CN101876642B - 一种快速凝固过程界面换热系数的测试方法和装置 - Google Patents

一种快速凝固过程界面换热系数的测试方法和装置 Download PDF

Info

Publication number
CN101876642B
CN101876642B CN2009100503847A CN200910050384A CN101876642B CN 101876642 B CN101876642 B CN 101876642B CN 2009100503847 A CN2009100503847 A CN 2009100503847A CN 200910050384 A CN200910050384 A CN 200910050384A CN 101876642 B CN101876642 B CN 101876642B
Authority
CN
China
Prior art keywords
copper
copper sheet
heat transfer
partiald
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2009100503847A
Other languages
English (en)
Other versions
CN101876642A (zh
Inventor
于艳
梁高飞
王成全
方园
张卫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Baoshan Iron and Steel Co Ltd
Original Assignee
Baoshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baoshan Iron and Steel Co Ltd filed Critical Baoshan Iron and Steel Co Ltd
Priority to CN2009100503847A priority Critical patent/CN101876642B/zh
Publication of CN101876642A publication Critical patent/CN101876642A/zh
Application granted granted Critical
Publication of CN101876642B publication Critical patent/CN101876642B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

一种快速凝固过程界面换热系数的测试方法,通过一热流测量探头浸入熔化炉,测得的数据输送至信号数据采集系统及计算机,得到界面换热系数;其中,测量探头包括两块同样大小对称设计的铜板(片),两根等直径热电偶焊接在两块铜板内侧,用螺丝把两块铜板紧密固定,保证它们之间间隙小于0.5mm;上述两个热电偶测量出铜板内壁两点温度。在本发明中,由于铜板在一个方向上的尺寸远小于另外两个方向,可以看成是一维传热。铜片内壁的温度由热电偶测出,然后计算出界面的热流。通过界面热流进一步计算得到基底和钢水之间的界面换热系数。

Description

一种快速凝固过程界面换热系数的测试方法和装置
技术领域
本发明属于金属凝固技术领域,特别涉及一种快速凝固过程界面换热系数的测试方法和装置。
背景技术
连铸技术的发展方向是向着高拉速、近终型方向发展。其中薄带连铸工艺是近终型连铸的典型代表。随着铸坯厚度的减薄以及拉速的提高,金属在非常短的时间内凝固,铸坯的凝固传热速度大大提高。其中影响传热和凝固的核心是钢水以及凝固壳和金属基底之间的界面换热,该换热条件直接影响到工艺参数制定和材料最终的组织性能。
薄带连铸这样的快速凝固工艺对界面换热系数的精确测量提出了更高的要求。这是因为快速凝固过程中,凝固的完成发生在瞬时,比如1秒以内,这使得界面热流和界面热交换系数的精确测量变得极为困难。
由于该参数的重要性,长期以来,很多学者在这些方面做了大量的研究工作。日本专利JP06074837A公布了一种可以测量金属模铸造过程铸模内热流密度的测量方法,该方法采用一种材料不同于金属铸模的金属棒,通过钻孔安装和铸模一起组成一个热电偶,用来测量铸模壁内部的温度,通过测量不同点的温度就可以计算出铸模壁内的热流密度。但由于设计的侧重点不同,该方法的测温区域离凝固界面比较远,只能用来测量凝固到达稳态过程时的热流,而不能用于测量金属液和铸模刚开始接触瞬间的热流。
美国卡耐基梅隆大学在文献《Interaction between Iron Droplets andH2S during Solidification:Effects on Heat Transfer,Surface Tension andComposition》(ISIJ International,Vol.47(2007),No.9,pp.1284-1293)中公布了一套瞬态热流的研究装置。该方法优点是能够快速测定瞬间界面换热系数,缺点是设备结构复杂,而且要求液滴中心点正好落在热电偶测试点,因此对测试精度要求高,成功率相对较低。
澳大利亚BHP公司在文献《Experimental Studies of Interfacial HeatTransfer and Initial Solidification Pertinent to Strip Casting》(ISIJInternational,Vol.38(1998),No.9,p959-966)中公布了一种可以用来研究瞬态界面热流的装置,主要过程是将冷却基体如铜试样(模拟结晶器或结晶辊)浸入到金属熔体中,测量金属熔体和基体间的界面换热系数。该装置的优点是操作简便、实用,可以研究在不同工艺条件对界面热流的影响,缺点是热电偶的安装困难导致精度较差。
对于快速凝固的界面瞬态传热实验的关键是使测温元件(主要为热电偶)能对界面的温度变化有非常快的响应,响应越快,则瞬态热流测量精度越高。由于热传导具有滞后性,这样就要求测温元件离表面非常近,而且由于热流计算的要求,最好是不破坏基底中的温度场分布,以免使热流计算困难并引入不必要的误差。这些要求就给热电偶的安装带来非常大的困难。通常的做法是在金属铸模上打孔安装热电偶,除了加工困难外,这样做的缺点还有:
1.干扰铸模内部的温度场分布。
2.热电偶安装的位置难以精确保证。
3.热电偶和铸模的接触情况不确定
以上的缺点必然会给后续的测量过程中引入误差,甚至于导致测量结果和实际物理过程不符。
发明内容
针对现有技术存在的缺陷,为了进一步提高瞬态热流的测量精度,本发明的目的是设计一种快速凝固过程界面换热系数的测试方法和装置,测量装置简便可靠,可以用来测量快速凝固过程中的瞬态热流和界面换热系数。
在快速凝固的条件下,例如薄带连铸,凝固大约在400ms内全部完成,热流的最大值出现在50~100ms内,如果热电偶的反映时间超过50ms,则热流密度的峰值无法获得,无法定量研究快速凝固条件下的传热过程。因此热流测量的主要技术核心在于反应灵敏的传感器,即测量探头的设计。本发明采用了两个对称设计的铜板(片)作为激冷基体,热电偶直接焊接在铜板(片)内侧,紧密接触,减少了气隙热阻,热电偶可以灵敏反应凝固过程,这样基本上可以避免传统测量方法中的诸多缺陷从而提高测量精度。
本发明在热流计算上采用了一维非常简单的计算方法来得到随时间变化的瞬态热流,并可间接计算得到铜板(片)任一时刻和钢水之间的界面换热系数。该装置可以用来研究各种工艺参数对瞬态界面热流的影响,同时软件计算可以快速简捷的得到界面换热系数。加深对快速凝固中界面换热情况的理解,并可为数值模拟技术提供较为精确的边界条件。
具体地,本发明的技术方案是,
一种快速凝固过程界面换热系数的测试方法,通过一测量探头浸入熔化炉,测得的数据输送至信号数据采集系统及计算机,得到界面换热系数;
其中,所采用的测量探头由两块同样大小对称设计的铜板或铜片组成,尺寸为长度L与厚度d的比值至少大于20;宽度W与厚度d的比值至少大于20;用螺丝把两块铜板或铜片紧密固定在一起,两块铜板或铜片之间间隙小于0.5mm;
两根直径小于1mm的热电偶分别焊接在两块铜板或铜片内侧,两个热电偶测量出铜板或铜片之间内壁表面两点温度;
铜板或铜片内壁表面的温度,通过信号数据采集系统输入计算机,运用有限差分法进行计算,然后推算出任一时刻界面热流的值,
采用以下计算式,如式(1)所示:
q ( t ) = ( ρc ) Cu d ∂ T ∂ t 公式(1)
q(t)-任一时刻界面热流,MW/m2
ρ-铜板(片)的密度,kg/m3
c-铜板的比热,J/Kg℃
λCu-铜板(片)导热系数,J/m·s·℃
d-铜板或者铜片厚度,m
Figure G2009100503847D00032
-铜板(片)测试点温度对时间的导数;
界面换热系数根据公式(2)计算得到:
h ( t ) = q ( t ) T 2 ( t ) - T 1 ( t ) 公式(2)
式中,
h(t)-任一时刻界面换热系数,MW/m2·K
q(t)-任一时刻界面热流,MW/m2
T1(t)-任一时刻界面处铜板(片)温度,℃
T2(t)-任一时刻界面处凝固坯壳温度,℃
对于铜板或铜片,热传导方程和边界条件如式(3)、(4)、(5),通过有限差分法计算得到铜板或铜片在厚度方向的温度场,进而可以计算得到界面处铜板(片)的温度T1(t),
( ρc ) Cu ∂ T ∂ t = λ Cu ∂ 2 T ∂ x 2 公式(3)
∂ T ∂ x | x = 0 = q ( t ) 公式(4)
∂ T ∂ x | x = d = 0 公式(5)
对于凝固坯壳,同样采用一维热传导方程(3),这时边界条件如式(6)、(7),通过有限差分法计算凝固坯壳的温度场,进而可以计算得到界面处凝固坯壳的温度T2(t),
∂ T ∂ x | x = 0 = q ( t ) - - - ( 6 )
T | x = d = T m - - - ( 7 )
Tm为钢熔点。
进一步,所述的铜板或铜片的尺寸为长L:10~100mm,宽W:10~100mm,厚d:0.5~5mm。优选为:长L:10~50mm;宽W:10~50mm;厚d:0.5~2mm。两块铜板或铜片之间的间隙小于0.3mm。
测量探头得到毫秒数量级的温度信号,由信号数据采集系统采集A/D转换,再通过传输线传输到计算机中,信号采集系统的采样频率10~100kHz可调。
本发明快速凝固过程界面换热系数的测试方法用测量探头,该测量探头包括,两块同样大小对称设计的铜板或铜片,铜板或铜片的尺寸为长度L与厚度d的比值至少大于20;宽度W与厚度d的比值至少大于20;两根直径小于1mm的热电偶分别焊接在两块铜板或铜片内侧,用螺丝把两块铜板或铜片紧密固定在一起。
又,所述的铜板或铜片的尺寸为长L:10~50mm,宽W:10~50mm,厚d:0.5~2mm。
另外,两块铜板或铜片之间的间隙小于0.3mm。
当一个方向的传热大大超过了其他两个方向的传热时,可以将复杂的三维传热问题简化为一维传热,大大简化了界面换热系数的计算模型和计算速度,不仅能够得到毫秒级的瞬时温度,同时还能得到毫秒级的界面换热系数。
两根直径小于1mm的热电偶分别焊接在两块铜板或铜片内侧,用螺丝把两块铜板或铜片紧密固定在一起。两个铜板(片)的间隙小于0.5mm,优选小于0.3mm。
在本发明中,
(1)热流测量传感器的设计
测量界面换热系数和热流密度尤其是快速凝固条件下的界面换热系数和热流密度的难点和关键是在毫秒数量级内测量温度变化。热流测量传感器是本发明的技术核心所在,本发明的探头由两块同样大小对称设计的铜板(片)组成,两根热电偶分别焊接在两块铜板(片)内侧,该设计方法可以避免在金属基底上的打孔操作,从而可以避免传统方法中的设计缺陷,同时还可以确保稳定的边界条件。上述两个热电偶可以测量出两点的温度。
为了测试快速凝固的界面换热系数,必须得到毫秒数量级的温度信号,同时要将测试得到的温度信号采集通过传输线传输到计算机模型中。本发明的高速信号采集系统的采样频率10~100kHz可调。
(2)界面换热系数的测量
由上述探头和数据采集系统采集到的是温度信号,如何将温度信号转化为界面换热系数是本发明的关键之一。
在本发明中,由于铜板(片)在一个方向上的尺寸远小于另外两个向,所以可以看成是一维传热。铜片内壁的温度由热电偶测出,然后推算出界面(铜板或片与钢水接触的一面)的热流。该问题是一个典型导热反问题,对于求解该问题,有限差分计算方法得到了广泛应用。
界面换热系数的测量是通过如下步骤实现的:首先将由测量探头实时检测的铜板(片)内壁的温度信号通过传输线传输到计算机中,本发明的高速信号采集系统的采样频率10~100kHz可调。根据上述的公式(1),通过有限差分法进行计算,得到任一时刻界面热流的值q(t);然后,根据上述公式(3)、(4)、(5)用有限差分法计算得到铜板(片)在任一时刻任一位置的温度值T1(t);其次根据公式(6)、(7),用有限差分法计算得到凝固坯壳在任一时刻任一位置的温度值T2(t)。根据公式(2)可以方便地计算出界面换热系数h(t)。
本发明的有益效果:
对比现有技术,本发明中设计有以下优点:
1)本发明的测量探头避免了在冷却基体(例如金属铸模)上打孔,使得热电偶安装操作方便。
2)热电偶与冷却基体的连接方式采用焊接连接,使热电偶和基底为冶金结合,从而保证热电偶和基底的良好接触,避免相关误差。
3)铜板(片)的对称设计确保内壁边界条件为绝热;
4)铜板(片)的长厚以及宽厚比大于20的设计,可以将复杂的三维传热问题简化为一维传热,大大简化了界面换热系数的计算模型和计算速度,不仅能够得到毫秒级的瞬时温度,同时还能得到毫秒级的界面换热系数。可以真正实现界面热流和界面热流换热系数计算达到了快速、简便、实时的效果。
5)该装置可以得到毫秒数量级的温度信号、热流密度以及界面换热系数,可以准确的揭示快速凝固过程的界面传热的问题。
以上特点可以保证热流测量系统的可靠性,在后续的热流和换热系数计算过程,表明本发明方法简单有效。
附图说明
图1为本发明快速凝固过程界面换热系数的测试测量的示意图;
图2为本发明热流测量探头的结构示意图;
图3为本发明热交换系数计算流程图;
图4为热流密度-时间曲线;
图5为换热系数-时间曲线。
具体实施方式
参见图1,本发明快速凝固过程界面换热系数的测试装置,设置于钢水熔炼装置1旁的测量装置的支撑架2及一驱动系统3,热流测量探头4设置于驱动系统3上,连接热流测量探头4高速信号数据采集系统5将测得数据传送至计算机6。
熔化炉:感应加热,最高温度可达1700℃,并可在180°旋转;
驱动系统3为一升降机构:由直线电机或气动装置驱动,通过连杆带动测量探头浸入熔化炉,保持一定时间后返回原位。探头进入钢水的速度和保持时间可调。钢水测温系统:测温范围400~1800℃。
参见图2,本发明测量探头4包括,两块同样大小对称设计的铜板(片)42,尺寸尺寸为长L:10~100mm;宽W:10~100mm;厚d:0.5~5mm;更优选的尺寸为:L:10~50mm;宽W:10~50mm;厚d:0.5~2mm;
两根直径小于1mm的k型或其它型式的(根据测量温度确定)热电偶41分别焊接在两块铜板(片)42内侧,焊点要保证焊接质量并且焊点尺寸较小,用螺丝把两块铜板(片)42紧密固定在一起,保证之间缝隙较小。两个铜板(片)的间隙小于0.5mm,优选小于0.3mm。
本发明的设计方法可以避免在金属基底上的打孔操作,从而可以避免传统方法中的设计缺陷,同时还可以确保稳定的边界条件。上述两个热电偶可以测量出两点的温度。
测量界面换热系数和热流密度尤其是快速凝固条件下的界面换热系数和热流密度的难点和关键是在毫秒数量级内测量温度变化。
将测量探头和升降机构的连杆装配在一起,热电偶信号输出端连接在数据采集采集系统上,钢水测温系统准备就绪,检查各个部分是否正常工作;通过感应加热炉加热样品至熔化,利用钢水测温系统测量钢水温度,操作升降机构带动测量探头按照设定速度快速插入钢水中,保持一定时间后回复原位,在此同时,由数据采集系统采集并记录探头实时检测的铜板(片)内壁的温度信号。
界面换热系数的计算步骤见图3,探头实时检测的铜板(片)内壁的温度信号,并通过传输线传输到计算机中,高速信号采集系统的采样频率10~100kHz可调。根据上述的公式(1),通过有限差分法进行计算,得到任一时刻界面(铜板或片与钢水接触的一面)热流的值q(t);然后,根据上述公式(3)、(4)、(5)用有限差分法计算得到铜板(片)在任一时刻任一位置的温度值T1(t);其次根据公式(6)、(7),用有限差分法计算得到凝固坯壳在任一时刻任一位置的温度值T2(t)。根据公式(2)可以方便地计算出界面换热系数h(t)。
用该本发明装置测量了低碳钢在1550℃的温度下和铜基底直接接触时的换热情况,热流密度-时间和界面换热系数-时间曲线如图4和图5所示。

Claims (8)

1.一种快速凝固过程界面换热系数的测试方法,通过一测量探头浸入熔化炉,测得的数据输送至信号数据采集系统及计算机,得到界面换热系数;
其中,所采用的测量探头由两块同样大小对称设计的铜板或铜片组成,尺寸为长度L与厚度d的比值至少大于20;宽度W与厚度d的比值至少大于20;用螺丝把两块铜板或铜片紧密固定在一起,两块铜板或铜片之间间隙小于0.5mm;
两根直径小于1mm的热电偶分别焊接在两块铜板或铜片内侧,两个热电偶测量出铜板或铜片之间内壁表面两点温度;
铜板或铜片内壁表面的温度,通过信号数据采集系统输入计算机,运用有限差分法进行计算,然后推算出任一时刻界面热流的值;采用以下计算式,如式(1)所示:
q ( t ) = ( ρc ) Cu d ∂ T ∂ t 公式(1)
q(t)-任一时刻界面热流,MW/m2
ρ-铜板或铜片的密度,kg/m3
c-铜板的比热,J/Kg℃
λCu-铜板或铜片导热系数,J/m·s·℃
d-铜板或者铜片厚度,m
Figure FDA0000097070420000012
-铜板或铜片测试点温度对时间的导数;
界面换热系数根据公式(2)计算得到:
h ( t ) = q ( t ) T 2 ( t ) - T 1 ( t ) 公式(2)
式中,
h(t)-任一时刻界面换热系数,MW/m2·K
q(t)-任一时刻界面热流,MW/m2
T1(t)-任一时刻界面处铜板或铜片温度,℃
T2(t)-任一时刻界面处凝固坯壳温度,℃
对于铜板或铜片,热传导方程和边界条件如式(3)、(4)、(5),通过有限差分法计算得到铜板或铜片在厚度方向的温度场,进而可以计算得到界面处铜板(片)的温度T1(t):
( ρc ) Cu ∂ T ∂ t = λ Cu ∂ 2 T ∂ x 2 公式(3)
∂ T ∂ x | x = 0 = q ( t ) 公式(4)
∂ T ∂ x | x = d = 0 公式(5)
对于凝固坯壳,同样采用一维热传导方程(3),这时边界条件如式(6)、(7),通过有限差分法计算凝固坯壳的温度场,进而可以计算得到界面处凝固坯壳的温度T2(t):
∂ T ∂ x | x = 0 = q ( t ) 公式(6)
T|x=d=Tm                公式(7)
Tm为钢熔点。
2.如权利要求1所述的快速凝固过程界面换热系数的测试方法,其特征在于,所述的铜板或铜片的尺寸为长L:10~100mm,宽W:10~100mm,厚d:0.5~5mm。
3.如权利要求1所述的快速凝固过程界面换热系数的测试方法,其特征在于,所述的铜板或铜片的尺寸为:长L:10~50mm;宽W:10~50mm;厚d:0.5~2mm。
4.如权利要求1或2或3所述的快速凝固过程界面换热系数的测试方法,其特征在于,两块铜板或铜片之间的间隙小于0.3mm。
5.如权利要求1所述的快速凝固过程界面换热系数的测试方法,其特征在于,测量探头得到毫秒数量级的温度信号,由信号数据采集系统采集A/D转换,再通过传输线传输到计算机中,信号采集系统的采样频率10~100kHz可调。
6.如权利要求1所述的快速凝固过程界面换热系数的测试方法用测量探头,其特征在于,该测量探头包括,两块同样大小对称设计的铜板或铜片,铜板或铜片的尺寸为长度L与厚度d的比值至少大于20;宽度W与厚度d的比值至少大于20;两根直径小于1mm的热电偶分别焊接在两块铜板或铜片内侧,用螺丝把两块铜板或铜片紧密固定在一起。
7.如权利要求6所述的快速凝固过程界面换热系数的测试方法用测量探头,其特征在于,所述的铜板或铜片的尺寸为长L:10~50mm,宽W:10~50mm,厚d:0.5~2mm。
8.如权利要求6或7所述的快速凝固过程界面换热系数的测试方法用测量探头,其特征在于,两块铜板或铜片之间的间隙小于0.3mm。
CN2009100503847A 2009-04-30 2009-04-30 一种快速凝固过程界面换热系数的测试方法和装置 Active CN101876642B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100503847A CN101876642B (zh) 2009-04-30 2009-04-30 一种快速凝固过程界面换热系数的测试方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100503847A CN101876642B (zh) 2009-04-30 2009-04-30 一种快速凝固过程界面换热系数的测试方法和装置

Publications (2)

Publication Number Publication Date
CN101876642A CN101876642A (zh) 2010-11-03
CN101876642B true CN101876642B (zh) 2012-01-11

Family

ID=43019252

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100503847A Active CN101876642B (zh) 2009-04-30 2009-04-30 一种快速凝固过程界面换热系数的测试方法和装置

Country Status (1)

Country Link
CN (1) CN101876642B (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095516B (zh) * 2011-01-07 2013-03-13 浙江大学 一种废杂铜冶炼炉温测量方法
CN103033277B (zh) * 2012-12-07 2014-12-10 山东科技大学 一种用于评估界面温度与界面换热系数关系的装置及方法
CN103115938B (zh) * 2012-12-26 2015-01-21 内蒙古科技大学 一种测量交变磁场作用下凝固界面换热系数的测量装置
CN104001876B (zh) * 2014-05-29 2016-01-06 清华大学 在线测量钢锭与钢锭模的气隙宽度和界面换热系数的方法
CN104677938B (zh) * 2015-03-24 2017-05-03 江苏科技大学 一种喷嘴空间角度可调的静电雾化冷却能力评价装置
CN105081256A (zh) * 2015-08-31 2015-11-25 宝山钢铁股份有限公司 一种测量薄带连铸界面热流/换热系数的装置和测量方法
CN106093111A (zh) * 2016-06-08 2016-11-09 清华大学 一种用于观察莱顿弗罗斯特现象的相变传热实验装置
CN107843405B (zh) * 2016-09-21 2019-06-11 北京空天技术研究所 试验件和发动机燃气对飞行器底部辐射热流的获取方法
CN106645278A (zh) * 2016-11-22 2017-05-10 中南大学 一种快速浸入式金属凝固传热测试装置及该装置的应用和应用方法
CN109856183B (zh) * 2019-03-25 2021-12-17 上海工程技术大学 一种金属型差压铸造固液界面换热系数的测定方法及装置
CN111855739A (zh) * 2020-09-10 2020-10-30 东北大学 加压凝固过程铸锭和铸型界面换热系数的确定方法及系统
CN113447153B (zh) * 2021-06-28 2024-04-19 哈尔滨工业大学 一种冷坩埚定向凝固过程中温度测量装置及测量方法
CN115128124A (zh) * 2022-08-31 2022-09-30 中铝材料应用研究院有限公司 铸造设备及采用该铸造设备测量界面换热系数的方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2188439Y (zh) * 1993-11-15 1995-02-01 鞍山钢铁公司 连铸坯内部温度的在线测量装置
CN201201041Y (zh) * 2008-05-28 2009-03-04 上海梅山钢铁股份有限公司 板坯连铸结晶器铜板热电偶安装结构

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2188439Y (zh) * 1993-11-15 1995-02-01 鞍山钢铁公司 连铸坯内部温度的在线测量装置
CN201201041Y (zh) * 2008-05-28 2009-03-04 上海梅山钢铁股份有限公司 板坯连铸结晶器铜板热电偶安装结构

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
JP平1-91949A 1989.04.11
JP昭56-141955A 1981.11.05
JP特开2006-284503A 2006.10.19
JP特开平5-220552A 1993.08.31
王成全等.亚快速凝固技术的研究进展.《钢铁研究学报》.2005,第17卷(第5期),11-15. *

Also Published As

Publication number Publication date
CN101876642A (zh) 2010-11-03

Similar Documents

Publication Publication Date Title
CN101876642B (zh) 一种快速凝固过程界面换热系数的测试方法和装置
Santos et al. Determination of transient interfacial heat transfer coefficients in chill mold castings
CN103033530B (zh) 一种用于测定热冲压过程中界面换热系数的装置及方法
CN107389798B (zh) 利用超声波快速检测金属材料半固态固相分数的装置及方法
CN101349663B (zh) 连铸二冷区传热系数测量方法
CN101303319B (zh) 镁及镁合金变质处理组织细化效果热分析检测方法及装置
CN201740750U (zh) 一种实现薄带连铸界面热流或换热系数测量的实验装置
Heichal et al. Predicting thermal contact resistance between molten metal droplets and a solid surface
CN102507637A (zh) 一种连铸保护渣热流模拟测量装置
CN101664793B (zh) 基于红外热成像的连铸坯实时温度场在线预测方法
CN102661967A (zh) 一种结晶器弯月面水平传热热流模拟测试装置
CN104331629A (zh) 一种连铸结晶器保护渣液态、固态渣膜与气隙厚度非均匀分布的计算方法
CN102661966B (zh) 金属凝固过程线收缩率及热应力测量方法及装置
CN102879130A (zh) 一种连铸保护渣综合传热热流测试方法
US20230384161A1 (en) Method for characterization of temperature in weld zone of friction stir welding based on infrared thermal imager
CN106092020A (zh) 一种连铸结晶器内液渣膜厚度的测试方法
CN105044151A (zh) 一种测量铝合金连续冷却转变曲线的方法
CN103235001A (zh) 钢的固-液相线温度的测量方法
Dargusch et al. The accurate determination of heat transfer coefficient and its evolution with time during high pressure die casting of Al‐9% Si‐3% Cu and Mg‐9% Al‐1% Zn alloys
Prasad et al. Experimental Determination of Heat Transfer Across the Metal/Mold Gap in a Direct Chill (DC) Casting Mold—Part I: Effect of Gap Size and Mold Gas Type
JP4105839B2 (ja) 連続鋳造における鋳型内鋳造異常検出方法
CN102205403B (zh) 一种检测连铸结晶器铜板局部热流的方法
JP3230513B2 (ja) 連続鋳造用鋳型内における溶鋼流速の推定方法、鋼の連続鋳造における品質管理方法及び鋼の連続鋳造方法
CN101430292B (zh) 单个金属微滴大冷速原位快速热分析测定过冷度的方法
CN102430750B (zh) 镁合金在线成分检测与凝固组织控制的方法及装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant