水分与氧气可以沿着孔隙和裂纹迁移,这恰好是低碳钢和高强度合金钢等钢材腐蚀的必要条件。在大多数情形下没有发生腐蚀的原因是这些孔隙中由于水泥的水化过程形成了高浓度的钙、钠和钾的氢氧化物,从而保持了PH值在12-13之间,这一高碱度环境是钢材钝化,形成致密的γ型氧化铁防止了钢材的快速腐蚀。然而当Cl-(来自除冰盐或者海水)经过混凝土表面在钢筋表面进行聚集或者由于CO2(来自大气,也是造成全球气候变暖的重要因素之一)的作用使孔溶液PH值降低的情况下,钝化膜遭到破坏,混凝土对钢筋的保护作用失效,在O2以及H2O充足的情况下钢筋截面积减小或者出现蚀点。
土木工程中绝大多数(除了部分高温氧化反应外)钢材的腐蚀过程都是电化学过程,所以电化学方法成为监测结构中钢材腐蚀的最本质的方法。近些年来国内外的科研工作者采用电化学方法对腐蚀科学问题进行了大量的研究,通过稳态及暂态电化学方法的研究,不但能够获得诸如腐蚀电流密度、腐蚀速率这样的基本参数,还能够得知揭示腐蚀电化学过程的更详细的信息,如极化电阻、双电层电容、扩散过程、点蚀的发生过程等等。这些参数的测量能够为腐蚀监测提供更加可靠的依据。建立基于电化学技术的腐蚀监测系统能够实时、准确掌握钢筋的腐蚀状态,为大规模钢混结构的安全评定及全寿命设计提供科学依据。
发明内容
本发明的目的在于提供一种用于大规模钢混结构钢筋腐蚀监测的无线自集能腐蚀传感器及其制作方法。
本发明的目的是这样实现的:所述的无线自集能腐蚀传感器,它是由高惰性辅助电极、工作电极、传感单元和无线平台组成的,传感单元连接无线平台,无线平台密封于无线自集能腐蚀传感器壳体内,高惰性辅助电极和工作电极的所在部露于大气中。
本发明一种无线自集能腐蚀传感器的制作方法,步骤如下:
步骤一:高惰性辅助电极的制备:
采用三靶EB-PVD设备制备梳状基体为不锈钢的辅助电极,制备的惰性层为Pt或者其它高惰性膜层,基体不锈钢梳状电极按序列放置于靶盘上,通过调整靶基距控制钝化膜层的厚度,为了保证服役期内传感器的有效性,膜层厚度大于500μm;
步骤二:工作电极的加工:
工作电极的尺寸与高惰性辅助电极完全相同,所采用的材料与监测对象完全相同;采用自动抛光机将工作电极表面抛光;
步骤三:传感单元的封装:
在高惰性辅助电极和工作电极的预留孔上焊接导线,然后将电极放置于预先制备的浆料成型模具中,进而将牙粉浆料注入到模具,采用振动台振动模具,以保证牙粉密实。然后将模具放置于空气中5h后脱模;
步骤四:无线自集能腐蚀传感器的组装:
将传感单元的导线与无线平台的导线接口连接,然后采用密封壳体将无线平台完全密封,仅将辅助电极与工作电极所在部露于大气中。
步骤五:无线自集能腐蚀传感器的保存:
为了保证无线自集能腐蚀传感器在正式服役前的有效性,所制备的传感单元采用医用酒精擦拭,然后用医用棉团包裹密封在真空盒中,真空盒一经打开,无线自集能腐蚀传感器需立即安装在所需监测的结构位置,无线自集能腐蚀传感器进入服役期。
本发明无线自集能腐蚀传感器,无需外界工业电能或者电池电能供给以维持传感器工作,无线自集能腐蚀传感器靠微弱的腐蚀能量激发无线平台并采集、存储及传输数据。无线平台嵌入电化学噪声技术的电化学发射谱测试方法,采用基于频域、小波等先进数据解析方法,能够实时、准确地掌握钢筋的腐蚀状态。无线自集能腐蚀传感器能够按一定规则组网,实现结构的分布式、多点实时在线监测。本发明具有无线功能,避免了实际工程中大规模布线的不便以及由于布线对结构本身造成的损伤;自集能的技术突破解决了无线传感器的能源供给问题,从而从根本上解决了无线传感器各种算法中的节能限制,进而真正实现了对大规模土木工程结构腐蚀的无线监测。先进的数据测试及解析方法能够实时、准确掌握钢筋腐蚀状态;多点、分布式无线自集能腐蚀监测网络能够为结构的安全评定及全寿命设计提供科学依据。
附图说明
图1为本发明的电化学腐蚀能量释放示意图;
图2为本发明的2进小波分解示意图;
图3为本发明的EB-PVD设备示意图;
图4为本发明无线自集能腐蚀传感器实物图。
具体实施方式
下面结合附图举例对本发明作进一步说明。
实施例1:本发明无线自集能腐蚀传感器及其制作方法,所述的无线自集能腐蚀传感器,它是由高惰性辅助电极、工作电极、传感单元和无线平台组成的,传感单元连接无线平台,无线平台密封于无线自集能腐蚀传感器壳体内,高惰性辅助电极和工作电极的所在部露于大气中。
本发明一种无线自集能腐蚀传感器的制作方法,步骤如下:
步骤一:高惰性辅助电极的制备:
采用三靶EB-PVD设备制备梳状基体为不锈钢的辅助电极,制备的惰性层为Pt或者其它高惰性膜层,基体不锈钢梳状电极按序列放置于靶盘上,通过调整靶基距控制钝化膜层的厚度,为了保证服役期内传感器的有效性,膜层厚度大于500μm;
步骤二:工作电极的加工:
工作电极的尺寸与高惰性辅助电极完全相同,所采用的材料与监测对象完全相同;采用自动抛光机将工作电极表面抛光;
步骤三:传感单元的封装:
在高惰性辅助电极和工作电极的预留孔上焊接导线,然后将电极放置于预先制备的浆料成型模具中,进而将牙粉浆料注入到模具,采用振动台振动模具,以保证牙粉密实。然后将模具放置于空气中5h后脱模;
步骤四:无线自集能腐蚀传感器的组装:
将传感单元的导线与无线平台的导线接口连接,然后采用密封壳体将无线平台完全密封,仅将辅助电极与工作电极所在部露于大气中。
步骤五:无线自集能腐蚀传感器的保存:
为了保证无线自集能腐蚀传感器在正式服役前的有效性,所制备的传感单元采用医用酒精擦拭,然后用医用棉团包裹密封在真空盒中,真空盒一经打开,无线自集能腐蚀传感器需立即安装在所需监测的结构位置,无线自集能腐蚀传感器进入服役期。
实施例2:结合图1、图2,本发明无线自集能腐蚀传感器及其制作方法,具有以下技术特征:
采用有限元优化设计辅助电极的构形,进而应用EB-PVD制备表面具有高惰性表面层的辅助电极,采用与结构相同的材料制备电极对,最终与无线平台一起构成无线自集能腐蚀传感器硬件;采用基于电化学噪声发射谱技术的测试方法,并采用谱分析及小波分析等先进数据解析方法对噪声数据解析,构成软件基础;最终集成硬件以及软件构成无线自集能腐蚀监测系统。
采用Pt、石墨、不锈钢或者各种气相沉积(如EB-PVD,磁控溅射)、化学镀以及电镀得到表面具有强惰性层的梳状或者其它形状的辅助电极;
采用基于电化学发射谱的时域、空域以及小波、混沌等电化学噪声数据解析方法构成软件基础;
本发明的基本原理是根据钢筋腐蚀过程是电化学过程,本质上是钢材冶炼过程所做功的能量的释放过程,这样构建电偶对,即可利用腐蚀所释放的能量供给传感器工作,电偶对的能量释放过程简单示意于图1,最终设计出结构合理、能够适合实际工程应用的无线自集能腐蚀传感器。
电化学噪声(Electrochemical Noise,EN)即在电化学反应动力系统的演化过程中,系统的电化学状态参量(如电极电位、外测电流)随时间发生随机的非平衡波动现象。这种噪声产生于电化学系统的本身,从而提供了系统从量变到质变的大量的演化信息。电化学发射谱(Electrochemical Emission Spectroscopy,EES)是先进的EN测试方法,所产生的噪声完全由单一的工作电极产生,较其它对电极测试方法具有较大优点。
因与均匀腐蚀相联系的噪音频率高于与局部腐蚀相关的噪音信号,故对钢混体系点蚀不同阶段的电化学噪声数据应用快速傅里叶变换及最大熵法建立功率密度谱进行频域分析,基于FFT及MEM的功率谱计算公式如下,
Figure GSB00000966542200051
Figure GSB00000966542200052
其中,xn为电流或电位的数据点,N为数据长度,Δt为采样时间间隔,
Figure GSB00000966542200053
Figure GSB00000966542200054
为采用级数为p的预期误差滤波器计算的预期误差均方差,p是滤波器的级数,f是频率,X(i)是稳态的均值为0的随机信号,γk是预期方差系数。
典型的电流暂态峰可以表示为下式,
I ( t ) 0 t < 0 Aexp ( - t &tau; ) t &GreaterEqual; 0 - - - ( 3 )
这里,I(t)是ECN暂态峰的电流强度,A为反应暂态峰幅值的随机变量,τ为ECN暂态峰指数衰减过程中的时间常数。
这样就可以根据FFT得到电流噪声的PSD计算公式,
PSD = 2 S&lambda; A 2 &tau; 2 1 + 4 &pi; 2 f 2 &tau; 2 - - - ( 4 )
当不同的频段下,PSD可能出现如下形式,
PSD = 2 S&lambda; A 2 &tau; 2 f < < 1 2 &pi;&tau; S&lambda; A 2 2 &pi; 2 &CenterDot; f - 2 2 &pi;f&tau; > > 1 - - - ( 5 )
根据PSD分析可以得到谱噪音电阻RSN(f)、β系数、临界转移频率fc、孔蚀强度SE和孔蚀趋势SG等重要参数,进一步研究这些参数与点蚀过程之间的联系。
若测试的电化学噪声数据中含有强烈的直流漂移及大量暂态峰的非稳态信号时,在小波域内对点蚀不同阶段的电化学噪声信号进行分析,图2为2进小波分解示意图。
CWT计算每个小波尺度的系数的相当大的工作量,而且它会产生冗余的数据,如果选择2的指数方的尺度与平移量,即只在2j的尺度与平移量上进行分解,则称该变换为离散小波变换(DiscreteWavelet Transfrom,DWT)。在小波域内对信号进行分解首先要通过父小波函数及母小波函数ψ的伸缩和平移得到如下分解,
Figure GSB00000966542200063
&psi; j , k = 2 - j / 2 &psi; ( 2 - j t - k ) = 2 - j / 2 &psi; ( t - 2 j k 2 j ) - - - ( 7 )
这里k=1,2,…,N/2J;J=1,2,…J。这样信号xn(t),n=1,2,...,N可以近似表示为下式,
Figure GSB00000966542200065
这里sJ,k及dj,k称为小波系数。信号被分解为不同尺度下的片段,每个片段具有低频的近似信号部分Aj(t)以及高频的细节信号部分Dj(t)。其中,
Figure GSB00000966542200066
D j ( t ) = &Sigma; k &Element; Z d j , k &psi; j , k ( t ) , j , k &Element; Z , - - - ( 10 )
信号的整体能量E通过下式计算,
E = &Sigma; n = 1 N x n 2 , n = 1,2 , . . . , N - - - ( 11 )
j尺度下近似及细节“晶胞”的相对能量分别通过式(12)及式(13)计算,
E j s = 1 E &Sigma; n = 1 N / 2 j S J 2 , n - - - ( 12 )
E j d = 1 E &Sigma; n = 1 N / 2 j d j , n 2 , j = 1,2 , . . . , J - - - ( 13 )
采用正交小波,信号的能量满足如下方程,
E = E J s + &Sigma; j = 1 J E j d - - - ( 14 )
对电化学噪声信号进行小波变换,掌握信号的局部特征,进而得到电化学噪声的能量分布曲线EDP、尺度噪声电阻REN(j)等小波域内电化学噪声特征。

Claims (2)

1.一种无线自集能腐蚀传感器的制作方法,其特征在于:制作方法步骤如下:
步骤一:高惰性辅助电极的制备:
采用三靶EB-PVD设备制备梳状基体为不锈钢的辅助电极,制备的惰性膜层为Pt或者其它高惰性膜层,基体不锈钢梳状电极按序列放置于靶盘上,通过调整靶基距控制惰性膜层的厚度,为了保证服役期内传感器的有效性,膜层厚度大于500μm;
步骤二:工作电极的加工:
工作电极的尺寸与高惰性辅助电极完全相同,所采用的材料为钢筋;采用自动抛光机将工作电极表面抛光;
步骤三:传感单元的封装:
在高惰性辅助电极和工作电极的预留孔上焊接导线,然后将电极放置于预先制备的浆料成型模具中,进而将牙粉浆料注入到模具,采用振动台振动模具,以保证牙粉密实,然后将模具放置于空气中5h后脱模;
步骤四:无线自集能腐蚀传感器的组装:
将传感单元的导线与无线平台的导线接口连接,然后采用密封壳体将无线平台完全密封,仅将辅助电极与工作电极所在部露于大气中;
步骤五:无线自集能腐蚀传感器的保存:
为了保证无线自集能腐蚀传感器在正式服役前的有效性,所制备的传感单元采用医用酒精擦拭,然后用医用棉团包裹密封在真空盒中,真空盒一经打开,无线自集能腐蚀传感器需立即安装在所需监测的结构位置,无线自集能腐蚀传感器进入服役期。
2.一种根据权利要求1所述的一种无线自集能腐蚀传感器的制作方法制作的无线自集能腐蚀传感器。 
CN 200910073053 2009-10-13 2009-10-13 无线自集能腐蚀传感器及其制作方法 Expired - Fee Related CN101893593B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200910073053 CN101893593B (zh) 2009-10-13 2009-10-13 无线自集能腐蚀传感器及其制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200910073053 CN101893593B (zh) 2009-10-13 2009-10-13 无线自集能腐蚀传感器及其制作方法

Publications (2)

Publication Number Publication Date
CN101893593A CN101893593A (zh) 2010-11-24
CN101893593B true CN101893593B (zh) 2013-02-20

Family

ID=43102855

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200910073053 Expired - Fee Related CN101893593B (zh) 2009-10-13 2009-10-13 无线自集能腐蚀传感器及其制作方法

Country Status (1)

Country Link
CN (1) CN101893593B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288536A (zh) * 2011-07-01 2011-12-21 中国科学院金属研究所 一种实现多种原位监测的电化学腐蚀试验装置
CN102548034B (zh) * 2011-12-26 2015-04-08 哈尔滨工业大学 重大钢混结构用无线自集能腐蚀监测传感器网络
CN102564937B (zh) * 2011-12-26 2014-01-29 哈尔滨工业大学 钢混结构用无线自集能腐蚀传感器的能量供给单元
CN102706928A (zh) * 2012-04-18 2012-10-03 聂志虎 砼结构钢筋锈蚀定量检测仪
CN103630484B (zh) * 2013-12-04 2016-01-13 哈尔滨工业大学 弱异构源供能的无线自集能腐蚀监测节点

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6690182B2 (en) * 2000-07-19 2004-02-10 Virginia Technologies, Inc Embeddable corrosion monitoring-instrument for steel reinforced structures
CN100437085C (zh) * 2006-07-23 2008-11-26 中国船舶重工集团公司第七二五研究所 混凝土中钢筋腐蚀监测装置
CN100545420C (zh) * 2007-01-26 2009-09-30 同济大学 隧道衬砌管片及其制备方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA;Guofu Qiao等;《Electrochimica》;20070704;第52卷(第28期);第8008-8019页 *
Guofu Qiao等.Corrosion monitoring of reinforcing steel in cement mortar by EIS and ENA.《Electrochimica》.2007,第52卷(第28期),第8008-8019页.
乔国富等.全固态参比电极的制备及其在钢筋腐蚀监测中的应用.《功能材料》.2007,第38卷第2923-2926页.
乔国富等.混凝土中钢筋点蚀的电化学噪声特性研究.《腐蚀科学与防护技术》.2009,第21卷(第4期),第365-369页.
全固态参比电极的制备及其在钢筋腐蚀监测中的应用;乔国富等;《功能材料》;20071231;第38卷;第2923-2926页 *
混凝土中钢筋点蚀的电化学噪声特性研究;乔国富等;《腐蚀科学与防护技术》;20090731;第21卷(第4期);第365-369页 *

Also Published As

Publication number Publication date
CN101893593A (zh) 2010-11-24

Similar Documents

Publication Publication Date Title
CN101893593B (zh) 无线自集能腐蚀传感器及其制作方法
Zhang et al. Galvanic corrosion behavior of deposit-covered and uncovered carbon steel
Pharr et al. Measurements of the fracture energy of lithiated silicon electrodes of Li-ion batteries
Liu et al. Bridging multiscale characterization technologies and digital modeling to evaluate lithium battery full lifecycle
Chon et al. Real-Time Measurement of Stress and Damage Evolution during Initial Lithiation<? format?> of Crystalline Silicon
Chen et al. Kinetics of corrosion film growth on copper in neutral chloride solutions containing small concentrations of sulfide
Cui et al. Toward a slow-release borate inhibitor to control mild steel corrosion in simulated recirculating water
CN102129512A (zh) 基于Paris公式的疲劳寿命分析方法
CN101122595B (zh) 混凝土结构剩余寿命分析系统
CN102636632A (zh) 围垦地土壤重金属污染综合评价图生成方法
Qaiser et al. Numerical modeling of fracture-resistant Sn micropillars as anode for lithium ion batteries
Yu et al. Self-powered wireless corrosion monitoring sensors and networks
Yao et al. Structural health monitoring of multi-spot welded joints using a lead zirconate titanate based active sensing approach
Yang et al. Elastic strain effects on catalysis of a PdCuSi metallic glass thin film
CN112414929A (zh) 一种金属腐蚀评估方法、装置、系统及电子设备
Elshami et al. Novel anticorrosive zinc phosphate coating for corrosion prevention of reinforced concrete
CN100547343C (zh) 一种连续监测金属材料腐蚀深度的方法
Wang et al. A study of the film formation kinetics on zinc in different acidic corrosion inhibitor solutions by quartz crystal microbalance
Sun et al. Acoustic response characteristics of lithium cobaltate/graphite battery during cycling
CN117368082A (zh) 一种输电线路混凝土基础腐蚀性评估方法
Keddam Anodic dissolution
CN105654189B (zh) 基于时间序列分析与卡尔曼滤波算法的覆冰短期预测方法
Qiao et al. Quantitative monitoring of pitting corrosion based on 3-D cellular automata and real-time ENA for RC structures
Welch et al. The oxidation of trivalent chromium at polycrystalline gold electrodes
CN108061666A (zh) 一种输电塔损伤识别方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130220

Termination date: 20131013