CN101892244A - Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof - Google Patents

Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof Download PDF

Info

Publication number
CN101892244A
CN101892244A CN 201010125934 CN201010125934A CN101892244A CN 101892244 A CN101892244 A CN 101892244A CN 201010125934 CN201010125934 CN 201010125934 CN 201010125934 A CN201010125934 A CN 201010125934A CN 101892244 A CN101892244 A CN 101892244A
Authority
CN
China
Prior art keywords
leu
ser
gly
asn
ile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010125934
Other languages
Chinese (zh)
Other versions
CN101892244B (en
Inventor
王石平
李弘婧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Huazhong Agricultural University
Original Assignee
Huazhong Agricultural University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Huazhong Agricultural University filed Critical Huazhong Agricultural University
Priority to CN201010125934XA priority Critical patent/CN101892244B/en
Publication of CN101892244A publication Critical patent/CN101892244A/en
Application granted granted Critical
Publication of CN101892244B publication Critical patent/CN101892244B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

The invention relates to the technical field of the plant genetic engineering, in particular to the isolation and cloning and functional verification of the DNA fragment of oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2. The Xa3/Xa26-2 gene is used to code the leucine-rich protein kinase protein. The Xa3/Xa26-2 gene ensures that rice can resist diseases caused by bacterial pathogen-Xanthomonas oryzae pv. oryzae. The DNA fragment and the regulatory sequence thereof are directly transferred in rice, and the resistance capability to Xanthomonas oryzae of the transgenic rice carrying Xa3/Xa26-2 is significantly enhanced.

Description

Oryza officinalis resisting bacterial leaf-blight major gene Xa3/Xa26-2 and its application in the improvement paddy disease-resistant
Technical field
The present invention relates to gene engineering technology field.Be specifically related to separating clone, functional verification and the application of a rice bacterial blight resistance major gene Xa3/Xa26-2.Described dna fragmentation can be given the paddy rice opposing by the microbial disease of bacterial leaf-blight.Directly change this fragment adjusting sequence endogenous with it over to plant materials, transgenic paddy rice can produce the defense response to bacterial leaf spot pathogenic bacteria by this gene mediated.
Technical background
Plant is subjected to the infringement of multiple pathogen in the process of growth.The phytopathy original of a great variety comprises virus, bacterium, fungi and nematode etc.The pathogen invaded plants causes two kinds of results: breeding in host plant of (1) pathogenic agent success causes relevant illness; (2) host plant produces disease resistance response, kills pathogen or stops its growth.Utilizing the disease resistance of resistant gene resource improvement plant, is the basic outlet that pre-disease prevention is protected environment simultaneously again.
The disease resistance response of plant is the complex process that polygene participates in regulation and control.The gene that participates in the plant disease-resistant reaction is divided into two classes: (1) disease-resistant (main effect) gene claims R (resistance) gene and (2) disease-resistant related gene again.
According to the understanding of present people's enantiopathy gene function, the product of disease-resistant gene mainly is as acceptor, and direct or indirect and cause of disease protein-interacting starts the intravital disease-resistant signal conducting path of plant (Chisholm etc., 2006).The disease resistance response strong resistance of disease-resistant gene mediation is good genetic resources.But the resource-constrained of disease-resistant gene in the arviculture kind.Excavating new disease-resistant gene from nearly edge species, to be used for the farm crop genetic improvement be the important goal that the investigator works always.
Paddy rice is an important crops in the world, but the influence of disease usually causes the decline of its yield and quality.Bacterial blight of rice causes by bacterial leaf spot pathogenic bacteria (Xanthomonas oryzae pv.oryzae), is in the world to one of the bacterial disease of rice hazard maximum (crossing Chong Jian, 1995).The resource of disease-resistant gene is very limited in the rice cropping kind (Oryza sativa L.).Have only about 30 (Chu Zhaohui and Wang Shi are flat, 2007) as the bacterial leaf spot resistant ospc gene of knowing at present.Because wild-rice is in wild state for a long time, has stood the natural selection of various poor environments and disaster, has formed extremely abundant genetic diversity.Containing in the wild-rice has good disease-resistant gene resource, is the valuable source storehouse that people excavate new excellent genes.Just there are a plurality of genes from wild-rice, to import to advance in the cultivated rice in known about 30 bacterial leaf spot resistant ospc genes.Be derived from the long medicine wild-rice in West Africa (Oryza longistaminata) as resisting bacterial leaf-blight dominant gene Xa21, high anti-to most of bacterial leaf-blight bacterial strain performances; But this gene is a strain-forming period resistance, promptly only becomes the strain phase just bacterial leaf spot pathogenic bacteria to be had complete resistance (Khush etc., 1990 in paddy rice; Wang etc., 1996).The separated clone of Xa21 gene (Song etc., 1995).One as yet not separated clone's resisting bacterial leaf-blight dominant gene Xa23 be derived from common wild-rice (Oryza rufipogon), it has resistance of wide spectrum (Zhang Qi etc., 2000).Another separated clone's bacterial leaf spot resistant ospc gene Xa27 come from tetraploid granule wild-rice (Orzyaminuta), these gene bacterial leaf spot resistant germ Philippines microspecies 2,3,5 and 6 (Amante-Bordeos etc., 1992; Gu etc., 2005).In addition, separated clone's bacterial leaf spot resistant ospc gene Xa29 (t) and Xa30 (t) are not (Tan Guangxuan etc., 2004 that identify from oryza officinalis (Orzya officinalis) and common wild-rice respectively as yet; Wang Chun company etc., 2004).
Summary of the invention
The objective of the invention is bacterial leaf spot resistant ospc gene Xa3/Xa26-2 that carries in the separating clone oryza officinalis (Oryza officinalis) and the dna fragmentation that comprises the promotor of regulating and control this gene, utilize this improvement of genes rice varieties or other plant to resist the ability of disease.
The present invention relates to separate and use the dna fragmentation that comprises the Xa3/Xa26-2 gene, its nucleotide sequence is shown in sequence table SEQ ID NO:1, and its encoding sequence is shown in 3284-6191 and 6295-6662 position among the sequence table SEQ ID NO:1.This gene (fragment) is given paddy rice to producing specific disease resistance response by the caused disease of bacterial leaf spot pathogenic bacteria (Xanthomonas oryzae pv.oryzae).This invention is applicable to all plants to this pathogenic bacteria sensitivity.These plants comprise monocotyledons and dicotyledons.Except that above-mentioned described dna fragmentation shown in SEQ ID NO:1, the defined gene of the present invention comprises also and is equivalent to the dna sequence dna shown in the SEQ IDNO:1 basically that perhaps its function is equivalent to the subfragment of sequence shown in the SEQID NO:1.Sequence shown in the sequence table SEQ ID NO:1 is carried out bioinformatic analysis to be shown, a kind of receptor protein kinase of this dna sequence encoding, it comprises extracellular rich leucine and repeats (leucine-rich repeat, LRR) structural domain and intracellular protein kinase structural domain.
Can adopt the Xa3/Xa26-2 gene of having cloned to make probe, from cDNA and genomic library, screen gene of the present invention or homologous gene.Equally, adopt PCR (polymerase chain reaction) technology, also can from genome, mRNA and cDNA, increase obtain Xa3/Xa26-2 gene of the present invention and any interested section of DNA or with its homologous section of DNA.Adopt above technology, can separate the sequence that obtains comprising the sequence of Xa3/Xa26-2 gene or comprise one section Xa3/Xa26-2 gene, this sequence is connected with suitable carriers, can change vegetable cell over to, and express the Xa3/Xa26-2 gene, produce disease-resistant transgenic plant.Adopting this transgenic technology to create disease-resistant plants is that traditional breeding technology institute is inaccessiable.
Change clone's disease-resistant gene over to susceptible plant, help to produce new disease-resistant plants.Particularly can be with genetic transformation technology a plurality of disease-resistant genes that in plant, add up, and can not produce do not follow in the traditional breeding technology appearance with the burdensome kind that needs improvement of introducing of genetic linkage.Simultaneously, the clone of disease-resistant gene can overcome traditional breeding method can not shift disease-resistant gene between plant species problem.Disease-resistant transfer-gen plant that the present invention can further provide or the above-mentioned dna fragmentation of applications exploiting obtains and corresponding seed can change gene of the present invention over to other plant with the mode of sexual hybridization.
The present invention provides a kind of new method for strengthening paddy rice to the resistance of bacterial leaf-blight.This method comprises that Xa3/Xa26-2 gene and its regulating DNA sequence that will derive from wild-rice are connected, change over to susceptible paddy rice with the genetic transformation carrier, and the improvement paddy rice is to the resistance of bacterial leaf-blight.
More detailed technical scheme sees that " embodiment " is described.
Description of drawings
Sequence table SEQ ID NO:1. is the dna sequence dna of the present invention's Xa3/Xa26-2 gene of cloning.
Fig. 1. the schema of evaluation of the present invention and separating clone rice bacterial blight resistance gene Xa3/Xa26-2 and checking Xa3/Xa26-2 gene function.
Fig. 2. the structure of Xa3/Xa26 gene and MRKa gene and PCR primer (arrow) position that is used to prepare dna probe in the rice variety bright extensive 63.
The dna probe of Fig. 3 .Xa3/Xa26 gene fragment and 9 BAC clones' results of hybridization.λ-ECoT14I is dna molecular size criteria marker (DNAladder; Available from Dalian TaKaRa company).
Fig. 4. Xa3/Xa26 gene family member's distribution and sequence homology in rice variety bright extensive 63 and the oryza officinalis.Each arrow is represented an Xa3/Xa26 family member and transcriptional orientation.Xa3/Xa26 and Xa3/Xa26-2 gene downstream have 1.4kb nucleotide sequence homology degree to reach 83% approximately.11.9kb section is to be used for the genetic transformation dna fragmentation.
Fig. 5. the structure of genetic transformation carrier pCAMBIA1301.
Fig. 6 .T 1For the reporter gene GUS in the genetic transformation plant and disease-resistant phenotype be divided into from.Illustrate with the closely linked Xa3/Xa26-2 gene of gus gene and disease-resistant phenotype be divided into from.Contrast is paddy rice susceptible variety Mudanjiang 8 (acceptor of genetic transformation).Lesion area is the data of inoculation bacterial leaf spot pathogenic bacteria PXO61 after two weeks.
Fig. 7. compare with contrast Mudanjiang 8, the genetic transformation plant (D101OM43) of carrying the Xa3/Xa26-2 gene has all strengthened the resistance of different bacterial leaf spot pathogenic bacterias.
Fig. 8 .Xa3/Xa26-2 gene structure.Arrow shows PCR primer location and the direction that is used for the gene structure analysis." ATG " and " TGA " is respectively translation initiation password and termination codon.Numeral is shown the Nucleotide number of each structure.
Embodiment
Early-stage Study result of the present invention shows that the resisting bacterial leaf-blight dominant gene Xa3/Xa26 that derives from long-grained nonglutinous rice (Oryza sativa L.ssp.indica) kind bright extensive 63 belongs to the multigene family member; The member of this family is positioned at paddy rice No. 11 chromosomal long-armed (Yang etc., 2003 with the form that is arranged in series; Sun etc., 2004,2006; Xiang etc. 2006).In bright extensive 63, Xa3/Xa26 family is made up of 4 members (Xa3/Xa26, MRKa, MRKc and MRKd), and the dna sequence dna homology between their coding region is 60% to 78% (Sun etc., 2004).Rich leucine of Xa3/Xa26 coding repeats (leucine-richrepeat, LRR) protein kinase proteinoid (Sun etc., 2004).Target gene in according to the present invention and Xa3/Xa26 gene order homology analysis and it in the Xa3/Xa26 family of oryza officinalis (Oryza officinalis) with other members' opposite position relation, determine that this gene is the allelotrope of Xa3/Xa26 gene, so called after Xa3/Xa26-2 gene (looking the Xa3/Xa26 gene is Xa3/Xa26-1).
Further definition the present invention in following examples.Fig. 1 has described the flow process of evaluation and separating clone Xa3/Xa26-2 gene and checking Xa3/Xa26-2 gene function.According to following description and these embodiment, those skilled in the art can determine essential characteristic of the present invention and under the situation that does not depart from spirit and scope of the invention, can make various changes and modification to the present invention, so that its suitable various uses and condition.
Embodiment 1: separating clone Xa3/Xa26-2 gene and gene structure analysis from oryza officinalis
1. identify and carry the large fragment DNA of Xa3/Xa26 dna homolog sequence
Researchist of the present invention at first uses the specific PCR primer RKa-11L (5 '-TTGGCTTGAACGGCTTAACT-3 ') of the specific PCR primer RKb-3 ' race2 (5 '-TGGTCAAATACCGGAAGGAG-3 ') of Xa3/Xa26 gene and RKb-2R (5 '-CAGTCCACCACATGGACAAG-3 ') and Xa3/Xa26 family member MRKa gene and RKa-1R (5 '-AAGATGAAATATGCTCGGTGGT-3 ') to amplify the dna fragmentation of Xa3/Xa26 gene and MRKa, each about 1kb (Fig. 2) of amplification length from bright extensive 63.These two sections pcr amplification products are mixed genome BAC (bacterialartificial chromosome) library (Ammiraju etc., 2006) of screening oryza officinalis (Oryza officinalis) as probe, identified 9 BAC clone.These 9 BAC clone (Ammiraju etc., 2006) are so kind as to give by Rod professor Wing of U.S. University of Arizona university.To screen to such an extent that BAC clones enlarged culturing, adopt standard base (SB) cracking process separation and Extraction BAC plasmid (Sambrook and Russell, 2001).With gained BAC plasmid with Hind III complete degestion, electrophoresis, be transferred to nylon membrane; Hybridize (Sambrook and Russell, 2001) with the nylon membrane that is loaded with the BAC plasmid respectively with above-mentioned Xa3/Xa26 gene fragment probe and MRKa gene fragment probe then.The results of hybridization of making probe with the Xa3/Xa26 gene fragment shows that BAC clone OOBa0120J21 has maximum hybrid belts (Fig. 3), infers that this BAC clone may cover Xa3/Xa26 gene family section.Decision is checked order to the OOBa0120J21 clone.
2.BAC the structure in clone's shotgun library
Researchist of the present invention has at first made up the OOBa0120J21 clone's who is used to check order shotgun library.Adopt supersonic method to make up shotgun library (Sambrook and Russell, 2001).Circular plasmids 1.6 seconds (Ultrasonic Cell Disruptor Soniprep 150 is a SANYO company product, and concrete operations are with reference to the working instructions of this instrument) with ultrasonication OOBa0120J21 clone.Separate the dna fragmentation of about 2.0-3.5kb by 1% agarose gel electrophoresis, reclaim test kit (giving birth to worker's biotechnology company limited) purify DNA from running gel available from Chinese Shanghai with UNIQ-10 pillar DNA glue.DNA T behind the purifying 4Archaeal dna polymerase is mended flat terminal, be connected with dephosphorylized pUC19 carrier (available from the U.S. Amersham Bioscience company) flush end that the Restriction enzyme Sma I enzyme is cut, (electric conversion instrument is an eppendorf company product to electricity transformed into escherichia coli DH10B (available from American I nvitrogen company), the present embodiment applied voltage is 1800V, and concrete operations are with reference to the working instructions of this instrument).Choose the clone and detect the insertion clip size: extract the positive colony plasmid, and carry out electrophoresis with empty pUC19 plasmid and compare, reject false positive clone and cloning of small fragment, or with EcoRI and HindIII double digestion recombinant plasmid, detect and insert clip size, screening is inserted the suitable clone of clip size and is used for order-checking as the shotgun library.
3.Shotgun the order-checking in library
Adopt M13-F (5 '-GTAAAACGACGGCCAGT-3 ') and M13-R 5 '-CAGGAAACAGCTATGAC-3 ') sequencing kit (BigDye Kit) of universal primer (giving birth to worker's biotechnology company limited), U.S. Perkin Elmer company available from Chinese Shanghai, according to the test kit specification sheets with the terminal cessation method of dideoxy nucleotide respectively from the shotgun library clone two ends of random choose check order.
4. the splicing of original series
Use Squencer 4.5 softwares (U.S. Gene Codes Corporation) splicing sequence.Automatically remove relatively poor sequence of end sequencing and pUC19 carrier sequence with Squencer4.5 software; Software is not removed the then deletion by hand of clean sequence.The DNA of bacteria sequence of the chip sequence of BAC carrier and pollution is removed by the method (Altschul etc., 1997) that compares with the BAC sequence or BLAST analyzes.With Squencer 4.5 softwares to the parameter that two sequences splices be: overlap length (Mini Overlap) is greater than 20bp (base pair), and the consistence of overlap (Mini Match) is greater than 85%.Each base is established a capital really will be with reference to a plurality of shotgun fragment sequences that overlap this site.For the zone that is covered by shotgun fragment sequence sequence verification once more, to guarantee the accuracy of base.
5.DNA sequential analysis
At first use Blastn and Blastx method (Altschul etc., 1997) to analyze institute's calling sequence.Adopt Fgenesh (http://www.softberry.ru/berry.phtml) (Salamov and Solovyev then, 2000) and GeneMark.hmm (http://exon.gatech.edu/GeneMark/eukhmm.cgi) (Besemer and Borodovsky, 2005) software analysis predicted gene structure, analytical results further uses Blastp method (Altschul etc., 1997) to determine.Article two, or the comparative analysis of many Nucleotide or aminoacid sequence use BLAST2 sequence method (Tatusova etc., 1999) and ClustalW method (http://www.ebi.ac.uk).
BAC clone OOBa0120J21 order-checking and sequence assembly are formed three big sequence fragments, and its length is respectively 84.1kb, 25.8kb and 3.3kb.Sequential analysis finds to have 4 genes encoding LRR-protein kinase proteinoids on the fragment of 84.1kb, with the product of rice bacterial blight resistance gene Xa3/Xa26 coding in various degree homology is arranged, they are named as OoRKa, OoRKb1, OoRKb and OoRKf (Fig. 4).With Fgenesh, GeneMark.hmm and Blastx analysis revealed, OoRKa, OoRKb and OoRKf are 3 complete genes, and OoRKb1 is an imperfect gene (Fig. 4).The transcriptional orientation of OoRKa and OoRKb is identical, and the transcriptional orientation of OoRKf opposite with OoRKa and OoRKb (Fig. 4).
Xa3/Xa26 gene family section in this section and the paddy rice bright extensive 63 is compared analysis.The homology degree of finding the MRKa gene in the OORKa gene and bright extensive 63 in the oryza officinalis reaches 80%, the OoRKb gene in the oryza officinalis and and bright extensive 63 in Xa3/Xa26 (being called MRKb again) dna homolog degree up to 95%; And OoRKb and MRKb gene downstream have 1.4kb section homology degree to reach 83% approximately, so OoRKb is the allelotrope of Xa3/Xa26, we name this gene is Xa3/Xa26-2 (Fig. 4).
The functional verification of embodiment 2:Xa3/Xa26-2 gene
1. the structure of genetic transformation carrier
Used carrier of the present invention is pCAMBIA1301 (Fig. 5), and it is the rice genetic conversion carrier of using always (Sun etc., 2004).Go up enzyme with restriction enzyme EcoRV from BAC clone OOBa0120J21 and cut the fragment (Fig. 4) that back recovery 11.9kb comprises coding region, promotor and the afterbody sequence of Xa3/Xa26-2 gene.Simultaneously, cut genetic transformation carrier pCAMBIA1301 with the Restriction enzyme Sma I enzyme; Enzyme cuts complete, with SAP (shrimp alkaline phosphotase) dephosphorylation; Use chloroform: primary isoamyl alcohol (volume ratio 24: 1) extracting, purifying enzyme are cut product.Cut back to close fragment and the good carrier of purifying is done ligation with the enzyme that comprises the Xa3/Xa26-2 gene.Cut the checking positive colony by enzyme, the recombinant plasmid of acquisition is named as D101O.
2. genetic transformation and T 0Analyze for the genetic transformation plant
Adopt agriculture bacillus mediated genetic transforming method (Lin and Zhang, 2005) that D101O is imported paddy rice susceptible variety Mudanjiang 8 (Oryza sativa ssp.japonica).The genetic transformation plant that obtains is named as D101OM (previous section of this name is that D101O is the genetic transformation container name, and M represents rice varieties Mudanjiang 8).The present invention obtains independent transformed plant 33 strains altogether.To half transformed plant inoculation bacterial leaf-blight bacterial strain PXO61 wherein, second half transformed plant inoculation bacterial leaf-blight bacterial strain PXO341.The bacterial leaf spot pathogenic bacteria inoculation adopts leaf-cutting method that the paddy rice that becomes the strain phase is inoculated (Sun etc., 2004).Bacterial leaf-blight bacterial strain PXO61 and PXO341 are so kind as to give (Sun etc., 2004 by the Philippines International Rice Research Institute; Wu etc., 2008).The method of having published (Sun etc., 2004) is followed in the cultivation of bacterial leaf spot pathogenic bacteria.Inoculate 14 days " Invest, Then Investigate " lesion areas (scab length/sick leaf length * %).Compare with contrast Mudanjiang 8 and the negative plant of genetic transformation, the resistance of the positive genetic transformation plant of the overwhelming majority significantly strengthens (table 1).
Table 1.T 0Phenotype for genetic transformation plant (D101OM) inoculation bacterial leaf-blight bacterial strain PXO61 and PXO341
Figure GSA00000055186200061
Figure GSA00000055186200071
(1)Every strain genetic transformation gene plant inoculation 3-5 sheet leaf, 14 days " Invest, Then Investigate " scabs and sick leaf length, each data is from the mean+SD of a plurality of blades.
(2)Negative transformed plant, the positive transformed plant of other plant.
3. the coseparation analysis of genetic transformation plant
For the resistance against diseases of verifying the genetic transformation plant whether strengthen with the Xa3/Xa26-2 gene change over to relevant, at T 0T for resistance enhanced 3 strain genetic transformation plant (D101OM1, D101OM14, D101OM43) 1Carry out genotype and resistance coseparation analysis for family.Inoculation bacterial leaf spot pathogenic bacteria PXO61 inoculates 14 days " Invest, Then Investigate " lesion areas when boot stage.The DNA extraction of taking a sample simultaneously, the PCR primer Gus2F (5 '-CCAGGCAGTTTTAACGATCAGTTCGC-3 ') and Gus2R (5 '-GAGTGAAGATCCCTTTCTT GTTACCG-3 ') the augmentation detection positive genetic transformation plant of adopting the entrained reporter gene GUS (GRD beta-glucuronidase) of genetic transformation carrier.Analyzing resistance enhancing and the gus gene of finding the genetic transformation plant is divided into from (Fig. 6).The resistance enhancing that the genetic transformation plant is described is the existence because of the Xa3/Xa26-2 gene, and Xa3/Xa26-2 is a bacterial leaf spot resistant ospc gene.
4. the anti-spectrum analysis of genetic transformation plant
To T 1Inoculate different bacterial leaf-blight bacterial strains in boot stage for genetic transformation family D101OM43 and contrast Mudanjiang 8, analyze the anti-spectrum of genetic transformation plant.Above-mentioned leaf-cutting method is adopted in inoculation.Philippines bacterial leaf-blight bacterial strain PXO61, PXO71, PXO112, PXO341 are so kind as to give (Sun etc., 2004 by the Philippines International Rice Research Institute; Wu etc., 2008).Chinese white leaf blight bacterial strain is bacterial strain (Sun etc., 2004 commonly used; Li etc., 2009).Japanese strain T7174 also is a bacterial leaf-blight bacterial strain (Cao etc., 2007) commonly used.Compare with genetic transformation acceptor rice varieties Mudanjiang 8, the genetic transformation plant of carrying the Xa3/Xa26-2 gene has significantly strengthened (P<0.01) to the resistance (Fig. 7) of different bacterial leaf-blight bacterial strains.The lesion area of genetic transformation plant just contrasts 12% to 75% of Mudanjiang 8.These presentation of results Xa3/Xa26-2 gene pairs bacterial leaf spot pathogenic bacteria has resistance of wide spectrum.
5.Xa3/Xa26-2 gene structure and coded product analysis
Researchist of the present invention utilizes transfer-gen plant (D101OM) to analyze the structure of Xa3/Xa26-2 gene.TRIzol Reagent (American I nvitrogen company) is adopted in the extracting of total RNA of transfer-gen plant, and working method is undertaken by the specification sheets that company provides.
To be used for DNA enzyme I (the American I nvitrogen company) processing of total RNA of reverse transcription with no RNA enzymic activity earlier, room temperature was placed 15 minutes, removed the DNA that may exist among total RNA and polluted; Again total RNA was handled deactivation DNA enzyme I 10 minutes at 65 ℃.With SuperScript III ThermoScript II (American I nvitrogen company), carry out reverse transcription by its specification sheets that provides.Adopt PCR primer RKb3F and RKb2R (table 2) amplifying genom DNA and the RNA reverse transcription product of crossing over the prediction introne position, the RT-PCR product is littler than genome amplification product, illustrates that there is an intron (Fig. 8) really in this section.Adopt other primer (table 2) of Xa3/Xa26-2 constant gene segment C to carry out reverse transcription (RT)-pcr analysis, do not find the existence of other intron again.
The gene terminal sequence analysis adopts the Clontech SMARTer RACE cDNA Amplification Kit of company test kit, according to the test kit specification sheets, by RACE (rapid amplification of cDNA end) analytical procedure, determine 5 ' and 3 ' end sequence of Xa3/Xa26-2 gene.
Table 2. is used for the gene-specific primer of RT-PCR and RACE analysis
Figure GSA00000055186200081
Adopt above-mentioned dna sequencing method, the RT-PCR product is checked order.The cDNA sequence and the genome sequence of comparative analysis Xa3/Xa26-2 gene determine that this gene is made up of 3600 Nucleotide, comprise two exons and an intron (Fig. 8).First exon is formed (the 3238-6191bp place that is positioned at sequence table SEQ ID NO:1) by 2954 Nucleotide, (untranslated region UTR) (is positioned at the 3238-3283bp place of sequence table SEQ ID NO:1) and the coding regions (being positioned at the 3284-6191bp place of sequence table SEQ ID NO:1) of 2908 Nucleotide compositions wherein to comprise 5 ' the end non-translational region be made up of 46 Nucleotide; Intron is formed (the 6192-6294bp place that is positioned at sequence table SEQ ID NO:1) by 103 Nucleotide; Second exon formed (the 6295-6837bp place that is positioned at sequence table SEQ ID NO:1) by 543 Nucleotide, wherein comprises coding region of being made up of 368 Nucleotide (being positioned at the 6295-6662bp place of sequence table SEQ ID NO:1) and 3 ' the end UTR (being positioned at the 6663-6837bp place of sequence table SEQ ID NO:1) that is made up of 175 Nucleotide.
LRR receptor kinase proteinoid of forming by 1092 amino acid of Xa3/Xa26-2 genes encoding.The proteic amino acid consistence of XA3/XA26-2 albumen and XA3/XA26 is 92%, and amino acid whose homology is 95%.
Reference
Chu Zhaohui, Wang Shi is flat, (2007), resistant gene separating clone, structure and function and molecular evolution are seen: Zhang Qi chief editor, the heredity of bacterial blight of rice resistance and improvement.Beijing: Science Press, pp.349-377.
Cross Chong Jian (1995) Crop in China disease and pest.The chief editor of Plant Protection institute, Chinese Academy of Agricultral Sciences, Chinese agriculture press, pp.14-24.
Tan Guangxuan appoints Xiang, Weng Qingmei, Shi Zhenying, Zhu Lili, He Guangcun, the location of a new gene of resisting bacterial leaf-blight of oryza officinalis transformation offspring, Acta Genetica Sinica, (2004) 31:724-729.
Wang Chunlian, ZhaoBing Yu, Zhang Qi, Zhao Kaijun, Xing Quandang, the evaluation of bacterial blight of rice new resistance source Y238 and near isogenic line thereof are cultivated, plant genetic resources journal, (2004) 5:26-30.
Zhang Qi, ZhaoBing Yu, Zhao Kaijun, the evaluation of the new gene Xa23 of anti-bacterial blight of rice of common wild-rice and molecule marker location, Acta Agronomica Sinica, (2000) 26:536-542.
Altschul?SF,Madden?TL,Schaffer?AA,Zhang?J,Zhang?Z,Miller?W,Lipman?DJ(1997)GappedBLAST?and?PSI-BLAST:a?new?generation?of?protein?database?search?programs.NucleicAcids?Res.25:3389-3402.
Amante-Bordeos?A,Sitch?LA,Nelson?R,Dalmacio?RD,Oliva?NP,Aswidinnoor?H,Leung?H(1992)Transfer?of?bacterial?blight?and?blast?resistance?from?the?tetraploid?wild?rice?Oryza?minuta?tocultivated?rice,Oryza?sativa.Theor.Appl.Genet.84:345-354.
Ammiraju?JS,Luo?M,Goicoechea?JL,Wang?W,Kudrna?D,Mueller?C,Talag?J,Kim?H,SisnerosNB,Blackmon?B,Fang?E,Tomkins?JB,Brar?D,MacKill?D,McCouch?S,Kurata?N,Lambert?G,Galbraith?DW,Arumuganathan?K,Rao?K,Walling?JG,Gill?N,Yu?Y,SanMiguel?P,SoderlundC,Jackson?S,Wing?RA(2006)The?Oryza?bacterial?artificial?chromosome?library?resource:construction?and?analysis?of?12?deep-coverage?large-insert?BAC?libraries?that?represent?the?10genome?types?of?the?genus?Oryza.Genome?Res.16:140-147.
Besemer?J,Borodovsky?M(2005)GeneMark:web?software?for?gene?finding?in?prokaryotes,eukaryotes?and?viruses.Nucleic?Acids?Res.33:451-454.
Cao?Y,Ding?X,Cai?M,Zhao?J,Lin?Y,Li?X,Xu?C,Wang?S(2007)The?expression?pattern?of?a?ricedisease?resistance?gene?Xa3/Xa26?is?differentially?regulated?by?the?genetic?backgrounds?anddevelopmental?stages?that?influence?its?function.Genetics?177:523-533.
Chisholm?ST,Coaker?G,Day?B,Staskawicz?BJ(2006)Host-microbe?interactions:shaping?theevolution?of?the?plant?immune?response.Cell?124:803-814.
Gu?K,Yang?B,Tian?D,Wu?L,Wang?D,Sreekala?C,Yang?F,Chu?Z,Wang?GL,White?FF,Yin?Z.(2005)R?gene?expression?induced?by?a?type-III?effector?triggers?disease?resistance?in?rice.Nature?435:1122-1125.
Li?G,Song?CF,Pang?XM,Yang?Y,Wang?JS(2009)Analysis?of?pathotypic?and?genotypic?diversityof?Xanthomonas?oryzae?pv.oryzae?in?China.J.Photopathol.157:208-218.
Lin?YJ,Zhang?Q(2005)Optimising?the?tissue?culture?conditions?for?high?efficiency?transformationof?indica?rice.Plant?Cell?Rep.23:540-547.
Khush?GS,Bacalangco?E,Ogawa?T(1990)A?new?gene?for?resistance?to?bacterial?blight?from?O.longistaminate.Rice?Genet.Newslett.7:121-122.
Salamov?A,Solovyev?V(2000)Ab?initio?gene?finding?in?Drosophila?genomic?DNA.Genome?Res.,10:516-522.
Sambrook?J,Russell?D(2001)Molecular?cloning:A?laboratory?manual.Cold?Spring?Harbor,NY:Cold?Spring?Harbor?Laboratory?Press.
Song?WY,Wang?GL,Chen?LL,Kim?HS,Pi?LY,Holsten?T.Gardner?J,Wang?B,Zhai?WX,Zhu?LH,
Fauquet?C,Ronald?P(1995)A?receptor?kinase-like?protein?encoded?by?the?rice?diseaseresistance?gene,Xa21.Science?279:1804-1806.
Sun?X,Cao?Y,Yang?Z,Xu?C,Li?X,Wang?S,Zhang?Q(2004)Xa26,a?gene?conferring?resistance?to
Xanthomonas?oryzae?pv.Oryzae?in?rice,encoding?a?LRR?receptor?kinase-like?protein.Plant?J.37:517-527.
Sun?X,Cao?Y,Wang?S(2006)Point?mutations?with?positive?selection?were?a?major?force?during?theevolution?ofa?receptor-kinase?resistance?gene?family?of?rice.Plant?Physiol.140:998-1008.
Tatusova?TA,Madden?TL(1999)BLAST2?Sequences,a?new?tool?for?comparing?protein?andnucleotide?sequences.FEMS?Microbiol.Lett.174:247-250.
Wang?GL,Song?WY,Ruan?DL,Sideris?S,Ronald?PC(1996)The?cloned?gene,Xa21,confersresistance?to?multiple?Xanthomonas?oryzae?pv.oryzae?isolates?in?transgenic?plants.Mol.Plant-Microbe?Interact.9:850-855.
Wu?X,Li?X,Xu?C,Wang?S(2008)Fine?genetic?mapping?of?xa24,a?recessive?gene?for?resistanceagainst?Xanthomonas?oryzae?pv.oryzae?in?rice.Theor.Appl.Genet.118:185-191.
Xiang?Y,Cao?Y,Xu?C,Li?X,Wang?S(2006)Xa3,conferring?resistance?for?rice?bacterial?blight?andencoding?a?receptor?kinase-like?protein,is?the?same?as?Xa26.Theor.Appl.Genet.113:1347-1355.
Yang?Z,Sun?X,Wang?S,Zhang?Q(2003)Genetic?and?physical?mapping?of?a?new?gene?for?bacterialblight?resistance?in?rice.Theor.Appl.Genet.106:1467-1472.
Sequence table
<110〉Hua Zhong Agriculture University
<120〉oryza officinalis resisting bacterial leaf-blight major gene Xa3/Xa26-2 and its application in the improvement paddy disease-resistant
<130>
<141>2010-03-17
<160>2
<170>PatentIn?version?3.3
<210>1
<211>11848
<212>DNA
<213>Oryza?sativa
<220>
<221>gene
<222>(3238)..(6837)
<220>
<221>5’UTR
<222>(3238)..(3283)
<220>
<221>CDS
<222>(3284)..(6191)
<220>
<221>Intron
<222>(6192)..(6294)
<220>
<221>CDS
<222>(6295)..(6662)
<220>
<221>3’UTR
<222>(6663)..(6837)
<400>1
tatcttagat?atgatgagca?tgtgcaccat?tagacgtata?ataaagataa?agggcatttt 60
ataatataga?ttatatcatt?ctatatcatt?ttataaacat?acatagccaa?agtcatgtgt 120
gatttacttt?aaatctaact?aaaaaaatca?tgtctacaat?aataagaatc?atagaaattt 180
aaaaaacaga?aaaactcaag?agcatatacc?ctaatagtaa?ataaaaatat?caatggctaa 240
tccctaggac?atataaaatt?ataaaggttt?gttaaacgtc?ctatacaacc?ctcctacagt 300
gtctattaaa?gtctttaaca?aataagagaa?aactttaaaa?ttcttctata?atagacaaag 360
catccaacac?ttaatcctca?ttaatttaat?gctcccatta?attttagcca?ttggtcatgt 420
caatgggtat?gtgtatacac?acattattta?ataaaaaaac?catccattca?agcgtgtttt 480
gtaatagaaa?attatttgag?atgtcaggtg?aggttgtagt?gacctgttgc?aaggttcaca 540
gggttgtagc?aagaatgacc?agcatcaagt?tgcaagaggt?tgccagccat?ctaatgtatc 600
actaaaagag?cccataggag?atatttgtgt?tttgttgatt?agagccacaa?ccaaaagaag 660
gcaacaagag?aaccccaaca?caaataattt?ttatgaataa?accttctctc?aactcaagta 720
tctatgtaat?attatttaag?tcgcatcagc?ttgaaacatg?cataatttga?taacatggta 780
tatctagaag?gctatatgtt?agaacattca?attaacccac?cttagaaata?ataatactta 840
gcaagaactc?atgcctgtaa?caaatttcta?tctttaattt?tgatatttaa?ttttatcact 900
gaaaaggggg?agatagagta?tgtgaatatt?gtccaatttg?caagctaaat?gtttttttaa 960
atgtgatagt?tcagttggtt?actgattctc?aagtattatc?atactattca?agagtagagc?1020
aagcaataat?catatccaaa?acagatacaa?agaacttaca?tatcatagat?aattttaaca?1080
tttagaaaca?cgaagatgcc?tgcgcaaccg?cgtgggctac?cttcctagtt?aatataaata?1140
tgtaaaggta?taacttaaga?ttataattta?tttgatgata?aaacaagtat?ttatgtatat 1200
atatatatat?atatttaata?aaatgaatga?tcaaacgcta?tacgaaaaat?caacggcgtc 1260
gtgcattttg?aaatggagga?agtatttttt?ttcgaggtaa?tcgttatgtt?tgaggaaatg 1320
tggcatgagt?tcaccacttg?ccaacttgga?atataacaca?tcgtatcgtt?agtgttccat 1380
gcactaaaag?tctctttctt?tcccctttgg?aatgagaaca?atatagcttg?gtaatactgt 1440
tcatcttatt?cgcctttttc?ctcctttgga?aagggacagt?tgagcggtgg?tctggtggtt 1500
acatctaaaa?catgccatga?gaagctttgg?cactgtgtgt?cttgtgcttc?aaatggctcg 1560
acattacaac?ctaataaatc?tgaacacttt?gttccatctt?ggacttcaga?gcactggtac 1620
ttcagtacat?gcccaagggt?agcttagaag?cactctgcac?tcagaacaag?gaaagcaatt 1680
aggctttctc?cagaggttgg?ttattatgct?agatgtgtca?atggcaatgg?aatacctaca 1740
tcatgagcac?tatgaggtgg?tcttacacta?cgatctgaag?cctagcaacg?tactatttga 1800
cgatgatatg?atggcacatg?tgggagactt?tggcattgca?aggttattgt?taggtgatga 1860
caactccatg?atctcagcta?gcatgccagg?aacagttggg?tacatggcac?caggtactta 1920
gtactagttt?ttgttgtctt?gctcaaacat?tgcctgatat?tttattatta?tcaagtaggg 1980
tgcaactaat?ttttggttgt?ctatctttct?taagcagagt?atggggctct?tggaaaagca 2040
tcacagaaga?gcgacgtgtt?cagctacggg?atcatgctac?tcgaagtgtt?cactaggaag 2100
agatccacag?atgttatgtt?tgtaggagaa?ctgaacatca?ggcagtgggt?tcaccaggcg 2160
tttcctgcag?agcttgtcca?tttgatggac?tgccaacttc?tacaggatgg?ctcttcttct 2220
tcttccagta?acatgcatgg?cttccttgtg?ccagtgttcg?agctgggctt?gctctgctca 2280
gctgactccc?cggagcaaag?gatggcgatg?agcgatgtgg?tcgtgacact?gaagaagatt 2340
aggaaggact?atgtcaaatt?gatggcaacc?acagggagcg?ctgtgcagca?atgatccatc 2400
gctctctcgt?ggtatatgag?cgaataaaat?atatatcctt?tgcatccatt?tcttcttctg 2460
catcaggaat?agcatcagtg?catgcccagt?gatcgattac?cctatttgtg?tacggttgaa 2520
ttgaatatat?ctgtggtgct?tcaggttcag?caataattta?gttggtgtaa?aaatgtgatt 2580
gaactgttgg?tcaataaatt?tgcatgatga?aaatgggagt?agatgatgtg?ctgcttatgt 2640
tttcttattt?ctggccaaaa?taaataaaaa?aaggaatatt?ctgggcacag?catcacaact 2700
ccggctcaat?cagccttaaa?cagccacagt?taacagtcct?aagcagagaa?acttaacaag 2760
cttttcaggc?aaacaaaaca?tcaaaaggtc?cacaagacaa?cagggtcttc?agggagcaca 2820
tcttcaggct?gtgatgcaaa?aaggatctga?cagccgtatg?ataactactg?aacaggtcgt 2880
gtatattgat?aaggtccgcc?actaaccacc?caatcaacaa?aagagtaagg?ccgttgccgt 2940
caaattgttt?gacagaaaaa?aaaaatttca?gtgagtgtat?ggctgatgac?cgagcgacac 3000
agctatcata?tctagcgtgt?cgtgcacacc?gcgatctgct?gaatatatat?tttgtgatga 3060
ctttattttc?cagcgtttac?ttagtagtgc?tgccaaatat?ttatgactgg?aatttgactg 3120
gagggagtat?catttaagtt?tctttcactt?tctgagagca?acagtcaagg?tcgtccgaga 3180
tgttgaaagc?aagctagcac?tactgtgcta?aataaagctc?aacttgatcg?tcactgtgaa 3240
gtatgatgca?ctcttgttgc?caatgcatca?cacacaacca?gac?atg?gcg?ctt?gga 3295
Met?Ala?Leu?Gly
1
ttg?cca?gta?tgg?att?ttc?gtt?gcg?ttg?ttg?atc?gct?ttg?tcc?act?gtg 3343
Leu?Pro?Val?Trp?Ile?Phe?Val?Ala?Leu?Leu?Ile?Ala?Leu?Ser?Thr?Val
5 10 15 20
cct?tgt?gct?tcc?tct?cta?ggt?ccg?agc?aag?agt?aac?ggc?agt?gac?atc 3391
Pro?Cys?Ala?Ser?Ser?Leu?Gly?Pro?Ser?Lys?Ser?Asn?Gly?Ser?Asp?Ile
25 30 35
gac?ctc?gct?gca?ctt?ttg?gct?tta?aaa?tcg?cag?ttc?tct?gat?cct?gat 3439
Asp?Leu?Ala?Ala?Leu?Leu?Ala?Leu?Lys?Ser?Gln?Phe?Ser?Asp?Pro?Asp
40 45 50
aac?att?ctt?gcc?ggc?aac?tgg?acc?att?ggc?acg?cca?ttc?tgc?caa?tgg 3487
Asn?Ile?Leu?Ala?Gly?Asn?Trp?Thr?Ile?Gly?Thr?Pro?Phe?Cys?Gln?Trp
55 60 65
atg?ggt?gtc?tcg?tgc?agc?cac?cgc?cgg?cag?cgc?gtc?acc?gcc?ctg?aaa 3535
Met?Gly?Val?Ser?Cys?Ser?His?Arg?Arg?Gln?Arg?Val?Thr?Ala?Leu?Lys
70 75 80
ctg?cca?aac?gtt?cct?ctc?caa?gga?gag?ctc?agc?tct?cac?ctt?ggt?aac 3583
Leu?Pro?Asn?Val?Pro?Leu?Gln?Gly?Glu?Leu?Ser?Ser?His?Leu?Gly?Asn
85 90 95 100
att?tct?ttt?ctc?ttg?atc?ctc?aac?ctc?acc?aac?acc?ggc?ctc?aca?ggc 3631
Ile?Ser?Phe?Leu?Leu?Ile?Leu?Asn?Leu?Thr?Asn?Thr?Gly?Leu?Thr?Gly
105 110 115
ttg?gtg?ccg?gat?tat?ata?gga?agg?cta?cgt?cgc?ctt?gag?atc?ctt?gat 3679
Leu?Val?Pro?Asp?Tyr?Ile?Gly?Arg?Leu?Arg?Arg?Leu?Glu?Ile?Leu?Asp
120 125 130
ctc?ggc?cac?aat?gcc?ttg?tca?ggt?ggc?gtc?cca?atc?gcc?ata?ggg?aac 3727
Leu?Gly?His?Asn?Ala?Leu?Ser?Gly?Gly?Val?Pro?Ile?Ala?Ile?Gly?Asn
135 140 145
ctc?acg?agg?ctt?cag?cta?ctt?aat?cta?cag?ttt?aac?cag?cta?tat?ggt 3775
Leu?Thr?Arg?Leu?Gln?Leu?Leu?Asn?Leu?Gln?Phe?Asn?Gln?Leu?Tyr?Gly
150 155 160
cca?atc?cca?gca?gag?ctg?cag?ggg?ctg?cac?agt?ctt?gac?agc?atg?aat 3823
Pro?Ile?Pro?Ala?Glu?Leu?Gln?Gly?Leu?His?Ser?Leu?Asp?Ser?Met?Asn
165 170 175 180
ctc?cgt?cac?aat?tac?ctc?act?gga?tca?att?ccg?gac?aat?ctg?ttc?aac 3871
Leu?Arg?His?Asn?Tyr?Leu?Thr?Gly?Ser?Ile?Pro?Asp?Asn?Leu?Phe?Asn
185 190 195
aac?aca?tct?ttg?cta?act?tat?ctc?aac?gtt?ggt?aac?aat?agc?ctg?tca 3919
Asn?Thr?Ser?Leu?Leu?Thr?Tyr?Leu?Asn?Val?Gly?Asn?Asn?Ser?Leu?Ser
200 205 210
gga?ccg?ata?ccg?ggt?tgc?atc?ggt?tcc?ttg?cca?atc?ctc?caa?tac?ctt 3967
Gly?Pro?Ile?Pro?Gly?CysIle?Gly?Ser?Leu?Pro?Ile?Leu?Gln?Tyr?Leu
215 220 225
aac?ttg?cag?gcc?aat?aac?tta?act?ggg?gcg?gtg?cca?cca?gcc?atc?ttc 4015
Asn?Leu?Gln?Ala?Asn?Asn?Leu?Thr?Gly?Ala?Val?Pro?Pro?Ala?Ile?Phe
230 235 240
aac?atg?tct?aaa?tta?agt?act?att?tct?ctt?ata?tcg?aat?ggt?tta?act 4063
Asn?Met?Ser?Lys?Leu?Ser?Thr?Ile?Ser?Leu?Ile?Ser?Asn?Gly?Leu?Thr
245 250 255 260
ggc?cct?atc?cct?ggt?aat?aca?agt?ttc?agc?ctc?cca?gtt?cta?caa?tgg 4111
Gly?Pro?Ile?Pro?Gly?Asn?Thr?Ser?Phe?Ser?Leu?Pro?Val?Leu?Gln?Trp
265 270 275
ttc?gcc?atc?agt?aaa?aac?aat?ttc?ttt?ggt?caa?att?cca?ctg?ggg?ctc 4159
Phe?Ala?Ile?Ser?Lys?Asn?Asn?Phe?Phe?Gly?Gln?Ile?Pro?Leu?Gly?Leu
280285290
gca?gcg?tgt?cca?tac?ctc?caa?gtt?att?gcc?ctg?cct?tat?aat?tta?ttc 4207
Ala?Ala?Cys?Pro?Tyr?Leu?Gln?Val?Ile?Ala?Leu?Pro?Tyr?Asn?Leu?Phe
295300305
gag?ggt?gtt?ttg?cca?cca?tgg?ctg?ggc?aag?ttg?acg?agt?ctt?aat?gcc 4255
Glu?Gly?Val?Leu?Pro?Pro?Trp?Leu?Gly?Lys?Leu?Thr?Ser?Leu?Asn?Ala
310315320
atc?tcc?ttg?ggt?tgg?aat?aac?ctt?gat?gct?ggc?ccg?atc?cct?act?gaa 4303
Ile?Ser?Leu?Gly?Trp?Asn?Asn?Leu?Asp?Ala?Gly?Pro?Ile?Pro?Thr?Glu
325 330 335 340
ctt?agc?aac?ctc?acc?atg?ctg?gca?gtc?tta?gat?ttg?tcg?acg?tgc?aac 4351
Leu?Ser?Asn?Leu?Thr?Met?Leu?Ala?Val?Leu?Asp?Leu?Ser?Thr?Cys?Asn
345 350 355
ctg?aca?gga?aac?atc?cct?gca?gat?att?ggg?cac?cta?ggc?caa?ctt?tca 4399
Leu?Thr?Gly?Asn?Ile?Pro?Ala?Asp?Ile?Gly?His?Leu?Gly?Gln?Leu?Ser
360 365 370
tgg?ttg?cat?ctt?gcg?agg?aat?caa?cta?aca?gga?cct?att?cct?gct?tct 4447
Trp?Leu?His?Leu?Ala?Arg?Asn?Gln?Leu?Thr?Gly?Pro?Ile?Pro?Ala?Ser
375 380 385
ctt?ggc?aac?ctt?tca?tcg?tta?gca?atc?ctg?cta?ttg?aaa?gga?aac?ttg 4495
Leu?Gly?Asn?Leu?Ser?Ser?Leu?Ala?Ile?Leu?Leu?Leu?Lys?Gly?Asn?Leu
390 395 400
ttg?gat?gga?tca?tta?cca?gcg?aca?gtt?gat?agc?atg?aac?tca?cta?act 4543
Leu?Asp?Gly?Ser?Leu?Pro?Ala?Thr?Val?Asp?Ser?Met?Asn?Ser?Leu?Thr
405 410 415 420
gca?gtt?gat?gtt?act?gaa?aac?aat?cta?cac?gga?gat?ctc?aac?ttc?ctt 4591
Ala?Val?Asp?Val?Thr?Glu?Asn?Asn?Leu?His?Gly?Asp?Leu?Asn?Phe?Leu
425 430 435
tct?act?gtt?tcc?aat?tgt?aga?aag?ctt?tct?acc?ctt?caa?atg?gac?ttt 4639
Ser?Thr?Val?Ser?Asn?Cys?Arg?Lys?Leu?Ser?Thr?Leu?Gln?Met?Asp?Phe
440 445 450
aat?tat?atc?acc?gga?agc?ctc?cca?gac?tat?gtt?ggg?aac?ctg?tcg?tca 4687
Asn?Tyr?Ile?Thr?Gly?Ser?Leu?Pro?Asp?Tyr?Val?Gly?Asn?Leu?Ser?Ser
455 460 465
cag?ctg?aaa?tgg?ttc?acg?tta?tct?aac?aac?aag?tta?act?ggc?acg?ctt 4735
Gln?Leu?Lys?Trp?Phe?Thr?Leu?Ser?Asn?Asn?Lys?Leu?Thr?Gly?Thr?Leu
470 475 480
cca?gct?acc?att?tca?aat?tta?act?ggt?ctt?gag?gtg?ata?gat?ctt?tcg 4783
Pro?Ala?Thr?Ile?Ser?Asn?Leu?Thr?Gly?Leu?Glu?Val?Ile?Asp?Leu?Ser
485 490 495 500
cat?aac?caa?ctg?cgc?aat?gca?att?cca?gaa?tca?atc?atg?acg?att?gag 4831
His?Asn?Gln?Leu?Arg?Asn?Ala?Ile?Pro?Glu?Ser?Ile?Met?Thr?Ile?Glu
505 510 515
aat?ctc?caa?tgg?ctt?gac?cta?agt?gga?aat?agc?ttg?tct?ggc?ttc?atc 4879
Asn?Leu?Gln?Trp?Leu?Asp?Leu?Ser?Gly?Asn?Ser?Leu?Ser?Gly?Phe?Ile
520 525 530
cca?tcg?aat?act?gca?ctt?cta?agg?aac?att?gta?aaa?cta?ttc?ctt?gaa 4927
Pro?Ser?Asn?Thr?Ala?Leu?Leu?Arg?Asn?Ile?Val?Lys?Leu?Phe?Leu?Glu
535 540 545
agc?aac?gaa?att?tct?ggc?tcc?ata?cca?aag?gac?atg?aga?aac?ctc?act 4975
Ser?Asn?Glu?Ile?Ser?Gly?Ser?Ile?Pro?Lys?Asp?Met?Arg?Asn?Leu?Thr
550 555 560
aat?cta?gag?cac?ctt?cta?ttg?tct?gat?aac?caa?tta?acg?tca?acc?gtg 5023
Asn?Leu?Glu?His?Leu?Leu?Leu?Ser?Asp?Asn?Gln?Leu?Thr?Ser?Thr?Val
565 570 575 580
cca?cca?agc?tta?ttt?cat?ctt?gat?aaa?atc?atc?agg?cta?gat?ctt?tct 5071
Pro?Pro?Ser?Leu?Phe?His?Leu?Asp?Lys?Ile?Ile?Arg?Leu?Asp?Leu?Ser
585 590 595
cga?aac?ttc?ttg?agt?ggt?gca?ctg?ccg?gtt?gat?gta?ggg?tac?ttg?aag 5119
Arg?Asn?Phe?Leu?Ser?Gly?Ala?Leu?Pro?Val?Asp?Val?Gly?Tyr?Leu?Lys
600 605 610
caa?att?acc?atc?ata?gat?ctc?tct?gac?aac?agc?ttt?tct?ggc?agc?atc 5167
Gln?Ile?Thr?Ile?Ile?Asp?Leu?Ser?Asp?Asn?Ser?Phe?Ser?Gly?Ser?Ile
615 620 625
cca?gat?tcg?ata?gga?gaa?ctt?cag?atg?tta?aca?cac?ctg?aat?cta?tca 5215
Pro?Asp?Ser?Ile?Gly?Glu?Leu?Gln?Met?Leu?Thr?His?Leu?Asn?Leu?Ser
630 635 640
gct?aac?gaa?ttc?tat?gat?tct?gtt?cca?gac?tct?ttt?ggt?aat?tta?act 5263
Ala?Asn?Glu?Phe?Tyr?Asp?Ser?Val?Pro?Asp?Ser?Phe?Gly?Asn?Leu?Thr
645 650 655 660
ggc?ttg?caa?act?ttg?gac?ata?tcc?cat?aac?aat?att?tct?ggt?acc?atc 5311
Gly?Leu?Gln?Thr?Leu?Asp?Ile?Ser?His?Asn?Asn?Ile?Ser?Gly?Thr?Ile
665 670 675
cca?aac?tac?ttg?gct?aat?ttt?acg?acc?ctt?gtt?agc?ttg?aac?cta?tct 5359
Pro?Asn?Tyr?Leu?Ala?Asn?Phe?Thr?Thr?Leu?Val?Ser?Leu?Asn?Leu?Ser
680 685 690
ttc?aat?aaa?cta?cat?ggt?caa?ata?ccg?gaa?gga?ggt?atc?ttt?gca?aac 5407
Phe?Asn?Lys?Leu?His?Gly?Gln?Ile?Pro?Glu?Gly?Gly?Ile?Phe?Ala?Asn
695 700 705
atc?act?tta?caa?tac?ttg?gtg?ggg?aac?tca?ggg?cta?tgt?ggt?gct?gcc 5455
Ile?Thr?Leu?Gln?Tyr?Leu?Val?Gly?Asn?Ser?Gly?Leu?Cys?Gly?Ala?Ala
710 715 720
cgt?tta?gga?ttc?cca?cca?tgc?caa?acc?acc?tcc?ccc?aag?aga?aat?ggt 5503
Arg?Leu?Gly?Phe?Pro?Pro?Cys?Gln?Thr?Thr?Ser?Pro?Lys?Arg?Asn?Gly
725 730 735 740
cac?atg?cta?aaa?tac?ttg?cta?ccg?act?ata?atc?ata?gta?gtt?gga?gtt 5551
His?Met?Leu?Lys?Tyr?Leu?Leu?Pro?Thr?Ile?Ile?Ile?Val?Val?Gly?Val
745 750 755
gta?gct?tgt?tgc?ttg?tat?gta?atg?att?aga?aag?aaa?gct?aac?cat?caa 5599
Val?Ala?Cys?Cys?Leu?Tyr?Val?Met?Ile?Arg?Lys?Lys?Ala?Asn?His?Gln
760 765 770
aag?att?tct?gct?ggt?atg?gct?gac?ctt?atc?agc?cat?caa?ttt?ctg?tcc 5647
Lys?Ile?Ser?Ala?Gly?Met?Ala?Asp?Leu?Ile?Ser?His?Gln?Phe?Leu?Ser
775 780 785
tat?cat?gag?ctt?ctt?cgt?gca?acc?gat?gat?ttc?agt?gat?gat?aac?atg 5695
Tyr?His?Glu?Leu?Leu?Arg?Ala?Thr?Asp?Asp?Phe?Ser?Asp?Asp?Asn?Met
790 795 800
ttg?ggc?ttc?gga?agc?ttt?gga?aaa?gtt?ttt?aag?gga?cag?ttg?agc?aac 5743
Leu?Gly?Phe?Gly?Ser?Phe?Gly?Lys?Val?Phe?Lys?Gly?Gln?Leu?Ser?Asn
805 810 815 820
ggt?atg?gtg?gtt?gcc?ata?aaa?gta?ata?cac?cag?cat?ctg?gaa?cat?gcc 5791
Gly?Met?Val?Val?Ala?Ile?Lys?Val?Ile?His?Gln?His?Leu?Glu?His?Ala
825 830 835
atg?aga?agc?ttt?gac?acc?gag?tgt?cgt?gta?ctc?cga?att?gct?cga?cat 5839
Met?Arg?Ser?Phe?Asp?Thr?Glu?Cys?Arg?Val?Leu?Arg?Ile?Ala?Arg?His
840 845 850
cgc?aac?ctg?ata?aag?att?ctg?aac?act?tgt?tcc?aac?ctg?gac?ttc?aga 5887
Arg?Asn?Leu?Ile?Lys?Ile?Leu?Asn?Thr?Cys?Ser?Asn?Leu?Asp?Phe?Arg
855 860 865
gca?ctc?gta?ctt?cag?tac?atg?ccc?aag?ggt?agc?tta?gaa?gca?ctc?ctg 5935
Ala?Leu?Val?Leu?Gln?Tyr?Met?Pro?Lys?Gly?Ser?Leu?Glu?Ala?Leu?Leu
870 875 880
cat?tca?gaa?caa?gga?aag?caa?tta?ggc?ttt?ctc?gag?agg?ttg?gat?att 5983
His?Ser?Glu?Gln?Gly?Lys?Gln?Leu?Gly?Phe?Leu?Glu?Arg?Leu?Asp?Ile
885 890 895 900
atg?cta?gat?gtg?tca?atg?gca?atg?gaa?tac?ctg?cat?cat?gag?cac?tat 6031
Met?Leu?Asp?Val?Ser?Met?Ala?Met?Glu?Tyr?Leu?His?His?Glu?His?Tyr
905 910 915
gag?gtg?gtc?tta?cac?tgc?gat?ttg?aag?cct?agc?aac?gta?cta?ttt?gac 6079
Glu?Val?Val?Leu?His?Cys?Asp?Leu?Lys?Pro?Ser?Asn?Val?Leu?Phe?Asp
920 925 930
gat?gat?atg?acg?gca?cat?gtg?gca?gac?ttt?ggc?att?gca?agg?ttg?ttg 6127
Asp?Asp?Met?Thr?Ala?His?Val?Ala?Asp?Phe?Gly?Ile?Ala?Arg?Leu?Leu
935 940 945
tta?ggt?gat?gac?aac?tcc?atg?atc?tca?gct?agc?atg?cca?gga?aca?gtt 6175
Leu?Gly?Asp?Asp?Asn?Ser?Met?Ile?Ser?Ala?Ser?Met?Pro?Gly?Thr?Val
950 955 960
ggg?tac?atg?gca?cca?g?gtacttagta?ctagtttttg?ttgtcttgct?caagcattgc 6231
Gly?Tyr?Met?Ala?Pro
965
tgatctttta?ttattatcaa?gtagggtgcg?actaattttt?ggtgactaac?ttttcttgag 6291
cag?ag tat?ggg?gct?cta?gga?aag?gcg?tca?cgg?aag?agc?gat?gtg?ttc 6338
Glu?Tyr?Gly?Ala?Leu?Gly?Lys?Ala?Ser?Arg?Lys?Ser?Asp?Val?Phe
975 980
agt?tac?ggg?atc?atg?ttg?ttt?gaa?gtg?ttc?act?ggg?aag?aga?ccc?aca 6386
Ser?Tyr?Gly?Ile?Met?Leu?Phe?Glu?Val?Phe?Thr?Gly?Lys?Arg?Pro?Thr
985 990 995 1000
gat?gct?atg?ttt?gtg gga?gaa?ctg?aac?atc agg?cag?tgg?gtt?cac 6431
Asp?Ala?Met?Phe?Val Gly?Glu?Leu?Asn?Ile Arg?Gln?Trp?Val?His
1005 1010 1015
cag?gcg?ttt?cct?gca gag?ctt?gtc?cat?gtg gtg?gac?tgc?caa?ctt 6476
Gln?Ala?Phe?Pro?Ala Glu?Leu?Val?His?Val Val?Asp?Cys?Gln?Leu
1020 1025 1030
cta?cat?gat?ggc?tct tct?tcc?agt?aac?atg cat?ggc?ttc?ctt?gtg 6521
Leu?His?Asp?Gly?Ser Ser?Ser?Ser?Asn?Met His?Gly?Phe?Leu?Val
1035 1040 1045
cca?gtg?ttc?gag?ctg ggc?ttg?ctc?tgc?tca gct?gac?tcc?cca?gac 6566
Pro?Val?Phe?Glu?Leu Gly?Leu?Leu?Cys?Ser Ala?Asp?Ser?Pro?Asp
1050 1055 1060
caa?agg?atg?gcg?atg agc?gat?gtg?gtc?gtg aca?ctg?aag?aag?att 6611
Gln?Arg?Met?Ala?Met Ser?Asp?Val?Val?Val Thr?Leu?Lys?Lys?Ile
1065 1070 1075
agg?aag?gac?tat?gtc aaa?ttg?atg?gca?acc aca?gag?aac?gct?gtg 6656
Arg?Lys?Asp?Tyr?Val Lys?Leu?Met?Ala?Thr Thr?Glu?Asn?Ala?Val
1080 1085 1090
cag?cag?tgattcatca?ctttcttgtg?gtatatgagc?gaatgaaatg?tatatccttt 6712
Gln?Gln
gcatccattt?cttcttctgc?attaggaaca?gcatcagtgc?atgcccagtg?atcgaataac 6772
ccttttgctt?ctatttgtgt?atggttgaat?tgaatatatc?tacggtgctt?caggttcagc 6832
aacaatttag?ttggtgtaaa?aatgtgattg?aactgctggt?cgataaattt?gcatcatgaa 6892
aatgaaaatg?ggagtagatg?atgtgctgct?tatattttcc?tatttctggc?caaatatata 6952
taaaaaagga?tattctcact?tgaaaacaga?atgaggtttg?ctttgtagac?attgggcctt 7012
tgtcgtgggc?ttctctggta?ccctgacatg?ctttatagcc?catgggccta?tgtttgtaat 7072
gggcttttgt?ttctttcgaa?tgactcaagg?tatattaagg?cctgtttgaa?cacttcggaa 7132
tattttgcgg?tggtagaggt?ggacactaaa?cgacgacata?ggtaaaatga?tatatagaaa 7192
caaaattaat?tcaaacgata?tactcatgct?ataaatttga?gatatggtaa?ttaataaaac 7252
ttcacatagg?caacgaaccg?tatatataac?agttaatgca?taataatggc?agagatttga 7312
taatgaatcc?tccaagattt?actcttgtga?ctctatataa?acagctgcaa?aatgaagcta 7372
ggtagtcagc?atatgcagta?gcttccttct?aaaagaagat?ctctcatctc?atcatggagc 7432
aacttctcaa?caagaaggct?gcagtgttct?tgttcatagc?tcttatggtg?atggctaccg 7492
taaatttctc?atcctgtcat?actacacaag?gtatatacct?ctggaattaa?tttctacatc 7552
acatccatat?atattgaaaa?cagtttaact?tgttctcgtt?tgcaatggct?ccatcacatc 7612
aatgaagcta?gaataatctg?atatagcctg?acaagtatat?gtgcatttta?cattttctgt 7672
atgaactatt?ttagctttct?gtaaaagtcg?ggtcattaac?aatataatga?tcttttctct 7732
aaaaacatgc?attttacatg?tgtatatata?taggtggata?tggagaaatg?gattcgtgca 7792
tggtccttga?acgttgcgat?atgaacaagt?gcatgagtgc?ctgccaagtc?aacaagtaca 7852
acggaggtca?gtgcgacggc?gagttgaacg?accactgctg?ctgtactgat?gaggccccgc 7912
acaaataata?gatttctctt?gtccaaatca?acgacgacgg?ttgtataatc?aacggcaatc 7972
ttattattga?ctgatgcaga?gattccataa?taaacttgca?gttgatgctt?gtaccaattc 8032
actcagtatg?tcaattagta?aaaggagaat?cccacgcaaa?tgtgcgggca?acttatttat 8092
tctttattaa?aagaataaat?tttatttaaa?gactgtagat?tatcttatgt?cattaaaaaa 8152
gaaatatctc?tatcctgaaa?ttgatgatag?actttgatac?actaaactaa?cttataagag 8212
tatctctcat?attaaaaaaa?gatcactatg?tcttggttat?atataaactc?tcctatcaca 8272
actacttatt?attctctcga?aaaagctaag?tacgttttta?atagatagaa?ttgcttatta 8332
aaaaacaaac?ataatacatc?attaatgcaa?taaaaaaatc?atctctattt?cattccgaag 8392
tgcacatgtc?tcacttgtgt?ctgaatgtat?aaatatttta?aaatgccatt?tctgtcaatt 8452
aatgaaagaa?aaccattaaa?attagatata?aatacccatg?taatgtgtaa?agttggtcat 8512
agctgttaag?gctttattct?ctaatgcctt?gaaatatggg?tcctgcattg?agccatgccc 8572
ctcaagacta?cgtcgatcat?aatttttaac?acctagctca?ctctctacac?atttataaag 8632
aattgtatca?gtaagtaggc?tagttgagct?ctacctccaa?gagtgaaaga?agtcataggg 8692
gattcgatgg?actgatccta?tgtatgtgtg?tacaaacata?ataacatttt?agttttaaat 8752
ttgaggatta?ggagggaaag?attaatattt?tttcaattgt?acatgcatac?atatattttt 8812
tctagggttt?tggatgaaca?gtacttattt?ttctgtggta?gtggtactta?catgggagat 8872
taacagggaa?ggattacttt?aatacatcta?atcaaatatt?ttaaaataat?gggtatattg 8932
gtttaagtat?aaatcaatgg?tagatgtttt?gcttttttct?catatttttt?tatattttca 8992
ccaatttatt?agagcatcag?gttgttgcct?aaggagcgtt?tgtagagatt?aggtgggagt 9052
gattagttta?acagatctaa?tctaataatt?aaaaatattg?ggtcaaccca?tttaagtata 9112
atcaatcgct?agatgtttta?ctttttttta?gaatttcttg?gatttttcct?aatttattag 9172
agcaccatgt?gacggcttaa?gattgtttgt?agcagtgcca?catggtggct?tagaagcgtt 9232
tgtatgatgt?tcaatggact?tttagtatat?aataatattt?ttgtctcaat?gattggtgga 9292
tagcactgca?tatgtagaat?tgatacatga?gttcgagtct?gacataaaat?taacacataa 9352
ggtaagacat?gcatgagtcg?aatacattgg?atcttattta?ttatataccc?agattaactt 9412
aagtttaaac?tgcagagact?gaagaggaaa?agatcaacat?atatgcctcc?tgttactctt 9472
aattaagaca?tatcgatccg?gttcatttaa?tcatttattt?tctatagtcc?tttacaatat 9532
atctagattt?atattactgt?gataattgat?attttaaagc?gaagataata?ttttttaatg 9592
gtaatcacaa?ttagagtatt?ttagtttgga?acattgtaga?ttgctttaaa?tattaaagtt 9652
atgatgatgt?caatcatgaa?agatttaagt?aaagttattt?tgttttgtga?aaaataatat 9712
tgttttaaca?aataaatatt?ttagaacagt?ggtattattt?tttgggagtg?ctaatcacaa 9772
ctaattagaa?tattttattt?tgtgatatta?ttgagctaat?ctaattatgc?atgattgtga 9832
aatgatatat?gatgatgtga?tctacattat?ctattttctt?cacaaccttt?tttattgttg 9892
ggatgacatg?caaaaggttc?ggatatgatt?taaaatacta?gaaggaatat?tttttggaac 9952
gtcactcacg?atttaagtgt?ttttgttttt?tttcatatct?atcatattta?atttatttgt 10012
gcatgtttta?taaagtgata?tatgatcata?taatatacgt?tgtcattttt?ttatttaaca 10072
gcttcaattg?catgcttagg?ttaggatgtg?atgaaaatta?aatatttttt?tatgagttaa 10132
agaatgtagt?ggcttatatg?ggtatttgaa?tggttaatta?agcatcatga?atacaattat 10192
aaagaatgat?aaaaagattt?gtgtgtaatt?taaagattat?gattatttct?ctatacggaa 10252
attatttaaa?aatattattt?ttaattgtaa?caacttaaaa?gaaaaaaaga?gatgagaaga 10312
cttataggag?ggggagggat?acgtacatac?actatgggag?ggggaggggg?gtcggctggt 10372
ggggggagag?gggagggagg?tgtattgtgg?ggttttttta?aaaaaaataa?atctaataga 10432
taaatatagt?aggcctaccg?gtttattaga?gagtcatatg?acaacttaga?agcatttata 10492
gaagccccac?gtgacggctt?gagaatgttt?agtagaagtt?taatgaactt?ttagtatata 10552
atagataaat?taattaatga?tgatgaggtt?ggcctgcctt?ggcttctctc?atgttgattt 10612
actattgtgt?atggcccatg?tatatgaaaa?ggcaaaatgt?agcaatgagt?cggtttgact 10672
taaaacatgc?gggtttaaaa?tgacatgctc?tgtaaccgat?gagagtactc?agtttaagtt 10732
aaggtaacaa?atcaatatta?caagcagaaa?tacagatgca?agtggtacga?acaaacggtt 10792
ttttattcta?attattttca?aattcagttt?tcaaagtaat?agtgtttatt?tgatctggaa 10852
tttcataggg?atgagcaatc?ttaagccaaa?tatcataatc?ttgagccata?atgtaagatt 10912
acatcttgtc?acaccaataa?ggaaaatcga?caccatcgaa?aacatgtggc?ttggttgaaa 10972
acttgttagc?catgacttaa?aactttagat?cggtaaaaat?ccaaagaaga?aaacgaggct 11032
ctgataccac?ttgtaggatc?gaatcccaaa?taccaagcca?accagagggg?gtgaatgtat 11092
cctattgtcc?ctggcatgct?ggctgtaact?gcagagttgt?catcacctaa?cagtaatttt 11152
gcaatgccaa?agtccgccac?atgtgccgtg?atttcctcat?caaacagcac?attgctaggc 11212
ttgaggtcac?agtactgcaa?aacaacctca?gaatgatgat?agtgaaggtg?ctccattgcc 11272
attgatacgt?ccagcataat?gtcaagtctc?tttaggaatc?ctagtggagg?gtgcccttcc 11332
ttgtgcaggt?atgtctccaa?gctgccattg?ggcatgtact?gaagcagcag?tgctttgaag 11392
tctatgttgg?agcatatgtt?tagtatcctt?atcaagttgc?gatgtcgagc?catgcgtaga 11452
acctgacact?caacatcaaa?gcttctcata?gcttgttcct?cttgcatgtt?cagaacttta 11512
atcgcaacca?ccattccatc?atccaaatga?cccttgaaaa?ctttgccaaa?acttccagtt 11572
cccaacatat?tattctcatt?gaaactttct?gtggcacgaa?caatctcttc?atatgatact 11632
aacctataag?aagtaggtgt?agtaatatct?agtttctttt?taatcttctt?tctagtcatt 11692
tggtataaac?aaagagcaag?tgcgccaact?gctattgtga?tggcagggag?tataaacttc 11752
aggtagtggt?taccattagt?tgagtgtgac?ttgtttgggc?atggtgaaaa?tcctagacga 11812
ggaagaccac?acaaggcagc?attgcccatc?aaagat 11848
 
<210>2
<211>1092
<212>PRT
<213〉paddy rice (Oryza sativa)
<400>2
Met?Ala?Leu?Gly?Leu?Pro?Val?Trp?Ile?Phe?Val?Ala?Leu?Leu?Ile?Ala
1 5 10 15
Leu?Ser?Thr?Val?Pro?Cys?Ala?Ser?Ser?Leu?Gly?Pro?Ser?Lys?Ser?Asn
20 25 30
Gly?Ser?Asp?Ile?Asp?Leu?Ala?Ala?Leu?Leu?Ala?Leu?Lys?Ser?Gln?Phe
35 40 45
Ser?Asp?Pro?Asp?Asn?Ile?Leu?Ala?Gly?Asn?Trp?Thr?Ile?Gly?Thr?Pro
50 55 60
Phe?Cys?Gln?Trp?Met?Gly?Val?Ser?Cys?Ser?His?Arg?Arg?Gln?Arg?Val
65 70 75 80
Thr?Ala?Leu?Lys?Leu?Pro?Asn?Val?Pro?Leu?Gln?Gly?Glu?Leu?Ser?Ser
85 90 95
His?Leu?Gly?Asn?Ile?Ser?Phe?Leu?Leu?Ile?Leu?Asn?Leu?Thr?Asn?Thr
100 105 110
Gly?Leu?Thr?Gly?Leu?Val?Pro?Asp?Tyr?Ile?Gly?Arg?Leu?Arg?Arg?Leu
115 120 125
Glu?Ile?Leu?Asp?Leu?Gly?His?Asn?Ala?Leu?Ser?Gly?Gly?Val?Pro?Ile
130 135 140
Ala?Ile?Gly?Asn?Leu?Thr?Arg?Leu?Gln?Leu?Leu?Asn?Leu?Gln?Phe?Asn
145 150 155 160
Gln?Leu?Tyr?Gly?Pro?Ile?Pro?Ala?Glu?Leu?Gln?Gly?Leu?His?Ser?Leu
165 170 175
Asp?Ser?Met?Asn?Leu?Arg?His?Asn?Tyr?Leu?Thr?Gly?Ser?Ile?Pro?Asp
180 185 190
Asn?Leu?Phe?Asn?Asn?Thr?Ser?Leu?Leu?Thr?Tyr?Leu?Asn?Val?Gly?Asn
195 200 205
Asn?Ser?Leu?Ser?Gly?Pro?Ile?Pro?Gly?Cys?Ile?Gly?Ser?Leu?Pro?Ile
210 215 220
Leu?Gln?Tyr?Leu?Asn?Leu?Gln?Ala?Asn?Asn?Leu?Thr?Gly?Ala?Val?Pro
225 230 235 240
Pro?Ala?Ile?Phe?Asn?Met?Ser?Lys?Leu?Ser?Thr?Ile?Ser?Leu?Ile?Ser
245 250 255
Asn?Gly?Leu?Thr?Gly?Pro?Ile?Pro?Gly?Asn?Thr?Ser?Phe?Ser?Leu?Pro
260 265 270
Val?Leu?Gln?Trp?Phe?Ala?Ile?Ser?Lys?Asn?Asn?Phe?Phe?Gly?Gln?Ile
275 280 285
Pro?Leu?Gly?Leu?Ala?Ala?Cys?Pro?Tyr?Leu?Gln?Val?Ile?Ala?Leu?Pro
290 295 300
Tyr?Asn?Leu?Phe?Glu?Gly?Val?Leu?Pro?Pro?Trp?Leu?Gly?Lys?Leu?Thr
305 310 315 320
Ser?Leu?Asn?Ala?Ile?Ser?Leu?Gly?Trp?Asn?Asn?Leu?Asp?Ala?Gly?Pro
325 330 335
Ile?Pro?Thr?Glu?Leu?Ser?Asn?Leu?Thr?Met?Leu?Ala?Val?Leu?Asp?Leu
340 345 350
Ser?Thr?Cys?Asn?Leu?Thr?Gly?Asn?Ile?Pro?Ala?Asp?Ile?Gly?His?Leu
355 360 365
Gly?Gln?Leu?Ser?Trp?Leu?His?Leu?Ala?Arg?Asn?Gln?Leu?Thr?Gly?Pro
370 375 380
Ile?Pro?Ala?Ser?Leu?Gly?Asn?Leu?Ser?Ser?Leu?Ala?Ile?Leu?Leu?Leu
385 390 395 400
Lys?Gly?Asn?Leu?Leu?Asp?Gly?Ser?Leu?Pro?Ala?Thr?Val?Asp?Ser?Met
405 410 415
Asn?Ser?Leu?Thr?Ala?Val?Asp?Val?Thr?Glu?Asn?Asn?Leu?His?Gly?Asp
420 425 430
Leu?Asn?Phe?Leu?Ser?Thr?Val?Ser?Asn?Cys?Arg?Lys?Leu?Ser?Thr?Leu
435 440 445
Gln?Met?Asp?Phe?Asn?Tyr?Ile?Thr?Gly?Ser?Leu?Pro?Asp?Tyr?Val?Gly
450 455 460
Asn?Leu?Ser?Ser?Gln?Leu?Lys?Trp?Phe?Thr?Leu?Ser?Asn?Asn?Lys?Leu
465 470 475 480
Thr?Gly?Thr?Leu?Pro?Ala?Thr?Ile?Ser?Asn?Leu?Thr?Gly?Leu?Glu?Val
485 490 495
Ile?Asp?Leu?Ser?His?Asn?Gln?Leu?Arg?Asn?Ala?Ile?Pro?Glu?Ser?Ile
500 505 510
Met?Thr?Ile?Glu?Asn?Leu?Gln?Trp?Leu?Asp?Leu?Ser?Gly?Asn?Ser?Leu
515 520 525
Ser?Gly?Phe?Ile?Pro?Ser?Asn?Thr?Ala?Leu?Leu?Arg?Asn?Ile?Val?Lys
530 535 540
Leu?Phe?Leu?Glu?Ser?Asn?Glu?Ile?Ser?Gly?Ser?Ile?Pro?Lys?Asp?Met
545 550 555 560
Arg?Asn?Leu?Thr?Asn?Leu?Glu?His?Leu?Leu?Leu?Ser?Asp?Asn?Gln?Leu
565 570 575
Thr?Ser?Thr?Val?Pro?Pro?Ser?Leu?Phe?His?Leu?Asp?Lys?Ile?Ile?Arg
580 585 590
Leu?Asp?Leu?Ser?Arg?Asn?Phe?Leu?Ser?Gly?Ala?Leu?Pro?Val?Asp?Val
595 600 605
Gly?Tyr?Leu?Lys?Gln?Ile?Thr?Ile?Ile?Asp?Leu?Ser?Asp?Asn?Ser?Phe
610 615 620
Ser?Gly?Ser?Ile?Pro?Asp?Ser?Ile?Gly?Glu?Leu?Gln?Met?Leu?Thr?His
625 630 635 640
Leu?Asn?Leu?Ser?Ala?Asn?Glu?Phe?Tyr?Asp?Ser?Val?Pro?Asp?Ser?Phe
645 650 655
Gly?Asn?Leu?Thr?Gly?Leu?Gln?Thr?Leu?Asp?Ile?Ser?His?Asn?Asn?Ile
660 665 670
Ser?Gly?Thr?Ile?Pro?Asn?Tyr?Leu?Ala?Asn?Phe?Thr?Thr?Leu?Val?Ser
675 680 685
Leu?Asn?Leu?Ser?Phe?Asn?Lys?Leu?His?Gly?Gln?Ile?Pro?Glu?Gly?Gly
690 695 700
Ile?Phe?Ala?Asn?Ile?Thr?Leu?Gln?Tyr?Leu?Val?Gly?Asn?Ser?Gly?Leu
705 710 715 720
Cys?Gly?Ala?Ala?Arg?Leu?Gly?Phe?Pro?Pro?Cys?Gln?Thr?Thr?Ser?Pro
725 730 735
Lys?Arg?Asn?Gly?His?Met?Leu?Lys?Tyr?Leu?Leu?Pro?Thr?Ile?Ile?Ile
740 745 750
Val?Val?Gly?Val?Val?Ala?Cys?Cys?Leu?Tyr?Val?Met?Ile?Arg?Lys?Lys
755 760 765
Ala?Asn?His?Gln?Lys?Ile?Ser?Ala?Gly?Met?Ala?Asp?Leu?Ile?Ser?His
770 775 780
Gln?Phe?Leu?Ser?Tyr?His?Glu?Leu?Leu?Arg?Ala?Thr?Asp?Asp?Phe?Ser
785 790 795 800
Asp?Asp?Asn?Met?Leu?Gly?Phe?Gly?Ser?Phe?Gly?Lys?Val?Phe?Lys?Gly
805 810 815
Gln?Leu?Ser?Asn?Gly?Met?Val?Val?Ala?Ile?Lys?Val?Ile?His?Gln?His
820 825 830
Leu?Glu?His?Ala?Met?Arg?Ser?Phe?Asp?Thr?Glu?Cys?Arg?Val?Leu?Arg
835 840 845
Ile?Ala?Arg?His?Arg?Asn?Leu?Ile?Lys?Ile?Leu?Asn?Thr?Cys?Ser?Asn
850 855 860
Leu?Asp?Phe?Arg?Ala?Leu?Val?Leu?Gln?Tyr?Met?Pro?Lys?Gly?Ser?Leu
865 870 875 880
Glu?Ala?Leu?Leu?His?Ser?Glu?Gln?Gly?Lys?Gln?Leu?Gly?Phe?Leu?Glu
885 890 895
Arg?Leu?Asp?Ile?Met?Leu?Asp?Val?Ser?Met?Ala?Met?Glu?Tyr?Leu?His
900 905 910
His?Glu?His?Tyr?Glu?Val?Val?Leu?His?Cys?Asp?Leu?Lys?Pro?Ser?Asn
915 920 925
Val?Leu?Phe?Asp?Asp?Asp?Met?Thr?Ala?His?Val?Ala?Asp?Phe?Gly?Ile
930 935 940
Ala?Arg?Leu?Leu?Leu?Gly?Asp?Asp?Asn?Ser?Met?Ile?Ser?Ala?Ser?Met
945 950 955 960
Pro?Gly?Thr?Val?Gly?Tyr?Met?Ala?Pro?Glu?Tyr?Gly?Ala?Leu?Gly?Lys
965 970 975
Ala?Ser?Arg?Lys?Ser?Asp?Val?Phe?Ser?Tyr?Gly?Ile?Met?Leu?Phe?Glu
980 985 990
Val?Phe?Thr?Gly?Lys?Arg?Pro?Thr Asp?Ala?Met?Phe?Val Gly?Glu?Leu
995 1000 1005
Asn?Ile Arg?Gln?Trp?Val?His Gln?Ala?Phe?Pro?Ala Glu?Leu?Val
1010 1015 1020
His?Val Val?Asp?Cys?Gln?Leu Leu?His?Asp?Gly?Ser Ser?Ser?Ser
1025 1030 1035
Asn?Met His?Gly?Phe?Leu?Val Pro?Val?Phe?Glu?Leu Gly?Leu?Leu
1040 1045 1050
Cys?Ser Ala?Asp?Ser?Pro?Asp Gln?Arg?Met?Ala?Met Ser?Asp?Val
1055 1060 1065
Val?Val Thr?Leu?Lys?Lys?Ile Arg?Lys?Asp?Tyr?Val Lys?Leu?Met
1070 1075 1080
Ala?Thr Thr?Glu?Asn?Ala?Val Gln?Gln
1085 1090

Claims (3)

1. one kind isolatingly produces the gene Xa3/Xa26-2 of resistance to bacterial leaf-blight, and its nucleotide sequence is shown in sequence table SEQ IDNO:1.
2. one kind isolatingly produces the gene Xa3/Xa26-2 of resistance to bacterial leaf-blight, and its encoding sequence is shown in 3284-6191 and 6295-6662 position among the sequence table SEQ IDNO:1.
3. claim 1 or 2 described genes are increasing paddy rice to the application in the bacterial leaf spot resistance.
CN201010125934XA 2010-03-17 2010-03-17 Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof Expired - Fee Related CN101892244B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010125934XA CN101892244B (en) 2010-03-17 2010-03-17 Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010125934XA CN101892244B (en) 2010-03-17 2010-03-17 Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof

Publications (2)

Publication Number Publication Date
CN101892244A true CN101892244A (en) 2010-11-24
CN101892244B CN101892244B (en) 2012-06-27

Family

ID=43101589

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010125934XA Expired - Fee Related CN101892244B (en) 2010-03-17 2010-03-17 Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof

Country Status (1)

Country Link
CN (1) CN101892244B (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732535A (en) * 2011-04-15 2012-10-17 华中农业大学 Application of histone demethylase gene OsJ5 in raising resistance of paddy rice
CN108795977A (en) * 2018-07-05 2018-11-13 安徽袁粮水稻产业有限公司 A method of conversion oryza officinalis cDNA library improves rice varieties
US10470461B2 (en) 2014-10-01 2019-11-12 Plant Health Care, Inc. Hypersensitive response elicitor peptides and use thereof
CN110468229A (en) * 2019-09-03 2019-11-19 云南省农业科学院生物技术与种质资源研究所 Rice wide spectrum high resistance to hoja blanca gene Xa45's (t) isolates molecular labeling Hxjy-1
US10524473B2 (en) 2014-10-01 2020-01-07 Plant Health Care, Inc. Elicitor peptides having disrupted hypersensitive response box and use thereof
US10793608B2 (en) 2016-04-06 2020-10-06 Plant Health Care, Inc. Hypersensitive response elicitor-derived peptides and use thereof
CN114350687A (en) * 2022-03-01 2022-04-15 云南省农业科学院生物技术与种质资源研究所 Rice bacterial leaf blight resistant gene, protein and application thereof
US11371011B2 (en) 2016-04-06 2022-06-28 Plant Health Care, Inc. Beneficial microbes for delivery of effector peptides or proteins and use thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493692A (en) * 2002-10-28 2004-05-05 华中农业大学 Paddy rice anti bacterial leaf-blight gene Xa26(t)
CN1861791A (en) * 2005-05-10 2006-11-15 华中农业大学 Recessive gene xa13 of rice bacterial blight resistance and its allelic dominant gene xa13

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1493692A (en) * 2002-10-28 2004-05-05 华中农业大学 Paddy rice anti bacterial leaf-blight gene Xa26(t)
CN1861791A (en) * 2005-05-10 2006-11-15 华中农业大学 Recessive gene xa13 of rice bacterial blight resistance and its allelic dominant gene xa13

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
《Theor Appl Genet》 20060825 Yi Xiang et al. Xa3, conferring resistance for rice bacterial blight and encoding a receptor kinase-like protein, is the same as Xa26 1347-1355 第113卷, 2 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102732535A (en) * 2011-04-15 2012-10-17 华中农业大学 Application of histone demethylase gene OsJ5 in raising resistance of paddy rice
CN102732535B (en) * 2011-04-15 2013-08-28 华中农业大学 Application of histone demethylase gene OsJ5 in raising resistance of paddy rice
US10856547B2 (en) 2014-10-01 2020-12-08 Plant Health Care, Inc. Hypersensitive response elicitor peptides and use thereof
US10897900B2 (en) 2014-10-01 2021-01-26 Plant Health Care, Inc. Hypersensitive response elicitor peptides and use thereof
US11820797B2 (en) 2014-10-01 2023-11-21 Plant Health Care, Inc. Elicitor peptides having disrupted hypersensitive response box and use thereof
US10524473B2 (en) 2014-10-01 2020-01-07 Plant Health Care, Inc. Elicitor peptides having disrupted hypersensitive response box and use thereof
US10524472B2 (en) 2014-10-01 2020-01-07 Plant Health Care, Inc. Elicitor peptides having disrupted hypersensitive response box and use thereof
US11820992B2 (en) 2014-10-01 2023-11-21 Plant Health Care, Inc. Hypersensitive response elicitor peptides and use thereof
US10743538B2 (en) 2014-10-01 2020-08-18 Plant Health Care, Inc. Elicitor peptides having disrupted hypersensitive response box and use thereof
US10470461B2 (en) 2014-10-01 2019-11-12 Plant Health Care, Inc. Hypersensitive response elicitor peptides and use thereof
US10918104B2 (en) 2014-10-01 2021-02-16 Plant Health Care, Inc. Elicitor peptides having disrupted hypersensitive response box and use thereof
US10856546B2 (en) 2014-10-01 2020-12-08 Plant Health Care, Inc. Hypersensitive response elicitor peptides and use thereof
US11371011B2 (en) 2016-04-06 2022-06-28 Plant Health Care, Inc. Beneficial microbes for delivery of effector peptides or proteins and use thereof
US10793608B2 (en) 2016-04-06 2020-10-06 Plant Health Care, Inc. Hypersensitive response elicitor-derived peptides and use thereof
US11725027B2 (en) 2016-04-06 2023-08-15 Plant Health Care, Inc. Hypersensitive response elicitor-derived peptides and use thereof
CN108795977A (en) * 2018-07-05 2018-11-13 安徽袁粮水稻产业有限公司 A method of conversion oryza officinalis cDNA library improves rice varieties
CN110468229B (en) * 2019-09-03 2020-05-08 云南省农业科学院生物技术与种质资源研究所 Coseparation molecular marker Hxjy-1 of rice broad-spectrum high-resistance bacterial leaf blight gene Xa45(t)
CN110468229A (en) * 2019-09-03 2019-11-19 云南省农业科学院生物技术与种质资源研究所 Rice wide spectrum high resistance to hoja blanca gene Xa45's (t) isolates molecular labeling Hxjy-1
CN114350687A (en) * 2022-03-01 2022-04-15 云南省农业科学院生物技术与种质资源研究所 Rice bacterial leaf blight resistant gene, protein and application thereof
CN114350687B (en) * 2022-03-01 2023-08-22 云南省农业科学院生物技术与种质资源研究所 Rice bacterial leaf blight resistance gene, protein and application thereof

Also Published As

Publication number Publication date
CN101892244B (en) 2012-06-27

Similar Documents

Publication Publication Date Title
CN101892244B (en) Oryza officinalis anti-Xanthomonas oryzae major gene Xa3/Xa26-2 and application for improving disease resistance of rice thereof
Lu et al. Molecular characterization and genomic mapping of the pathogenesis-related protein 1 (PR-1) gene family in hexaploid wheat (Triticum aestivum L.)
CN110511945B (en) Rice fertility regulation gene, mutant and application thereof
CN107164401A (en) A kind of method and application that rice Os PIL15 mutant is prepared based on CRISPR/Cas9 technologies
CN101704881B (en) Plant male fertility-associated protein, coding gene and application thereof
Li et al. Ortholog alleles at Xa3/Xa26 locus confer conserved race-specific resistance against Xanthomonas oryzae in rice
CN111153974A (en) Corn disease-resistant gene and molecular marker and application thereof
CN101880669B (en) Oryza minuta bacterial blight-resisting major gene Xa3/Xa26-3 and application thereof in improving disease resistance of paddy rice
CN105985965A (en) Gene GW7 for controlling grain shape, exterior quality and yield of rice and applications of gene GW7
CN101659965B (en) Method for breeding transgenic paddy rice with changeable leaf angle and special recombinant carrier thereof
CN108642065A (en) A kind of paddy endosperm silty related gene OsSecY2 and its coding protein and application
Reddy et al. Isolation, analysis and expression of homologues of the soybean early nodulin gene GmENOD93 (GmN93) from rice
CN101993880B (en) Rice disease resistance related gene GH3-2 and application thereof in breeding of broad spectrum disease-resistant rice
CN111087457B (en) Protein NGR5 for improving nitrogen utilization rate and crop yield, and coding gene and application thereof
CN102559698B (en) Rice recessive bacterial leaf blight-resistant major gene xa 25 and application thereof in rice disease-resistant improvement
Yuan et al. A guanylyl cyclase-like gene is associated with Gibberella ear rot resistance in maize (Zea mays L.)
Marlin et al. Molecular diversity of the flowering related gene (LEAFY) on shallot (Allium cepa var. aggregatum) and Allium relatives.
CN116396368A (en) Insect-resistant protein and preparation method and application thereof
Peng et al. Frequencies and variations of Magnaporthe oryzae avirulence genes in Hunan Province, China
Lu et al. Isolation and characterization of nucleotide-binding site and C-terminal leucine-rich repeat-resistance gene candidates in bananas
Hattendorf et al. Molecular characterization of NBS‐LRR‐RGAs in the rose genome
CN110004155A (en) Control disease-resistant gene, protein and its application of plant phobotaxis aphid resistance shape
CN102628052B (en) Rice disease resistance related gene, encoding protein thereof and preparation method for strain for improving rice broad spectrum disease resistance
CN112679591B (en) Application of substance for inhibiting OaGS3 gene expression in regulating and controlling length of tetraploid wild rice grains
US10087461B2 (en) Glycine max resistance gene(s) and use thereof to engineer plants with broad-spectrum resistance to fungal pathogens and pests

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120627

Termination date: 20160317

CF01 Termination of patent right due to non-payment of annual fee