CN101871764B - 基于霍尔效应的岩土地下位移测量方法及装置 - Google Patents

基于霍尔效应的岩土地下位移测量方法及装置 Download PDF

Info

Publication number
CN101871764B
CN101871764B CN2010102039968A CN201010203996A CN101871764B CN 101871764 B CN101871764 B CN 101871764B CN 2010102039968 A CN2010102039968 A CN 2010102039968A CN 201010203996 A CN201010203996 A CN 201010203996A CN 101871764 B CN101871764 B CN 101871764B
Authority
CN
China
Prior art keywords
measuring unit
displacement
hall
electromagnet
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2010102039968A
Other languages
English (en)
Other versions
CN101871764A (zh
Inventor
童仁园
池金谷
李雄
李明
李青
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Jiliang University
Original Assignee
China Jiliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Jiliang University filed Critical China Jiliang University
Priority to CN2010102039968A priority Critical patent/CN101871764B/zh
Publication of CN101871764A publication Critical patent/CN101871764A/zh
Application granted granted Critical
Publication of CN101871764B publication Critical patent/CN101871764B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

本发明公开了一种基于霍尔效应的岩土地下位移测量方法及装置。由多个测量单元串接组成,使相邻一个测量单元的下表面平行于另一个测量单元的上表面。每一个测量单元由下表面安装永磁体或电磁铁,上表面安装至少3个霍尔传感器,每个测量单元通过电源线和485总线上下连成一串,将整串测量装置垂直插入岩层中,其输出电压通过模数转换芯片传入单片机。当相邻测量单元发生相对位移时,其中一个测量单元上的霍尔传感器与另一个测量单元上的永磁体或电磁铁的相对位置发生改变,从而使霍尔传感器的输出电压发生改变。根据霍尔传感器的输出电压的变化计算得到两个相邻测量单元的位移量和位移方向,从而得到岩土地下位移量和位移方向。

Description

基于霍尔效应的岩土地下位移测量方法及装置
技术领域
本发明涉及一种位移测量方法及装置,尤其是涉及一种基于霍尔效应的岩土地下位移测量方法及装置。
背景技术
我国是地质灾害多发国家,频发的地质灾害给人们的生命和财产带来了巨大的损失和威胁。为了减少地质灾害造成的损失,各种灾害防治监测手段和技术被广泛应用到各个领域并且取得了显著的避灾防灾效果。如滑坡、地面沉降等地质灾害的灾前地质征兆和地质结构动态变化参数多数首先来自于灾害体地下深部。如果能够提前针对灾害体地下地质结构参数变化的测量中得到灾害的前兆信息的话,就能大大有利于避灾、防灾工作的有效开展,减少灾害造成的损失。地下位移监测技术就是一种针对灾害体地下深部地质结构参数的重要监测手段。
目前国内外常用的地下位移测量技术主要有钻孔测斜法和TDR法,但这两种技术都存在较多的缺点,大大降低了其性能。如钻孔测斜法需要人工操作计算,效率低,测量结果的可靠性受到操作人员素质影响大;必须靠近危险源测量,安全性不高;不能测量位移方向;难以测量土层发生较大曲率的滑移情况等。TDR法无法测量未发生剪切作用的土层滑移情况;对位移量测量精度不高;无法测量滑移方向等。还有由申请人提出的基于互感机理的地下位移测量方法,虽然解决了具有方向判别和实时测量的问题,但在位移初始阶段测量精度较低。
发明内容
本发明的目的在于提供一种基于霍尔效应的岩土地下位移测量方法及装置。
本发明采用的技术方案是:
一、一种基于霍尔效应的岩土地下位移测量方法:
每一个测量单元均由下表面安装永磁体或电磁铁,上表面安装三个霍尔传感器,以及测量电路和单片机组成;将多个测量单元串连插入岩土层中,使任意相邻两个测量单元中的一个测量单元的下表面平行于另一个测量单元的上表面;根据霍尔效应,霍尔传感器在磁场作用下输出霍尔电压;当相邻测量单元发生相对位移时,其中一个测量单元上的霍尔传感器与另一个测量单元上的永磁体或电磁铁的相对位置发生改变;霍尔传感器的输出电压也发生改变,通过测量每个霍尔传感器输出电压来判断永磁体或电磁铁在霍尔传感器所在平面的投影与该霍尔传感器的相对距离;在获得磁体的平面投影与平面上所有霍尔传感器的相对距离后,通过几何计算的方法得到磁体平面投影在该平面上的二维坐标位置,通过两个测量单元发生相对位移前后永磁体或电磁铁平面投影二维坐标的变化计算得到两个测量单元的相对位移量和位移方向;
二、一种基于霍尔效应的岩土地下位移测量装置:
每一个测量单元均由下表面安装永磁体或电磁铁,上表面安装三个霍尔传感器,以及测量电路和单片机组成,相应的两块圆形印刷电路板都装入一个厚壁PVC塑料管内,并灌胶密封;每一个测量单元均分为两个部分,一部分是一块永磁体或电磁铁,固定在第一测量单元的下端面面板上,另一部分是由三个霍尔传感器组成的传感器阵列,固定在第二测量单元的上端面面板上,霍尔传感器紧密地水平贴合在面板上,三个霍尔传感器的中心点在上端面面板平面上构成一个等边三角形的三个顶点A、B、C,下端面面板和上端面面板之间相互平行,并能相对水平移动;当第一测量单元和第二测量单元未发生相对位移时,永磁体或电磁铁的端面中心点在上端面面板平面上的投影点与等边三角形的中心点重合;每个测量单元通过电源线和485总线上下连成一串,由485总线将各测量单元的测量数据送至地面的信息集中处理装置,信息集中处理装置将通过有线和无线的方式传送到PC机,通过PC机人机对话界面观察各个测量单元的数据即可知道地下位移的大小。
本发明具有的有益效果是:
本发明将霍尔效应应用于地下岩土的位移测量,实现了位移量和位移方向的同时测量,提出了一种新的岩土地下位移测量方法。
附图说明
图1是岩土未发生相对位移时传感器三维结构图。
图2是岩土未发生相对位移时传感器俯视图。
图3是岩土发生相对位移时传感器三维结构图。
图4是岩土发生相对位移时传感器俯视图。
图5是永磁体或电磁铁中心点投影坐标计算。
图6是地下位移测量系统示意图。
图7是地下位移测量单元的硬件结构图。
具体实施方式
下面结合附图和实施例对本发明作进一步说明。
1、基于霍尔效应测量位移的机理:
如图1所示,V1和V2为一对相邻的基于霍尔效应的地下位移传感器测量单元。S11为V1测量单元上平面,S12为V1测量单元下平面,S21为V2测量单元上平面,S22为V2测量单元下平面。在两个测量单元上表面都固定有三个霍尔传感器(如SS94A1F霍尔传感器)组成的阵列。在两个测量单元下表面都固定有一块永磁体或电磁铁。其中M是固定于S12平面上的永磁体或电磁铁。A、B、C三个顶点为贴在平面S21构成一个等边三角形的三块霍尔传感器的中心点。平面S12和S21之间相互平行,V1和V2可以相对水平移动。当V1和V2未发生相对位移时,如图1和图2所示,永磁体或电磁铁M的中心点P在S21平面上的投影P′点与等边三角形的中心点Q重合。当V1和V2发生相对位移时,如图3和图4所示,永磁体或电磁铁相对三个霍尔传感器的位置发生变化,P′点发生位移,使得穿过霍尔传感器的磁感应强度发生变化。根据霍尔效应,霍尔传感器的输出电压与穿过霍尔传感器的磁感应强度有关。因此当V1和V2发生相对位移时,霍尔传感器的输出电压也随之发生变化。
如图5所示,在S21平面上建立坐标系,A、B、C三点为三个霍尔传感器的中心点,P′点为永磁体或电磁铁M中心点P在S21平面上的投影,P′到A、B、C点的距离分别为dA、dB、dC.A、B、C三点所构成的等边三角形边长为常数a.移动测量单元V1,使得dA、dB、dC取不同数值时,测量对应的A、B、C点三个霍尔传感器的输出电压UAO、UBO、UCO。然后对dA、dB、dC和UAO、UBO、UCO测量数据应用多项式最小二乘拟合法得到永磁体或电磁铁中心点投影P′到霍尔传感器的距离与该霍尔传感器输出电压的函数关系式。(以一阶最小二乘拟合为例)
dA=a1*UAO+a0                (1)
dB=b1*UBO+b0                (2)
dC=c1*UCO+c0                (3)
式(1)、式(2)和式(3)中a0、a1、b0、b1、c0、c1为最小二乘拟合得到的常系数。
假设P′点坐标为(x,y)。测量霍尔传感器的输出电压UAO、UBO和UCO,再根据式(1)、式(2)和式(3)可获得P′点到三个霍尔传感器中心点的距离dA、dB、dC.利用几何换算的方法,可以求得P′点的平面坐标。
x = a 2 + d A 2 - d B 2 2 a - - - ( 5 )
y = a 2 + d A 2 + d B 2 - 2 d C 2 2 3 a - - - ( 6 )
设未发生位移时P′点的坐标为(x0,y0),位移后P′点的坐标为(x1,y1),则V1相对于V2向x方向移动的距离为Δx=x1-x0,向y方向移动的距离为Δy=y1-y0.
2.地下位移测量装置:
如图1所示,每一个测量单元均由下表面安装永磁体或电磁铁,上表面安装三个霍尔传感器,以及测量电路和单片机组成,如图7所示,相应的两块圆形印刷电路板都装入一个厚壁PVC塑料管内,并灌胶密封;每一个测量单元均分为两个部分,一部分是一块永磁体或电磁铁M,固定在第一测量单元V1的下端面面板S12上,另一部分是由三个霍尔传感器组成的传感器阵列,固定在第二测量单元V2的上端面面板S21上,霍尔传感器紧密地水平贴合在面板S21上,三个霍尔传感器的中心点在上端面面板S21平面上构成一个等边三角形的三个顶点A、B、C,下端面面板S12和上端面面板S21之间相互平行,并能相对水平移动;当第一测量单元V1和第二测量单元V2未发生相对位移时,永磁体或电磁铁M的端面中心点P在上端面面板S21平面上的投影P′点与等边三角形的中心点Q重合;每个测量单元通过电源线和485总线上下连成一串,由485总线将各测量单元的测量数据送至地面的信息集中处理装置,信息集中处理装置将通过有线和无线的方式传送到PC机,通过PC机人机对话界面观察各个测量单元的数据即可知道地下位移的大小。
也可安装三个以上霍尔传感器组成的传感器阵列,固定在第二测量单元V2的上端面面板S21上,构成等边多边形。
多个测量单元外部套上具有热缩功能的薄壁软塑料管,形成整串测量装置,如图6所示。将整串测量装置垂直插入岩层中,每对测量单元间的相对位移的测量机理如前第1节所述。每个测量单元中的霍尔传感器输出电压受到上一个测量单元永磁体或电磁铁的磁场的影响。其输出电压通过模数转换芯片传入单片机,根据前述的位移测量机理计算得到相邻测量单元的相对位移,最后通过485芯片接入485总线将测量数据送至地面的信息集中处理装置。当地层发生相对滑动时,每一个基于霍尔效应的地下位移测量单元将随周围地层发生相对移动,自下而上或自上而下记录每对相邻测量单元的相对移动就可以得到整串测量装置所在岩土的位移情况。

Claims (1)

1.一种基于霍尔效应的岩土地下位移测量装置,其特征在于:每一个测量单元均由下表面安装永磁体或电磁铁,上表面安装三个霍尔传感器,以及测量电路和单片机组成,相应的两块圆形印刷电路板都装入一个厚壁PVC塑料管内,并灌胶密封;每一个测量单元均分为两个部分,一部分是一块永磁体或电磁铁(M),固定在第一测量单元(V1)的下端面面板(S12)上,另一部分是由三个霍尔传感器组成的传感器阵列,固定在第二测量单元(V2)的上端面面板(S21)上,霍尔传感器紧密地水平贴合在所述上端面面板(S21)上,三个霍尔传感器的中心点在上端面面板(S21)平面上构成一个等边三角形的三个顶点A、B、C,下端面面板(S12)和上端面面板(S21)之间相互平行,并能相对水平移动;当第一测量单元(V1)和第二测量单元(V2)未发生相对位移时,永磁体或电磁铁(M)的端面中心点(P)在上端面面板(S21)平面上的投影(P′)点与等边三角形的中心点(Q)重合;每个测量单元通过电源线和485总线上下连成一串,由485总线将各测量单元的测量数据送至地面的信息集中处理装置,信息集中处理装置将通过有线和无线的方式传送到PC机,通过PC机人机对话界面观察各个测量单元的数据即可知道地下位移的大小;
其测量方法:是将多个测量单元串连插入岩土层中,使任意相邻两个测量单元中的一个测量单元的下表面平行于另一个测量单元的上表面;根据霍尔效应,霍尔传感器在磁场作用下输出霍尔电压;当相邻测量单元发生相对位移时,其中一个测量单元上的霍尔传感器与另一个测量单元上的永磁体或电磁铁的相对位置发生改变;霍尔传感器的输出电压也发生改变,通过测量每个霍尔传感器输出电压来判断永磁体或电磁铁在霍尔传感器所在平面的投影与该霍尔传感器的相对距离;在获得磁体的平面投影与平面上所有霍尔传感器的相对距离后,通过几何计算的方法得到磁体平面投影在该平面上的二维坐标位置,通过两个测量单元发生相对位移前后永磁体或电磁铁平面投影二维坐标的变化计算得到两个测量单元的相对位移量和位移方向;
测量时,自上到下或自下而上依次测量相邻测量单元的相对位移量和位移方向,从而得到岩土地下深部各个位置的相对位移量和位移方向。
CN2010102039968A 2010-06-21 2010-06-21 基于霍尔效应的岩土地下位移测量方法及装置 Active CN101871764B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2010102039968A CN101871764B (zh) 2010-06-21 2010-06-21 基于霍尔效应的岩土地下位移测量方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2010102039968A CN101871764B (zh) 2010-06-21 2010-06-21 基于霍尔效应的岩土地下位移测量方法及装置

Publications (2)

Publication Number Publication Date
CN101871764A CN101871764A (zh) 2010-10-27
CN101871764B true CN101871764B (zh) 2012-05-30

Family

ID=42996768

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2010102039968A Active CN101871764B (zh) 2010-06-21 2010-06-21 基于霍尔效应的岩土地下位移测量方法及装置

Country Status (1)

Country Link
CN (1) CN101871764B (zh)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103017650B (zh) * 2012-12-04 2015-11-18 西北大学 一种用于岩土模型试验内部微应变测量的方法及其装置
CN103063122B (zh) * 2013-01-04 2015-05-06 中国计量学院 基于霍尔和磁阻效应的地下位移三维测量方法及装置
CN104359396A (zh) * 2014-12-04 2015-02-18 中国地质调查局水文地质环境地质调查中心 一种滑坡深部倾角监测装置及方法
CN105180795B (zh) * 2015-10-09 2018-04-27 中国计量学院 基于测斜和霍尔效应的岩土体变形测量方法及仪器系统
CN106448070A (zh) * 2016-09-08 2017-02-22 吉林大学 一种利用感应同步器监测倾倒型崩塌的分级预警系统
CN108072324A (zh) * 2016-11-17 2018-05-25 重庆交通大学 一种滑坡深部滑动位移实时监测仪
CN107269270B (zh) * 2017-07-28 2018-08-03 中国地质调查局油气资源调查中心 一种冻土区天然气水合物地层稳定态监测方法
CN107607232B (zh) * 2017-09-07 2018-09-14 张重远 一种地壳岩体平面应力的连续测量方法及系统
CN110424952B (zh) * 2019-08-24 2024-08-30 大连理工大学 一种基于霍尔元件的新型磁感测斜仪及测量方法
CN110599743B (zh) * 2019-10-09 2021-03-19 河南城建学院 一种地埋式山体滑坡预警设备
CN112097633B (zh) * 2020-09-08 2022-02-22 中国计量大学 一种基于双互感等值电压的地下位移三维测量系统与方法
CN111928766B (zh) * 2020-10-14 2021-04-02 福州堆栈科技有限公司 边坡位移监测装置
CN114136824B (zh) * 2021-10-28 2022-07-05 水利部交通运输部国家能源局南京水利科学研究院 一种土料冲蚀试验装置及方法
CN115014588B (zh) * 2022-08-08 2022-11-04 煤炭科学研究总院有限公司 岩体应力的检测系统、方法、电子设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2066971U (zh) * 1989-12-26 1990-12-05 冶金工业部马鞍山矿山研究院 霍尔效应双向数字式位移传感器
US7088095B1 (en) * 2004-02-04 2006-08-08 Honeywell International Inc. Balanced magnetic linear displacement sensor
CN101435689A (zh) * 2008-12-18 2009-05-20 中国计量学院 基于地下位移测量集成传感器的地下位移测量方法及仪器
CN201345153Y (zh) * 2009-02-20 2009-11-11 山西凯杰科技有限公司 基于霍尔传感器的地震报警器

Also Published As

Publication number Publication date
CN101871764A (zh) 2010-10-27

Similar Documents

Publication Publication Date Title
CN101871764B (zh) 基于霍尔效应的岩土地下位移测量方法及装置
CN107630711B (zh) 一种巷道围岩应力和位移的监测装置及方法
CN103513016B (zh) 采用传感柱的软岩多测点地应力测试方法
CN104061902B (zh) 复合式地下深部灾害监测装置
CN102829728A (zh) 边坡、滑坡综合监测系统
WO2022053073A1 (zh) 一种基于双互感等值电压的地下三维位移测量系统与方法
CN105509628B (zh) 一种磁测定位装置以及利用该装置进行滑坡深部位移监测的方法
CN107144380A (zh) 隧道施工过程中围岩扰动应力场的动态测试方法
CN105606278A (zh) 一种围岩应力场钻孔监测探杆
CN109781773A (zh) 一种分层伸缩式检测土的冻胀装置及其检测方法
CN106959095A (zh) 地质内部位移三维监测系统及其安装埋设方法、测量方法
CN105180795A (zh) 基于测斜和霍尔效应的岩土体变形测量方法及仪器系统
CN102995615A (zh) 一种用于地下深层土体位移的实时监测方法
CN106706029A (zh) 一种面向地下结构施工的土体性能监测装置及其工作方法
CN103063122B (zh) 基于霍尔和磁阻效应的地下位移三维测量方法及装置
CN109827533A (zh) 确定地下溶洞内部边界的测量系统及其使用方法
CN113419294A (zh) 一种多维度岩溶特殊地质综合探测方法
CN103276714A (zh) 分层测量土体位移的装置及方法
CN206862331U (zh) 地质内部位移三维监测系统
CN109186445B (zh) 无线监测炭质岩边坡表面变形的测试设备及其应用方法
CN211291851U (zh) 一种盾构隧道土体地震液化实时监测系统
CN203021982U (zh) 用于地下深层土体位移的实时监测系统
CN104655191A (zh) 一种消落带库岸多参数立体化监测方法及监测探头
CN104502951A (zh) 瑞雷波路基探测空洞三维定位法
CN107101624B (zh) 地质变形三维观测系统及其安装埋设方法、测量方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant