CN101867153A - Ring Cavity Photonic Crystal Vertical Cavity Surface Emitting Laser - Google Patents
Ring Cavity Photonic Crystal Vertical Cavity Surface Emitting Laser Download PDFInfo
- Publication number
- CN101867153A CN101867153A CN200910081989A CN200910081989A CN101867153A CN 101867153 A CN101867153 A CN 101867153A CN 200910081989 A CN200910081989 A CN 200910081989A CN 200910081989 A CN200910081989 A CN 200910081989A CN 101867153 A CN101867153 A CN 101867153A
- Authority
- CN
- China
- Prior art keywords
- photonic crystal
- emitting laser
- ring
- cavity surface
- vertical cavity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004038 photonic crystal Substances 0.000 title claims abstract description 63
- 239000000758 substrate Substances 0.000 claims abstract description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 8
- 239000000956 alloy Substances 0.000 claims description 8
- RKTYLMNFRDHKIL-UHFFFAOYSA-N copper;5,10,15,20-tetraphenylporphyrin-22,24-diide Chemical compound [Cu+2].C1=CC(C(=C2C=CC([N-]2)=C(C=2C=CC=CC=2)C=2C=CC(N=2)=C(C=2C=CC=CC=2)C2=CC=C3[N-]2)C=2C=CC=CC=2)=NC1=C3C1=CC=CC=C1 RKTYLMNFRDHKIL-UHFFFAOYSA-N 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 8
- 238000007254 oxidation reaction Methods 0.000 claims description 8
- 238000005530 etching Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- 238000002310 reflectometry Methods 0.000 claims description 5
- 229910001258 titanium gold Inorganic materials 0.000 claims description 4
- 239000013078 crystal Substances 0.000 claims 1
- 239000000203 mixture Substances 0.000 claims 1
- 230000008878 coupling Effects 0.000 abstract description 6
- 238000010168 coupling process Methods 0.000 abstract description 6
- 238000005859 coupling reaction Methods 0.000 abstract description 6
- 230000001427 coherent effect Effects 0.000 abstract description 4
- 238000010586 diagram Methods 0.000 description 5
- 238000012876 topography Methods 0.000 description 5
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007648 laser printing Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- VLCQZHSMCYCDJL-UHFFFAOYSA-N tribenuron methyl Chemical compound COC(=O)C1=CC=CC=C1S(=O)(=O)NC(=O)N(C)C1=NC(C)=NC(OC)=N1 VLCQZHSMCYCDJL-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
技术领域technical field
本发明涉及半导体光电子器件技术领域,尤其涉及一种环形腔光子晶体垂直腔面发射激光器。The invention relates to the technical field of semiconductor optoelectronic devices, in particular to a ring cavity photonic crystal vertical cavity surface emitting laser.
背景技术Background technique
垂直腔面发射激光器(VCSEL)以其光束垂直衬底出射、光束对称好、低功耗、易于实现单模工作和二维阵列集成等优势,在光通信、光存储、光互联、固态照明、激光打印和生物传感等领域受到广泛应用,引起了人们的浓厚兴趣和密切关注。在众多应用场合都要求VCSEL单模大功率工作,当氧化孔径很小时,容易实现单横模工作,却限制了输出功率。实验结果表明当氧化孔径减小到3μm时,波长为850nm的VCSEL能够实现单模输出,但是它的最大输出功率不到3mW。为了提高输出功率,需增大氧化孔径尺寸,但热效应和空间烧孔现象将导致高阶模的产生,使器件的性能恶化。Vertical cavity surface emitting laser (VCSEL) is widely used in optical communication, optical storage, optical interconnection, solid-state lighting, Fields such as laser printing and biosensing are widely used and have attracted great interest and attention. In many applications, VCSEL single-mode high-power operation is required. When the oxidation aperture is small, it is easy to achieve single-mode operation, but the output power is limited. Experimental results show that when the oxide aperture is reduced to 3μm, the VCSEL with a wavelength of 850nm can achieve single-mode output, but its maximum output power is less than 3mW. In order to increase the output power, it is necessary to increase the size of the oxide aperture, but the thermal effect and the phenomenon of space burning holes will lead to the generation of high-order modes, which will deteriorate the performance of the device.
为了实现单模大功率VCSEL,基于模式的选择损耗机制,有如文献1:“H.Martinsson,J.A.Vukuˇsi′c,K.J.Ebeling,et al.,IEEE PHOTONICSTECHNOLOGY LETTERS,1999(11):1536”报道的表面刻蚀结构,文献2:“Delai Zhou,Luke J.Mawst,IEEE JOURNAL OF QUANTUM ELECTRONICS,2002(38):1599”报道的反波导结构,和文献3:“Akio Furukawa,Satoshi Sasaki,Mitsunari Hoshi,Atsushi Matsuzono,et al.,Appl.Phys.Lett.2004(85):5161”报道的三角孔状结构。这三种结构都实现了单模大功率激射,但是需要精确控制,制作工艺复杂。In order to realize the single-mode high-power VCSEL, the mode-based selective loss mechanism is as reported in literature 1: "H.Martinsson, J.A.Vukuˇsi′c, K.J.Ebeling, et al., IEEE PHOTONICSTECHNOLOGY LETTERS, 1999(11): 1536" Etching structure, literature 2: "Delai Zhou, Luke J. Mawst, IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002(38): 1599" reported anti-waveguide structure, and literature 3: "Akio Furukawa, Satoshi Sasaki, Mitsunari Hoshi, Atsushi Matsuzono, et al., Appl. Phys. Lett. 2004 (85): 5161 "reported triangular pore-like structure. These three structures have achieved single-mode high-power lasing, but precise control is required and the manufacturing process is complicated.
而光子晶体为改善光电子器件的性能提供了一个绝佳的平台,光子晶体垂直腔面发射激光器就是一个成功典范。在光子晶体垂直腔面发射激光器(PC-VCSEL)中,氧化孔径比出光孔径大,所以氧化孔径只限制电流,光场由光子晶体空气孔限制。我们知道,在垂直腔面发射激光器中,输出功率正比于有源区面积,因此在光子晶体垂直腔面发射激光器中,缺陷腔的大小决定了输出功率。由于单缺陷腔的输出功率始终有限,而出光孔径改为7孔缺陷腔时又会导致高阶模的产生,所以文献4:“James J.Raftery,Jr.,Ann C.Lehman,Aaron J.Danner,et al.,Appl.Phys.Lett.2006(89):081119”报道了通过微调耦合区空气孔的大小制作了2×1和2×2阵列的光子晶体垂直腔面发射激光器,并得到了相干耦合输出的PC-VCSEL,其远场分布在原点有一个主瓣。但是,无论是双腔耦合还是四腔耦合的PC-VCSEL,由于其有源区的面积有限,其输出功率仍受到限制。Photonic crystals provide an excellent platform for improving the performance of optoelectronic devices, and photonic crystal vertical cavity surface emitting lasers are a successful example. In the photonic crystal vertical cavity surface emitting laser (PC-VCSEL), the oxidation aperture is larger than the light exit aperture, so the oxidation aperture only limits the current, and the light field is limited by the photonic crystal air hole. We know that in a vertical cavity surface emitting laser, the output power is proportional to the area of the active region, so in a photonic crystal vertical cavity surface emitting laser, the size of the defect cavity determines the output power. Since the output power of a single-defect cavity is always limited, and when the light exit aperture is changed to a 7-hole defect cavity, high-order modes will be generated, so literature 4: "James J.Raftery, Jr., Ann C.Lehman, Aaron J.Danner, et al., Appl.Phys.Lett.2006(89): 081119" reported that 2×1 and 2×2 arrays of photonic crystal vertical cavity surface-emitting lasers were fabricated by fine-tuning the size of the air holes in the coupling region, and the coherent The output-coupled PC-VCSEL has a main lobe at the origin in its far-field distribution. However, no matter it is a PC-VCSEL with dual-cavity coupling or four-cavity coupling, its output power is still limited due to the limited area of its active region.
发明内容Contents of the invention
(一)要解决的技术问题(1) Technical problems to be solved
有鉴于此,本发明的主要目的在于提供一种环形腔光子晶体垂直腔面发射激光器,以克服单缺陷光子晶体垂直腔面发射激光器单模输出功率不高的瓶颈,并基于相干耦合实现光束低发散角输出的目的。In view of this, the main purpose of the present invention is to provide a ring-cavity photonic crystal vertical cavity surface-emitting laser, to overcome the bottleneck of single-mode output power of single-defect photonic crystal vertical cavity surface-emitting lasers, and to achieve low beam density based on coherent coupling. The purpose of the divergence angle output.
(二)技术方案(2) Technical solution
为达到上述目的,本发明提供了一种环形腔光子晶体垂直腔面发射激光器,该垂直腔面发射激光器由下至上依次由下电极1、n型衬底2、下DBR3、有源区4、氧化层5、刻有空气孔的上DBR6、p型盖层7和上环形电极8、空气孔区9和环形出光孔区10构成。In order to achieve the above object, the present invention provides a ring cavity photonic crystal vertical cavity surface emitting laser, the vertical cavity surface emitting laser is sequentially composed of a
上述方案中,所述空气孔区9中的空气孔是三角晶格排列的光子晶体空气孔,或者是四方晶格排列的光子晶体空气孔。In the above solution, the air holes in the
上述方案中,所述三角晶格排列光子晶体空气孔或者四方晶格排列的光子晶体空气孔,其元胞是圆形空气孔型、椭圆形空气孔型或者方形空气孔型。In the above solution, the photonic crystal air holes arranged in a triangular lattice or the photonic crystal air holes arranged in a tetragonal lattice have cells of circular air hole type, elliptical air hole type or square air hole type.
上述方案中,所述环形出光孔区10为被空气孔包围的区域。In the above solution, the annular light
上述方案中,所述空气孔区9是高损耗区。In the above solution, the
上述方案中,该垂直腔面发射激光器所设计的氧化孔径比环形出光孔的外径大。In the above solution, the designed oxidation aperture of the vertical cavity surface emitting laser is larger than the outer diameter of the annular light exit hole.
上述方案中,所述空气孔区9中空气孔的刻蚀深度为上DBR3厚度的40%~80%。In the above solution, the etching depth of the air holes in the
上述方案中,所述上环形电极8蒸镀在p型盖层7的表面,所述下电极1蒸镀在n型衬底2的下表面。In the above solution, the
上述方案中,所述上环形电极8采用的材料为TiAu合金,下电极1采用的材料为AuGeNiAu合金。In the above solution, the material used for the
上述方案中,所述下DBR3的反射率高于所述上DBR6的反射率。In the above solution, the reflectivity of the lower DBR3 is higher than the reflectivity of the upper DBR6.
上述方案中,该垂直腔面发射激光器的工作波长覆盖深紫外到远红外波段。In the above solution, the working wavelength of the vertical cavity surface emitting laser covers the deep ultraviolet to far infrared band.
(三)有益效果(3) Beneficial effects
从上述技术方案可以看出,本发明具有以下有益效果:As can be seen from the foregoing technical solutions, the present invention has the following beneficial effects:
1、本发明提供的这种环形腔光子晶体垂直腔面发射激光器增了有源区的面积,提高了输出功率,有望实现10mW量级的功率输出。1. The ring-cavity photonic crystal vertical cavity surface-emitting laser provided by the present invention increases the area of the active region and improves the output power, and is expected to achieve a power output of the order of 10 mW.
2、本发明提供的这种环形腔光子晶体垂直腔面发射激光器,可被简化为一个2×1的垂直腔面发射激光器阵列,能够实现相干耦合输出,在提高输出功率的同时输出低发散角光束。2. The ring cavity photonic crystal vertical cavity surface emitting laser provided by the present invention can be simplified into a 2×1 vertical cavity surface emitting laser array, which can realize coherent coupling output and output low divergence angle while increasing the output power beam.
3、本发明提供的这种环形腔光子晶体垂直腔面发射激光器,由于其氧化孔径很大,既减小了微分电阻,提高了效率,又延长了器件的寿命和可靠性。3. The annular cavity photonic crystal vertical cavity surface emitting laser provided by the present invention not only reduces the differential resistance, improves the efficiency, but also prolongs the service life and reliability of the device due to its large oxidation aperture.
附图说明Description of drawings
图1为本发明提供的这种环形腔光子晶体垂直腔面发射激光器的结构示意图。图中z坐标方向代表器件垂直方向;x、y坐标方向代表器件水平方向;FIG. 1 is a schematic structural diagram of the ring cavity photonic crystal vertical cavity surface emitting laser provided by the present invention. The z coordinate direction in the figure represents the vertical direction of the device; the x and y coordinate directions represent the horizontal direction of the device;
图2为本发明提供的这种环形腔光子晶体垂直腔面发射激光器的上DBR刻有三角晶格排列的圆形空气孔的环形腔光子晶体面发射激光器的表面形貌俯视示意图,其中心空气孔也可以被调大或者调小;Fig. 2 is a top view schematic diagram of the surface topography of the ring cavity photonic crystal surface emitting laser of the ring cavity photonic crystal vertical cavity surface emitting laser provided by the present invention with the upper DBR engraved with the circular air holes arranged in triangular lattice. Holes can also be made larger or smaller;
图3为本发明提供的这种环形腔光子晶体垂直腔面发射激光器的上DBR刻有四方晶格排列的圆形空气孔的环形腔光子晶体面发射激光器的表面形貌俯视示意图,其中心空气孔也可以被调大或者调小;Fig. 3 is a top view schematic diagram of the surface topography of the ring cavity photonic crystal surface emitting laser whose upper DBR of the ring cavity photonic crystal vertical cavity surface emitting laser provided by the present invention is engraved with circular air holes arranged in a tetragonal lattice. Holes can also be made larger or smaller;
图4为本发明第一个实例提供的这种环形腔光子晶体垂直腔面发射激光器的上DBR的扫描电子显微镜图,其中心孔被调大;Fig. 4 is the scanning electron micrograph of the upper DBR of this ring cavity photonic crystal vertical cavity surface emitting laser provided by the first example of the present invention, and its center hole is enlarged;
图5为本发明第一个实例提供的这种环形腔光子晶体垂直腔面发射激光器测量得到的功率-电流-电压曲线。Fig. 5 is the measured power-current-voltage curve of the ring cavity photonic crystal vertical cavity surface emitting laser provided in the first example of the present invention.
图6为本发明第一个实例提供的这种环形腔光子晶体垂直腔面发射激光器在电流34毫安时测量得到的远场分布。Fig. 6 shows the far-field distribution measured at a current of 34 mA for the ring-cavity photonic crystal vertical cavity surface-emitting laser provided in the first example of the present invention.
图中,1为下电极,2为n型衬底,3为下DBR,4为有源区,5为氧化层,6为上DBR,7为p型盖层,8为上环形电极,9为空气孔区,10为环形出光孔区。In the figure, 1 is the lower electrode, 2 is the n-type substrate, 3 is the lower DBR, 4 is the active region, 5 is the oxide layer, 6 is the upper DBR, 7 is the p-type capping layer, 8 is the upper ring electrode, 9 10 is an air hole area, and 10 is an annular light exit area.
具体实施方式Detailed ways
为使本发明的目的、技术方案和优点更加清楚明白,以下结合具体实施例,并参照附图,对本发明进一步详细说明。In order to make the object, technical solution and advantages of the present invention clearer, the present invention will be described in further detail below in conjunction with specific embodiments and with reference to the accompanying drawings.
如图1所示,图1为本发明提供的这种环形腔光子晶体垂直腔面发射激光器,该垂直腔面发射激光器由下至上依次由下电极1、n型衬底2、下DBR3、有源区4、氧化层5、刻有空气孔的上DBR6、p型盖层7和上环形电极8、空气孔区9和环形出光孔区10构成。As shown in Figure 1, Figure 1 is the ring-cavity photonic crystal vertical cavity surface-emitting laser provided by the present invention, the vertical cavity surface-emitting laser is sequentially composed of a
所述空气孔区9中的空气孔是三角晶格排列的光子晶体空气孔,或者是四方晶格排列的光子晶体空气孔。The air holes in the
所述三角晶格排列光子晶体空气孔或者四方晶格排列的光子晶体空气孔,其元胞是圆形空气孔型、椭圆形空气孔型或者方形空气孔型。The photonic crystal air holes arranged in a triangular lattice or the photonic crystal air holes arranged in a tetragonal lattice have cells of circular air hole type, elliptical air hole type or square air hole type.
所述环形出光孔区10为被空气孔包围的区域。The annular
所述空气孔区9是高损耗区。The
该垂直腔面发射激光器所设计的氧化孔径比环形出光孔的外径大。The designed oxidation aperture of the vertical cavity surface emitting laser is larger than the outer diameter of the annular light exit hole.
所述空气孔区9中空气孔的刻蚀深度为上DBR3厚度的40%~80%。The etching depth of the air holes in the
所述上环形电极8蒸镀在p型盖层7的表面,所述下电极1蒸镀在n型衬底2的下表面。The
所述上环形电极8采用的材料为TiAu合金,下电极1采用的材料为AuGeNiAu合金。The material used for the
所述下DBR3的反射率高于所述上DBR6的反射率。The reflectivity of the lower DBR3 is higher than that of the upper DBR6.
该设计中的垂直腔面发射激光器的工作波长覆盖深紫外到远红外波段。The working wavelength of the vertical cavity surface emitting laser in this design covers the deep ultraviolet to far infrared band.
如图2和图3所示,图2和图3分别为本发明提供的这种环形腔光子晶体垂直腔面发射激光器的上DBR刻有三角晶格排列的光子晶体圆形空气孔的环形腔光子晶体垂直腔面发射激光器的表面形貌俯视示意图和上DBR刻有四方晶格排列的光子晶体圆形空气孔的环形腔光子晶体垂直腔面发射激光器的表面形貌俯视示意图。图中9为光子晶体区,10为环形出光孔。光子晶体区9的光子晶体周期为Λ、占空比(空气孔的直径和周期的比值)为d/Λ、刻蚀深度为h。As shown in Fig. 2 and Fig. 3, Fig. 2 and Fig. 3 are respectively the annular cavity of the photonic crystal circular air holes in the upper DBR of the photonic crystal vertical cavity surface-emitting laser provided by the present invention. Schematic diagram of top view of surface topography of photonic crystal vertical cavity surface emitting laser and top view schematic diagram of surface topography of ring cavity photonic crystal vertical cavity surface emitting laser with photonic crystal circular air holes engraved with tetragonal lattice arrangement on the upper DBR. In the figure, 9 is a photonic crystal area, and 10 is an annular light exit hole. The photonic crystal period of the
基于图1、图2和图3所述的这种环形腔光子晶体垂直腔面发射激光器,以下结合具体的实施例对本发明提供的这种环形腔光子晶体垂直腔面发射激光器作进一步详细说明。Based on the ring-cavity photonic crystal vertical-cavity surface-emitting laser described in FIG. 1 , FIG. 2 and FIG. 3 , the ring-cavity photonic crystal vertical-cavity surface-emitting laser provided by the present invention will be further described in detail below in conjunction with specific embodiments.
本实施例中这种环形腔光子晶体垂直腔面发射激光器的工作波长为0.85μm。本实例的垂直腔面发射激光器的上DBR的表面形貌俯视示意图如图4所示。本实例的下电极为AuGeNiAu合金,上电极为TiAu合金,下DBR为34.5对的n型Al0.12Ga0.88As/Al0.9Ga0.1As,有源区为3对GaAs/AlGaAs量子阱,氧化孔径为25μm,上DBR为20.5对p型Al0.12Ga0.88As/Al0.9Ga0.1As;上DBR表面刻有三角晶格排列的光子晶体圆形空气孔图形,中心孔的直径为3.8μm,中心空气孔最邻近的一圈空气孔被去除形成了环形出光孔,光子晶体的周期为5μm,空气孔的直径为3μm,刻蚀深度为10对DBR;出光孔径周围是光子晶体空气孔形成的高损耗区。In this embodiment, the operating wavelength of the ring cavity photonic crystal vertical cavity surface emitting laser is 0.85 μm. A schematic top view of the surface topography of the upper DBR of the vertical cavity surface emitting laser of this example is shown in FIG. 4 . In this example, the lower electrode is AuGeNiAu alloy, the upper electrode is TiAu alloy, the lower DBR is 34.5 pairs of n-type Al 0.12 Ga 0.88 As/Al 0.9 Ga 0.1 As, the active region is 3 pairs of GaAs/AlGaAs quantum wells, and the oxidation aperture is 25μm, the upper DBR is 20.5 pairs of p-type Al 0.12 Ga 0.88 As/Al 0.9 Ga 0.1 As; the surface of the upper DBR is engraved with a photonic crystal circular air hole pattern arranged in a triangular lattice, the diameter of the central hole is 3.8μm, and the central air hole The nearest ring of air holes is removed to form a ring-shaped light exit hole. The period of the photonic crystal is 5 μm, the diameter of the air hole is 3 μm, and the etching depth is 10 pairs of DBR; the surrounding of the light exit aperture is a high loss area formed by the photonic crystal air hole .
本实施例的测量结果如图5和图6所示。图5是依照本发明第一个实例提供的这种环形腔光子晶体垂直腔面发射激光器测量得到的功率-电流-电压曲线,其最大的输出功率为4.6毫瓦。图6是依照本发明第一个实例提供的这种环形腔光子晶体垂直腔面发射激光器在电流34毫安时测量得到的远场分布,其半高宽度为7.2度。The measurement results of this embodiment are shown in FIG. 5 and FIG. 6 . Fig. 5 is a measured power-current-voltage curve of the ring-cavity photonic crystal vertical cavity surface-emitting laser provided in the first example of the present invention, and its maximum output power is 4.6 milliwatts. Fig. 6 is the far-field distribution measured at a current of 34 mA for the ring-cavity photonic crystal vertical-cavity surface-emitting laser provided in the first example of the present invention, and its half-maximum width is 7.2 degrees.
以上所述的具体实施例,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施例而已,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The specific embodiments described above have further described the purpose, technical solutions and beneficial effects of the present invention in detail. It should be understood that the above descriptions are only specific embodiments of the present invention and are not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910081989A CN101867153A (en) | 2009-04-15 | 2009-04-15 | Ring Cavity Photonic Crystal Vertical Cavity Surface Emitting Laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN200910081989A CN101867153A (en) | 2009-04-15 | 2009-04-15 | Ring Cavity Photonic Crystal Vertical Cavity Surface Emitting Laser |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101867153A true CN101867153A (en) | 2010-10-20 |
Family
ID=42958762
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN200910081989A Pending CN101867153A (en) | 2009-04-15 | 2009-04-15 | Ring Cavity Photonic Crystal Vertical Cavity Surface Emitting Laser |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101867153A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103532010A (en) * | 2013-10-25 | 2014-01-22 | 中国科学院半导体研究所 | Single photon emitter and manufacturing method thereof based on high refractive index contrast grating structure |
CN108923261A (en) * | 2018-10-24 | 2018-11-30 | 常州纵慧芯光半导体科技有限公司 | Dot structure of vertical cavity surface emitting laser and preparation method thereof |
CN109861078A (en) * | 2019-04-02 | 2019-06-07 | 中国科学院长春光学精密机械与物理研究所 | A surface emitting laser and a surface emitting laser array |
CN110690648A (en) * | 2019-07-09 | 2020-01-14 | 上海砷芯科技有限公司 | Laser device |
WO2021109350A1 (en) * | 2019-12-06 | 2021-06-10 | 北京大学 | Energy band inversion and optical field confinement effect-based topological bulk laser and method |
CN114300939A (en) * | 2021-12-28 | 2022-04-08 | 北京工业大学 | A kind of high beam quality VCSEL structure and preparation method |
CN115085004A (en) * | 2022-06-20 | 2022-09-20 | 中国科学院长春光学精密机械与物理研究所 | A semiconductor surface-emitting laser based on triple-lattice photonic crystal structure |
CN115356851A (en) * | 2022-08-25 | 2022-11-18 | 中国地质大学(武汉) | Elliptical hole-based high-Q-value silicon-based photonic crystal ring cavity optimization method |
-
2009
- 2009-04-15 CN CN200910081989A patent/CN101867153A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103532010B (en) * | 2013-10-25 | 2016-09-14 | 中国科学院半导体研究所 | Emitter based on high refractive index contrast optical grating construction and preparation method thereof |
CN103532010A (en) * | 2013-10-25 | 2014-01-22 | 中国科学院半导体研究所 | Single photon emitter and manufacturing method thereof based on high refractive index contrast grating structure |
US11196228B2 (en) | 2018-05-04 | 2021-12-07 | Vertilite Co., Ltd. | Encoded pixel structure of vertical cavity surface emitting laser |
CN108923261A (en) * | 2018-10-24 | 2018-11-30 | 常州纵慧芯光半导体科技有限公司 | Dot structure of vertical cavity surface emitting laser and preparation method thereof |
CN109861078A (en) * | 2019-04-02 | 2019-06-07 | 中国科学院长春光学精密机械与物理研究所 | A surface emitting laser and a surface emitting laser array |
CN109861078B (en) * | 2019-04-02 | 2021-01-05 | 中国科学院长春光学精密机械与物理研究所 | A surface emitting laser and a surface emitting laser array |
CN110690648B (en) * | 2019-07-09 | 2022-05-13 | 上海伍兆电子科技有限公司 | Laser device |
CN110690648A (en) * | 2019-07-09 | 2020-01-14 | 上海砷芯科技有限公司 | Laser device |
WO2021109350A1 (en) * | 2019-12-06 | 2021-06-10 | 北京大学 | Energy band inversion and optical field confinement effect-based topological bulk laser and method |
CN114300939A (en) * | 2021-12-28 | 2022-04-08 | 北京工业大学 | A kind of high beam quality VCSEL structure and preparation method |
CN114300939B (en) * | 2021-12-28 | 2022-12-02 | 北京工业大学 | A VCSEL structure and preparation method with high beam quality |
CN115085004A (en) * | 2022-06-20 | 2022-09-20 | 中国科学院长春光学精密机械与物理研究所 | A semiconductor surface-emitting laser based on triple-lattice photonic crystal structure |
CN115085004B (en) * | 2022-06-20 | 2024-09-20 | 中国科学院长春光学精密机械与物理研究所 | Semiconductor surface emitting laser based on three-lattice photonic crystal structure |
CN115356851A (en) * | 2022-08-25 | 2022-11-18 | 中国地质大学(武汉) | Elliptical hole-based high-Q-value silicon-based photonic crystal ring cavity optimization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101867153A (en) | Ring Cavity Photonic Crystal Vertical Cavity Surface Emitting Laser | |
CN101667715B (en) | A single-mode high-power vertical-cavity surface-emitting laser and its manufacturing method | |
CN105977786A (en) | Low refractive index medium support-type high-contrast grating surface emitting laser | |
US7965750B2 (en) | Semiconductor light emitting device | |
CN103107482A (en) | Single-mode photonic crystal vertical cavity surface emitting laser and preparation method thereof | |
CN112117639B (en) | Vertical Resonant Cavity Surface Emitting Laser Diodes (VCSELs) with Multiple Current Confinement Layers | |
CN103825194B (en) | Single-mode photon crystal edge-emission semiconductor laser | |
WO2007116659A1 (en) | Surface light-emitting laser | |
CN102570307A (en) | Single-mode large-power THz quantum cascade laser (QCL) and manufacturing technology thereof | |
JP2011018855A (en) | Semiconductor laser | |
CN103390858A (en) | Vertical-cavity surface-emitting semiconductor laser | |
CN201435526Y (en) | External-cavity high-power three-active-region photonic crystal vertical-cavity surface-emitting semiconductor laser | |
CN101588017B (en) | A single-mode, high-power, low-divergence photonic crystal vertical-cavity surface-emitting laser | |
US8389308B2 (en) | Method for producing surface emitting semiconductor device | |
CN101588019B (en) | External cavity type multiple-active region photon crystal vertical cavity surface transmission semiconductor laser device | |
CN111817129A (en) | VCSEL chip and manufacturing method thereof | |
CN101588018A (en) | Inner cavity type multiple-active region photon crystal vertical cavity surface transmission semiconductor laser device | |
JP4602692B2 (en) | Surface emitting laser and optical transmission system | |
JP5023595B2 (en) | Surface emitting laser element | |
CN115395367B (en) | Oval multi-mesa laser structure | |
CN106856296A (en) | A kind of long-wavelength vertical cavity surface emitting laser | |
CN201435527Y (en) | Low-threshold intracavity three-active-region photonic crystal vertical-cavity surface-emitting semiconductor laser | |
Pissis et al. | 940 nm high power single transverse mode coherent VCSEL array with tunnel junction lithographic aperture | |
Czyszanowski et al. | Modal gain and confinement factors in top-and bottom-emitting photonic-crystal VCSEL | |
Wang et al. | High-power large-aperture bottom-emitting 980-nm VCSELs with integrated GaAs microlens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C12 | Rejection of a patent application after its publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20101020 |