CN101872546B - 一种基于视频的过境车辆快速检测方法 - Google Patents

一种基于视频的过境车辆快速检测方法 Download PDF

Info

Publication number
CN101872546B
CN101872546B CN 201010167001 CN201010167001A CN101872546B CN 101872546 B CN101872546 B CN 101872546B CN 201010167001 CN201010167001 CN 201010167001 CN 201010167001 A CN201010167001 A CN 201010167001A CN 101872546 B CN101872546 B CN 101872546B
Authority
CN
China
Prior art keywords
frame
background
image
video
moving object
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010167001
Other languages
English (en)
Other versions
CN101872546A (zh
Inventor
金城
滕舟
冯瑞
郭跃飞
薛向阳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN 201010167001 priority Critical patent/CN101872546B/zh
Publication of CN101872546A publication Critical patent/CN101872546A/zh
Application granted granted Critical
Publication of CN101872546B publication Critical patent/CN101872546B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Image Analysis (AREA)

Abstract

本发明属于交通监视、视频处理技术领域,具体公开了一种基于视频的过境车辆快速检测方法。该方法采用背景差法、梯度帧间差法和帧间差法,同时消除白天阴影、呼吸效应以及晚上前大灯地面反射光等影响,精确检测运动物体位置,判断运动物体所处车道。实验结果表明,本方法能够克服传统方法中运算量较大的缺点,满足电子警察视频车辆检测的实时性要求,能够对场景中的车辆进行精确检测,对光线变化、阴影等干扰,具有较好的鲁棒性。

Description

一种基于视频的过境车辆快速检测方法
技术领域
本发明属于交通监视、视频处理技术领域,具体涉及视频图像的运动估计和检测方法,特别是交通视频图像中运动车辆的检测方法。
背景技术
近年来,随着汽车的普及,道路堵塞、交通事故等问题引起了人们的广泛关注。智能交通系统(Intell igent Transportation System,ITS)是将先进的计算机处理,数据采集和传输技术,计算机控制等有机的结合起来,从而有效的对交通运输进行监测、管理和控制,提高交通运输效率,保障车辆安全的系统。在智能交通系统的具体应用中,随着摄像设备价格的降低,计算机处理能力的增强和网络速度的提高,交通视频监控技术得到了快速的发展和广泛的应用,它为道路上车辆及行人状态分析、流量统计、信号控制、违章检测等很多方面提供重要依据,已经引起学术界的广泛关注。
以车辆为运动目标的运动检测技术是交通视频监控系统中最为关键的技术。运动目标检测是计算机视觉的核心问题之一,它融合了图像处理、模式识别、计算机控制、人工智能等多学科的先进技术,在交通监控,安全管理,自动导航等许多方法有着广泛的应用。运动目标检测的原理是从图像序列中实时的自动识别感兴趣的目标,完成对运动目标的定位。该问题的难点在于在二维图像中,对物体的三维特征进行恢复。因为对物体进行成像的投影变换过程中,必然存在信息的丢失,而且,由于成像角度和运动物体本身姿态的变化,运动物体的所成的像也必然随之变化。再加上物体所在的环境中存在的光照、阴影等噪声的影响,使得该问题的难度进一步增加。其中的遮挡问题,更是对传统运动目标检测算法的有效性和鲁棒性提出了严重挑战,在复杂条件下,特别是夜间场景下的检测问题,也逐渐成为车辆检测问题中的焦点问题。
运动目标检测中,最常用的前景提取算法是背景差分法。首先我们需要在交通场景下进行背景建模,在大多数交通场景中,背景环境并非是完全静止不变的,如场景中树木受到风的影响而晃动,自然光照随时间的变化,建筑物、车辆等物体的影子等等,都会对背景产生影响,因此背景估计模型必须要求能够自适应的处理这种实时动态的跟踪环境的变化。常用的自适应背景估计模型主要有:(1)图像平均模型(Hoose,1992),这种方法把一系列的图像序列的像素值累加起来求平均值作为背景像素值。(2)选择性背景更新模型(Butler,2005),这种方法根据背景图像和当前图像进行差分结果进行判断,如果某点的背景图像值和当前图像值的差分值小于某一个阈值时,就认为该点没有运动物体,用当前图像的点作为背景,实现背景跟新,而如果差分值大于该阈值,则表示改点为运动物体,维持背景不变。(3)混合高斯分布模型(Stauffer et al.,2000),这种方法就是把图像的像素值看成是一些高斯分布的综合作用:前景高斯分布和背景高斯分布的混合体。图像的某点像素值符合前景高斯分布时,就认为该点属于运动目标;符合背景高斯分布时,就认为该点属于背景,并进行背景跟新。混合高斯模型的估计效果较好,但是计算量比较大。
背景差分算法是通过背景与当前帧进行差分的方法得到运动前景,其中的关键步骤是背景估计。这种算法首先对场景的背景进行有效的估计,再用当前图像帧和背景图像进行差分运算,但这但这样得到的前景往往有较大的噪声,需要对差分图像进行滤波,以除去图像中的噪声,然后对滤波后的图像进行区域分割,提取出运动区域。
发明内容
本发明的目的在于提出一种检测精确、受环境影响小、鲁棒性好的对过境车辆进行快速检测的方法。本发明提供的基于视频的过境车辆快速检测方法,利用背景差法、梯度帧间差法和帧间差法,同时消除白天阴影、呼吸效应以及晚上前大灯地面反射光等影响,精确检测运动物体位置,判断运动物体所处车道。具体步骤如下(见图1所示):
(1)获得原始帧以后,首先进行高斯模糊的处理,模糊处理的好处在于,可以消除一些轻微抖动(如摄像头轻微抖动,树枝轻微抖动等)带来的影响。
(2)在准备阶段,利用帧间差法,对背景做简单判断,加权累加,获得背景图像。
(3)闪光灯检测和消除呼吸效应。主要统计相邻两帧相应像素点的差值的绝对值均值,通过训练阈值判定。
(4)采用背景差法(主要是利用当前帧和背景帧相减),获得当前帧中的运动物体的大致轮廓。
(5)快速连通区域检测,相交矩形快速检测和合并。
(6)在以后步骤获得的候选区域内,采用帧间差法(主要是利用相邻帧相减),获得当前帧中的运动物体的精确位置。这里使用梯度的帧间差法,主要是为了消除夜间路灯照明环境一般情况下地面反射光的影响。
(7)消除阴影。具体为训练阴影点和背景点的亮度比值范围,取边界轮廓上的点进行了阴影判定。
(8)消除抖动情况。主要是记录警戒线各个位置的状态,如果该范围处于车辆碰线状态,则记录为忙碌,考虑到不同两辆车碰线时总是有一定的时间间隔,因此有新的车辆碰线时,只有它所碰范围处于已经空闲了至少T帧的状态,才视该新的车辆有效。
本方法与现有技术相比有点在于:
(1)融合了多种方法的优点,取长补短,能够对场景中的车辆达到精确的检测效果。
(2)采用专门的图像处理库以及专门的硬件优化,同时融合的多个方法计算复杂度低,并对一些算法进行了优化,能够很好地满足实时性的要求。
(3)对实际情况中不同的场景、光线变化等进行了多方面的考虑,采用了专门的解决策略,实际运行表现出较好的性能。
实际运行结果表明,本方法能够克服传统方法中运算量较大的缺点,满足电子警察视频车辆检测的实时性要求,能够对场景中的车辆进行精确检测,对光线变化、阴影等干扰,具有较好的鲁棒性。
附图说明
图1本发明的总体流程图。
图2快速连通区域检测算法图。
具体实施方式
高斯模糊
获得原始帧以后,首先进行了高斯模糊的处理。模糊处理的好处在于,可以消除一些轻微抖动(如摄像头轻微抖动,树枝轻微抖动等)带来的影响。
闪光灯检测和呼吸效应消除
这两者的检测具有一定相似性。闪光灯闪的时间极短,通常只有一帧,而且其图像整体亮度属于剧变。而呼吸效应,存在两种情况,一种是一般部分区域的呼吸效应,这里可以通过前面的阈值加以舍弃,因为一般的呼吸效应都是渐变的,不是类似运动物体的突变。而对于整体图像可能的呼吸效应,对于整体图像亮度都属于突变。这些特点和运动物体所在的突变是不同的,因为一般情况下,运动物体的突变只是局部区域的,不会引起整个图像亮度的突变。因此,我们这里统计了相邻两帧相应像素点的差值的绝对值均值。白天主要判定呼吸效应,超过一定阈值则抛弃该帧;闪光灯白天晚上皆可判定,虽然白天影响不大。
这里简单提一下蚊虫等相关问题,限制运动物体的最小大小即可较好地解决这类问题。
背景差法确定车辆大致轮廓
背景法主要是利用当前帧和背景帧相减,从而获得当前帧中的运动物体。主要算法流程如下所示:
(1)对视频或者摄像头的视频帧逐一读取,由彩色图像先转化为灰度图像。对于前M帧(M取值可视交通流量情况而定,一般可设为700--1000帧左右)不进行检测,主要进行背景帧的初始计算(此过程只会在系统刚刚启动的时候运行)。设背景帧为Ibackground,当前帧为Icurrent,则:
I background N = ( 1 - α ) * I background N - 1 + α * I current N ;
这里,N为帧序列号(N=1,2,...,M),α为更新的权重系数。注意,在预处理阶段,使用了帧间对应像素点的差值进行了判定,只有小于一定阈值(可视视频情况而定,一般为灰度值10~50),才视为背景点,进行加权累加。正式运行阶段无此判定。
(2)从第M+1帧图像开始,首先同样先由彩色图像转化为灰度图像,然后由当前帧和背景帧相减,获得背景差值帧图像
Figure GSA00000111714200042
I B min us N = I current N - I background N - 1
(3)对背景差值帧图像进行二值化处理。注意白天的阈值在一定程度上消除了呼吸效应的渐变产生的区域像素点造成的影响,因为相对于运动物体来说,运动物体所处区域为突变,一般变化较为明显。
(4)对二值化处理后的背景差值帧图像进行形态学滤波,去掉噪音。可以先进行一次腐蚀,然后在进行多次膨胀。
(5)更新当前背景帧,和步骤(1)中类似。
快速连通区域检测算法
由于运算能力所限,使用传统的广度优先或者深度优先的搜索算法进行8连通区域的检测,然后再把所有搜索得到区域最大规范为矩形,这种方法消耗时间较多,而且容易陷入深度堆栈。这里针对本问题的特殊情况,采用了更为快捷的算法,使用该算法主要基于本特定问题的几个假设:
(1)图像中所有运动物体均最终表示为不相交的矩形。
(2)所有运动物体至少相距一定距离,如几个像素点,否则视为同一物体。
使用算法如图2所示:
在碰线区域(具有一定的带宽,带宽可设为10),从左至右,从上至下,进行连通区域搜索。发现一个未被搜索过的前景点,则视为一个新的连通区域的起始点,然后由该起始点出发,整行整列地扩张该连通区域(候选行列中只要有前景点则将其包括在内)至不能扩张为止,最后标志该区域所有点已搜索过。
相交矩形快速检测和合并算法
对于所有可能相交的矩形,将其合并为一个大的矩形。快速检测算法如下所示:
设矩形左上角点和右下角点分别表示为rect.TopLeft、rect.BottomRight,则检测任意两个矩形rect1,rect2是否相交,
    minx=rect1.TopLeft.x>rect2.TopLeft.x?rect1.TopLeft.x:rect2.TopLeft.x;
    miny=rect1.TopLeft.y>rect2.TopLeft.y?rect1.TopLeft.y:rect2.TopLeft.y;
maxx                                                                                    =
    rect1.BottomRight.x<rect2.BottomRight.x?rect1.BottomRight.x:rect2.BottomRight.x;
maxy                                                                                    =
rect1.BottomRight.y<rect2.BottomRight.y?rect1.BottomRight.y:rect2.BottomRight.y;
    if(minx>maxx||miny>maxy)则不相交,否则,相交。
至此,我们便确定了每个运动车辆的大致轮廓。
精确定位:帧间差法和梯度帧间差法
帧间差法主要是利用相邻帧相减,从而获得当前帧中的运动物体。这里使用梯度的帧间差法主要是为了消除夜间路灯照明环境一般情况下地面反射光的影响。主要算法流程如下所示:
(1)对视频或者摄像头的视频帧逐一读取,由彩色图像先转化为灰度图像。对于前M帧由于未进行检测,不处理,只在第M帧图像时,对其采用罗伯特交叉算子进行梯度滤波,保存,用作后续计算。为了保证车体区域像素亮度值保持较高的差异和扩大检测尺度,以利于后续梯度帧间差分检测算法的实现,我们在梯度值的基础上再加上一个常数g(可设为灰度值128),即
f(i,j)=f(i,j)-f(i-1,j-1)+g
(2)从第M+1帧图像开始,首先同样先有彩色图像转化为灰度图像,对当前帧同样使用和(1)中类似方法进行梯度滤波,然后由当前帧和前一帧相减,获得梯度帧间差值图像。同理,可获得简单的原始的帧间差值图像。
(3)对梯度帧间差值图像和帧间差值图像分别进行二值化处理。
(4)进行场景判定,分白天和晚上分别处理,以后可继续扩展场景。
(5)对于白天场景,对二值化处理后的帧间差值图像进行形态学滤波,去掉噪音;在由背景差值法获得的各个矩形的基础上进一步处理,找到其在帧间差值图像上的对应矩形位置,由帧间差值图像上的有效运动物体像素的位置,进一步缩小矩形的大小范围。
(6)对于夜晚场景,对二值化处理后的梯度帧间差值图像进行形态学滤波,去掉噪音;这里主要是为了消除车大灯照成的地面反射光的影响。同样,在由背景差值法获得的各个矩形的基础上进一步处理,找到其在帧间差值图像上的对应矩形位置,由帧间差值图像上的有效运动物体像素的位置,确定运动物体的车头起始位置和两侧位置。由于梯度帧间差值法消的比较厉害,所以对于较远的车尾位置定位不是很准确,这里,我们使用没用膨胀腐蚀过的帧间差值图像确定其车尾位置(没有膨胀腐蚀主要是节约时间,而且这里效果影响不是很大)。
阴影消除
所谓阴影,主要是由于背景点被遮挡造成,因此和背景点具有一定的相似性。因此,我们主要训练了阴影点和背景点的亮度比值范围(更好的方法可以是训练彩色图像的三个颜色通道R(红),G(绿),B(蓝)占(R+G+B)的比值),而一般前景点和背景点的比值都会处在不同的范围。同时,为了更好的消除阴影点,我们主要是通过边界圈定运动物体的大致范围,因此,我们这里也主要是取边界轮廓上的点进行了阴影判定。这样可以快速地消除一些阴影点,尽可能消除由于阴影点和前景点相似带来的问题。因为,即使前景点和背景点完全相似,对于一个运动物体,总存在一些镜面反射点,不可能完全消除。
车辆碰线检测
对于所有已经检测到的车辆位置,进行碰线检测,算法流程如下所示:
(1)对于所有碰线物体,与当前记录的所有前一帧碰线物体相比较,如果两者矩形重合面积超过一定阈值(指重合面积所占两矩形任意之一的百分比,可设为0.5),则视为同一物体,不再报警,否则报警有新的物体出现。矩形重合面积的计算在“相交矩形检测和合并算法”的基础上,设重合面积为BothSize,则
BothSize=(maxx-minx)*(maxy-miny)
(2)记录下所有当前帧的碰线物体,为后续帧进行处理。
抖动情况的消除
由于边界不是很稳定的情况,可能会涉及到同一物体的多次报警,这里提供一个非常有效的消除方法。主要是记录警戒线各个位置的状态,如果该范围处于车辆碰线状态,则记录为忙碌,考虑到不同两辆车碰线时总是有一定的时间间隔,因此有新的车辆碰线时,只有它所碰范围处于已经空闲了至少T帧的状态,才视该新的车辆有效。主要流程如下:
(1)初始状态为无。
(2)每一帧开始,对所有记录下来的忙碌的警戒线位置范围判断,和当前帧数号比较,如果已经空闲T帧,则消除该位置范围。
(3)新的车辆碰线,和所有记录下来的忙碌的位置范围比较,如果处在某个忙碌的位置范围,则不报警,视为原来已报警车辆,同时将该车辆的碰线范围和与其相交的忙碌的位置范围合并,并置最近忙碌帧号为当前帧号。否则,报警,并记录下该车辆碰线范围,并置最近忙碌帧号为当前帧号。

Claims (2)

1.一种基于视频的过境车辆快速检测方法,其特征在于:根据视频的特点,利用背景差法、梯度帧间差法和帧间差法,同时消除白天阴影、呼吸效应以及晚上前大灯地面反射光的影响,精确检测运动物体位置,判断运动物体所处车道;具体步骤如下:
(1)获得原始帧以后,首先进行高斯模糊的处理;
(2)在准备阶段,利用帧间差法,对背景做简单判断,加权累加,获得背景图像;
(3)闪光灯检测和消除呼吸效应,主要统计相邻两帧相应像素点的差值的绝对值均值,通过训练阈值判定;
(4)采用背景差法,利用当前帧和背景帧相减,获得当前帧中的运动物体的大致轮廓;
(5)快速连通区域检测,相交矩形快速检测和合并;
(6)在候选区域内,采用帧间差法,利用相邻帧相减,获得当前帧中的运动物体的精确位置;
(7)消除阴影,训练阴影点和背景点的亮度比值范围,取边界轮廓上的点进行阴影判定;
(8)消除抖动情况,记录警戒线各个位置的状态,如果该范围处于车辆碰线状态,则记录为忙碌;有新的车辆碰线时,只有它所碰范围处于已经空闲了至少T帧的状态,才视该新的车辆有效;
其中,所述背景差法为:利用当前帧和背景帧相减,获得当前帧中的运动物体的大致轮廓,其算法流程如下:
①对视频或者摄像头的视频帧逐一读取,由彩色图像先转化为灰度图像;对于前M帧进行背景帧的初始计算,设背景帧为Ibackground,当前帧为Icurrent,则:
I backgorund N = ( 1 - α ) * I background N - 1 + α * I current N ;
N为帧序列号,N=1,2,...,M,α为更新的权重系数;
②从第M+1帧图像开始,首先同样先由彩色图像转化为灰度图像,然后由当前帧和背景帧相减,获得背景差值帧图像
I B min us N = I current N - I background N - 1 ;
③对背景差值帧图像进行二值化处理;
④对二值化处理后的背景差值帧图像进行形态学滤波,去掉噪音;期间先进行一次腐蚀,然后再进行多次膨胀;
⑤更新当前背景帧,和步骤(1)中相同;
所述帧间差法具体为:利用相邻帧相减,从而获得当前帧中的运动物体的精确位置;其算法流程如下:
①对视频或者摄像头的视频帧逐一读取,由彩色图像先转化为灰度图像;对于前M帧由于未进行检测,不处理,只在第M帧图像时,对其采用罗伯特交叉算子进行梯度滤波,保存,用作后续计算;
②从第M+1帧图像开始,首先同样先由彩色图像转化为灰度图像,对当前帧同样使用和步骤(1)中相同的方法进行梯度滤波,然后由当前帧和前一帧相减,获得梯度帧间差值图像;同理,可获得简单的原始的帧间差值图像;
③对梯度帧间差值图像和帧间差值图像分别进行二值化处理;
④进行场景判定,分白天和晚上分别处理,以后可继续扩展场景;
⑤对于白天场景,对二值化处理后的帧间差值图像进行形态学滤波,去掉噪音;在由背景差值法获得的各个矩形的基础上进一步处理,找到其在帧间差值图像上的对应矩形位置,由帧间差值图像上的有效运动物体像素的位置,进一步缩小矩形的大小范围;
⑥对于夜晚场景,对二值化处理后的梯度帧间差值图像进行形态学滤波,去掉噪音;同样,在由背景差值法获得的各个矩形的基础上进一步处理,找到其在帧间差值图像上的对应矩形位置,由帧间差值图像上的有效运动物体像素的位置,确定运动物体的车头起始位置和两侧位置。
2.根据权利要求1所述的基于视频的过境车辆快速检测方法,其特征在于:所述阴影消除,具体为训练阴影点和背景点的亮度比值范围,取边界轮廓上的点进行了阴影判定。
CN 201010167001 2010-05-06 2010-05-06 一种基于视频的过境车辆快速检测方法 Expired - Fee Related CN101872546B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010167001 CN101872546B (zh) 2010-05-06 2010-05-06 一种基于视频的过境车辆快速检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010167001 CN101872546B (zh) 2010-05-06 2010-05-06 一种基于视频的过境车辆快速检测方法

Publications (2)

Publication Number Publication Date
CN101872546A CN101872546A (zh) 2010-10-27
CN101872546B true CN101872546B (zh) 2013-03-13

Family

ID=42997378

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010167001 Expired - Fee Related CN101872546B (zh) 2010-05-06 2010-05-06 一种基于视频的过境车辆快速检测方法

Country Status (1)

Country Link
CN (1) CN101872546B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183127A (zh) * 2013-05-21 2014-12-03 北大方正集团有限公司 交通监控视频检测方法和装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136196A (zh) * 2011-03-10 2011-07-27 北京大学深圳研究生院 一种基于图像特征的车辆测速方法
CN102496276B (zh) * 2011-12-01 2013-08-21 青岛海信网络科技股份有限公司 一种高效车辆检测方法
CN102622886B (zh) * 2012-03-23 2014-04-30 长安大学 一种基于视频的车辆违章变道事件检测方法
CN102622782B (zh) * 2012-03-26 2014-10-15 广州新软计算机技术有限公司 一种基于二维空间的自动收费方法
CN102810250B (zh) * 2012-07-31 2014-07-02 长安大学 基于视频的多车型交通信息检测方法
CN103177243B (zh) * 2013-03-15 2016-04-13 浙江大学 一种海洋微生物的实时监测方法
CN103489317A (zh) * 2013-10-10 2014-01-01 扬州瑞控汽车电子有限公司 一种不同场景下的车辆检测方法
CN103716955A (zh) * 2013-11-16 2014-04-09 镇江高等职业技术学校 一种针对大学晚自修的教室分区域智能照明系统
CN103871253A (zh) * 2014-03-03 2014-06-18 杭州电子科技大学 一种基于自适应背景差分的车流量检测方法
CN104008396A (zh) * 2014-05-22 2014-08-27 南京邮电大学 基于人头部色彩和形状特征的进出口人流量统计方法
CN104077757B (zh) * 2014-06-09 2017-05-10 中山大学 一种融合实时交通状态信息的道路背景提取与更新方法
CN104125436A (zh) * 2014-08-01 2014-10-29 昆明联诚科技股份有限公司 一种交通事故检测预警方法及系统
US9898008B2 (en) 2016-03-22 2018-02-20 Delphi Technologies, Inc. Scenario aware perception system for an automated vehicle
US10650646B2 (en) * 2017-12-06 2020-05-12 Illinois Tool Works Inc. Method of increasing detection zone of a shadow-based video intrusion detection system
CN108538052A (zh) * 2018-03-05 2018-09-14 华南理工大学 基于车头灯轨迹跟踪和动态配对的夜间交通流量检测方法
CN108550131B (zh) * 2018-04-12 2020-10-20 浙江理工大学 基于特征融合稀疏表示模型的sar图像车辆检测方法
CN109146807B (zh) * 2018-07-31 2021-04-06 南昌工程学院 一种交通视频中车辆的快速检测方法
CN109146860B (zh) * 2018-08-03 2021-04-27 北京工商大学 全自动机械设备安装泄露检测方法及装置
CN110929632A (zh) * 2019-11-19 2020-03-27 复旦大学 面向复杂场景的车辆目标检测方法及装置
CN111447428A (zh) * 2020-03-12 2020-07-24 黄胜海 平面至立体图像的转换方法、装置、计算机可读存储介质及设备
CN111640309A (zh) * 2020-05-22 2020-09-08 浙江工贸职业技术学院 一种快捷的车辆检测系统
CN113793508B (zh) * 2021-09-27 2023-06-16 深圳市芊熠智能硬件有限公司 一种出入口无牌车辆防干扰快速检测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017573A (zh) * 2007-02-09 2007-08-15 南京大学 一种基于视频监控的运动目标检测与识别方法
CN101266717A (zh) * 2008-04-25 2008-09-17 北京科技大学 一种基于多mems传感器的车辆检测识别系统及其方法
CN101587646A (zh) * 2008-05-21 2009-11-25 上海新联纬讯科技发展有限公司 基于视频识别技术的车流量检测方法及系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008028857A (ja) * 2006-07-24 2008-02-07 Sumitomo Electric Ind Ltd 障害物検出システム、及び障害物検出方法
US8213685B2 (en) * 2007-01-05 2012-07-03 American Traffic Solutions, Inc. Video speed detection system
US8456528B2 (en) * 2007-03-20 2013-06-04 International Business Machines Corporation System and method for managing the interaction of object detection and tracking systems in video surveillance

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101017573A (zh) * 2007-02-09 2007-08-15 南京大学 一种基于视频监控的运动目标检测与识别方法
CN101266717A (zh) * 2008-04-25 2008-09-17 北京科技大学 一种基于多mems传感器的车辆检测识别系统及其方法
CN101587646A (zh) * 2008-05-21 2009-11-25 上海新联纬讯科技发展有限公司 基于视频识别技术的车流量检测方法及系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2008-28857A 2008.11.27

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104183127A (zh) * 2013-05-21 2014-12-03 北大方正集团有限公司 交通监控视频检测方法和装置

Also Published As

Publication number Publication date
CN101872546A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
CN101872546B (zh) 一种基于视频的过境车辆快速检测方法
CN110178167B (zh) 基于摄像机协同接力的路口违章视频识别方法
CN108596129B (zh) 一种基于智能视频分析技术的车辆越线检测方法
CN106652465B (zh) 一种道路异常驾驶行为的识别方法及系统
US9704060B2 (en) Method for detecting traffic violation
CN101656023B (zh) 一种视频监视模式下的室内停车场管理方法
Hung et al. A real-time mobile vehicle license plate detection and recognition
CN101739827B (zh) 一种车辆检测跟踪方法和装置
CN103116985B (zh) 一种违章停车检测方法和装置
CN102968625B (zh) 基于轨迹的船舶识别与跟踪方法
CN107808392B (zh) 开放场景的安检车辆自动跟踪定位方法及系统
CN106022243B (zh) 一种基于图像处理的机动车道车辆逆行识别方法
JP2019029940A (ja) 付着物検出装置、および、それを備えた車両システム
CN102867416A (zh) 一种基于车辆部位特征的车辆检测与跟踪方法
CN103077539A (zh) 一种复杂背景及遮挡条件下的运动目标跟踪方法
CN101727748A (zh) 一种基于车辆尾灯检测的车辆监控方法、系统和设备
CN111860120A (zh) 车载相机自动遮挡检测方法和装置
CN103050008B (zh) 夜间复杂交通视频中车辆检测方法
CN101936730A (zh) 车辆排队长度检测的方法及装置
CN109887276B (zh) 基于前景提取与深度学习融合的夜间交通拥堵检测方法
CN103049788B (zh) 基于计算机视觉的待过行人数目的检测系统及方法
CN105740835A (zh) 夜视环境下基于车载相机的前方车辆检测方法
CN107122732B (zh) 一种监控场景下高鲁棒性的快速车牌定位方法
CN110020642A (zh) 一种基于车辆检测的能见度识别方法
Chen et al. Traffic congestion classification for nighttime surveillance videos

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130313

CF01 Termination of patent right due to non-payment of annual fee