CN101865997B - 一种激光测距设备及方法 - Google Patents

一种激光测距设备及方法 Download PDF

Info

Publication number
CN101865997B
CN101865997B CN 201010191960 CN201010191960A CN101865997B CN 101865997 B CN101865997 B CN 101865997B CN 201010191960 CN201010191960 CN 201010191960 CN 201010191960 A CN201010191960 A CN 201010191960A CN 101865997 B CN101865997 B CN 101865997B
Authority
CN
China
Prior art keywords
signal
unit
measuring
distance
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN 201010191960
Other languages
English (en)
Other versions
CN101865997A (zh
Inventor
李成
陈金林
黄梦园
严光文
徐蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Watchdata Co ltd
Original Assignee
Beijing WatchData System Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing WatchData System Co Ltd filed Critical Beijing WatchData System Co Ltd
Priority to CN 201010191960 priority Critical patent/CN101865997B/zh
Publication of CN101865997A publication Critical patent/CN101865997A/zh
Application granted granted Critical
Publication of CN101865997B publication Critical patent/CN101865997B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明公开了一种激光测距设备及方法,用以减少激光测距设备的复杂性,以及提高激光测距的效率。该激光测距设备产生调制激光以及第一参考信号,并向被测物体发射所述调制激光,同时向参考单元发送所述第一参考信号,这样,第一参考信号通过该设备的参考单元后,获得含有第一参考信号到达该参考单元时刻信息的第一信号,调制激光经被测物体反射,并通过该设备的接收单元后,获得含有所述反射的调制激光到达该接收单元时刻的第二信号,根据第一信号以及第二信号,获得激光飞行时间,并根据所述激光飞行时间,获得与被测物体之间的第一距离。

Description

一种激光测距设备及方法
技术领域
本发明涉及激光应用技术领域,特别涉及一种激光测距设备及方法。
背景技术
目前,激光测距通常采用相位法。相位法测距首先对光波进行调制,通常为正弦波调制,形成所谓的“光尺”。发出的光波到达被测目标并反射后,接收到的反射光波将与出射光波存在一定的相位差
Figure BSA00000142487300011
假定激光调制频率为f,则光波在被测距离上往返一次所需的时间t为
Figure BSA00000142487300012
从而被测距离
Figure BSA00000142487300013
因此,通过电路测出相位差
Figure BSA00000142487300014
即可计算出所要测量的距离L。但是,
Figure BSA00000142487300015
中可能包含2πf的整数倍,即
Figure BSA00000142487300016
(N=0,1,2,3......),目前任何测量交变信号相位的方法都不能确定出相位的整周期数,只能测定不是2πf的尾数。由于整周期数不确定,故距离L就成为多值解而不能确定,这是相位法测距所必须解决的问题。
为了解决相位法测距中相位的整周期数的问题,可采用“多频率尺”同时测量同一距离的方法,即对一次测量采用多个调制频率。比如选取两个调制频率且两者每个整周期所代表的距离分别为1m和100m,如果对50.351m的距离进行测量,两次测得的值分别为0.351m和50.3m,其中,0.351m不足1m的尾数,50.3m不足100m的尾数,则把两者的读数组合起来的结果就得到被测距离50.351m。
可见,多频率尺方案至少需要两套不同频率的调制信号,增加了调制电路、滤波电路的复杂性,也增加了系统的成本,而且,该技术方案需要测量两次才可以得到高精度的测量值,测量过程比较复杂,也会增加因偶然因素带来的误差。
发明内容
本发明实施例提供一种激光测距设备和方法,用以并减少激光测距设备的复杂性,以及提高激光测距的效率。
本发明实施例提供一种激光测距的的设备,包括:
发射单元,用于产生调制激光和第一参考信号,当接收到主控单元发送的发射指令时,向被测物体发射所述调制激光,同时向参考单元发送所述第一参考信号;
参考单元,用于将接收的第一参考信号与该参考单元存储的第一背景信号进行比较,得到含有所述第一参考信号到达所述参考单元时刻信息的第一信号,并将所述第一信号发送给测量单元;
接收单元,用于将所述被测物体反射的调制激光转换为第一测量信号,将所述第一测量信号与该接收单元存储的第二背景信号进行比较,得到含有所述反射的调制激光到达所述接收单元时刻信息的第二信号,并将所述第二信号发送给测量单元;
测量单元,用于根据所述第一信号和所述第二信号获得激光飞行时间,并将所述激光飞行时间发送给主控单元;
主控单元,用于向发射单元发送发射指令,并根据所述激光飞行时间,获得与被测物体之间的第一距离。
本发明实施例提供一种激光测距的方法,包括:
发射单元产生调制激光以及第一参考信号,并当接收到主控单元发送的发射指令时,向被测物体发射所述调制激光,同时向参考单元发送所述第一参考信号;
所述参考单元将所述第一参考信号与存储的第一背景信号进行比较,得到含有所述第一参考信号到达所述参考单元时刻信息的第一信号,并将所述第一信号发送给测量单元;
接收单元将所述被测物体反射的调制激光转换为第一测量信号,将所述第一测量信号与存储的第二背景信号进行比较,得到含有所述反射的调制激光到达所述接收单元时刻信息的第二信号,并将所述第二信号发送给测量单元;
测量单元根据所述第一信号和所述第二信号获得激光飞行时间,并将所述激光飞行时间发送给主控单元;
所述主控单元根据所述激光飞行时间,获得与被测物体之间的第一距。
本发明实施例中,激光测距设备产生调制激光并向被测物体发射所述调制激光,以及同时产第一参考信号,这样,第一参考信号通过参考单元后,获得含有第一参考信号到达所述参考单元时刻信息的第一信号,调制激光经被测物体发射后返回调制激光,并通过接收单元后,获得含有所述发射的调制激光到达所述接收单元时刻的第二信号信息,根据第一信号以及第二信号,获得激光飞行时间,并根据所述激光飞行时间,以及光速,获得与被测物体之间的第一距离。这样,只需要一套频率的激光光波,即只需要一套调制电路,滤波电路,从而,大简化了激光测距设备,减少了系统的成本。并且,只需要发射一次激光测量信号,就可以获得激光飞行时间,得到确定的结果,实现对任意长度的距离进行测量,这样,极大地提高激光测距的效率。
附图说明
图1为本发明实施例一中激光测距设备的结构图;
图2为本发明实施例二中激光测距设备的结构图;
图3为本发明实施例三中激光测距设备的结构图;
图4为本发明实施例四中激光测距设备的结构图;
图5为本发明实施例中激光测距方法的流程图;
图6为本发明实施例中的波形示意图;
图7为本发明实施例五中激光测距设备的结构图;
图8为本发明实施例六中激光测距设备的结构图;
图9为本发明另一实施例中激光测距方法的流程图;
图10为本发明具体实施例中激光测距设备的结构图。
具体实施方式
本发明实施例中,通过测量调制激光飞行时间来计算激光测距设备与被测物体之间的距离,进一步,采用相位测量来修正上述测量结果,得到高精度的测量结果。
实施例一:如图1所示,为本发明实施例中的一种激光测距设备的结构框图,该激光测距设备包括:发射单元100,参考单元200,接收单元300、测量单元400和主控单元500。其中,
发射单元100,用于产生调制激光和第一参考信号,当接收到主控单元500发送的发射指令时,向被测物体发射调制激光,同时向参考单元200发送第一参考信号。
参考单元200,用于将接收到的第一参考信号与该参考单元200存储的第一背景信号进行比较,得到含有接收到第一参考信号到达该参考单元时刻信息的第一信号,并将第一信号发送给测量单元400。
接收单元300,用于将被测物体反射的调制激光转换为第一测量信号,将第一测量信号与该接收单元300存储的第二背景信号进行比较,得到含有反射的调制激光到达该接收单元时刻信息的第二信号,并将第二信号发送给测量单元400。
测量单元400,用于根据第一信号和第二信号获得调制激光的飞行时间,并将该飞行时间发送给主控单元500。
主控单元500,用于向发射单元100发送发射指令,并根据激光飞行时间,获得与被测物体之间的第一距离。
本发明实施例中,第一参考信号可以是调制激光,也可以是驱动激光器产生调制激光的电信号。当第一参考信号为调制激光时,发射单元100向参考单元200发送第一参考信号具体为:发射单元100通过部分反射元件将设定比例的调制激光反射到参考单元200;
则,参考单元200,需要先将所述第一参考信号转换为电信号,然后再和第一背景信号进行比较。发射单元100,还用于当接收到主控单元发送的发射指令时,将设定比例的调制激光反射到参考单元;则参考单元200,还用于将接收到的调制激光进行光电转换,获得第一参考信号的电信号。
当第一参考信号为电信号时,发射单元100在接收到主控单元发送的发射指令时,将第一参考信号发送给参考单元200,则参考单元200直接将第一参考信号和第一背景信号进行比较。
当然,主控单元500,还用于向参考单元200发送第一采样保持指令,控制参考单元200存储第一背景信号;以及向接收单元300发送第二采样保持指令,控制接收单元300存储第二背景信号。
参考单元200,还用于根据第一采样保持指令,存储第一背景信号。
接收单元300,还用于根据第二采样保持指令,存储第二背景信号。
实施例二:为使本发明实施例中的激光测距设备功能更加完善,还可在该激光测距设备中增加一个显示单元,用于显示该激光测距设备的各种参数和/或测量结果等信息。如图2所示,该激光测距设备和图1所示的激光测距设备相比增加了显示单元600,显示单元600与主控单元500电连接,用于显示该激光测距设备的各种参数和/或测量结果等信息。
实施例三:为了更清楚地说明本发明中的激光测距设备,将上述实施例中的激光测距设备进一步细化,如图3所示,该激光测距设备发射单元100包括:主振模块101和调制发射模块102。参考单元200包括:第一接收模块201,第一采样保持模块202和第一比较模块203。接收单元300包括:第二接收模块301、第二采样保持模块302和第二比较模块303。其中,
主振模块101,用于产生调制信号。
调制发射模块102,与主振模块101电连接,根据调制信号产生调制激光和第一参考信号;调制发射模块102还与主控单元500电连接,当接收到主控单元500发送的发射指令时,向被测物体发射调制激光,并同时向参考单元200的第一接收模块201发送第一参考信号。
第一接收模块201,用于接收发射单元100的调制发射模块102发送的第一参考信号。
第一采样保持模块202,用于在发射单元100发射调制激光之前,根据主控单元500发送的第一采样保持指令,存储第一背景信号。
第一比较模块203,用于将第一参考信号与第一背景信号进行比较,得到含有接收到第一参考信号时刻信息的第一信号,并将第一信号发送给测量单元400。
第二接收模块301,用于接收被测物体反射的调制激光,并将调制激光转换为电信号,即获得第一测量信号。
第二采样保持模块302,在发射单元100发射调制激光之前,根据主控单元500发送的第二采样保持指令,存储第二背景信号。
第二比较模块303,用于将第二接收模块301根据调制激光转换而来的第一测量信号与第二背景信号进行比较,得到含有被测物体反射的调制激光到达时刻信息的第二信号,并将第二信号发送给测量单元400。
测量单元400,根据第一信号和第二信号获得调制激光的飞行时间,并将该飞行时间发送给主控单元500。这样,主控单元500可根据激光飞行时间,获得与被测物体之间的第一距离。
这样,测量单元400可以根据主控单元500下发的时间测量指令,进行对应的时间模式设置,并根据所述时间模式,当检测到第一信号的上升沿时,开始计时,当检测到第二信号的上升沿时,停止计时,确定计时得到的时间为激光飞行时间τ。
主控单元500则可根据L=Cτ/2,获得与被测物体之间的第一距离。其中,L为第一距离,C为光速。
实施例四:由于第一参考信号还可以是调制激光,发射单元100通过部分反射元件将设定比例的调制激光反射到参考单元200,则参考单元200,还用于将发射过来的调制激光进行光电转换,获得第一参考信号。因此,本发明实施例另一种具体的激光测距设备如图4所示,在该设备中,发射单元100不仅包括主振模块101,调制发射模块102,还包括部分反射模块103。其中,
主振模块101,用于产生调制信号。
调制发射模块102,与主振模块101电连接,根据调制信号产生调制激光。调制发射模块102还与主控单元500电连接,当接收到主控单元500发送的发射指令时,向部分反射模块103发送调制激光。
部分反射模块103,用于将设定比例的调制激光发射到参考单元的第一接收单元201,并同时向被测物体发射其余的调制激光。
本实施例中,参考单元200仍包括:第一接收模块201,第一采样保持模块202和第一比较模块203。
其中,第一接收模块201,用于接收部分反射模块103反射的调制激光,并将调制激光转换为电信号,即获得第一参考信号。
第一采样保持模块202和第一比较模块203的功能不变,就不在累述。
该实施例中,接收单元300,测量单元400和控制单元500的结构和功能都不变,也不在累述。
可见,本发明实施例中,该激光测距设备包括两个通路,分别是参考信号通路和测量信号通路。参考信号通路包括参考单元;测量信号通路包括接收单元。
上述实施例一至四中任意一个激光测距设备所采用的测距方法的流程参见图5,包括:
步骤501:发射单元产生调制激光和第一参考信号。
第一参考信号可以是调制激光,也可以是驱动激光器产生调制激光的电信号。
这里,产生的调制激光的调制信号的频率为主振频率f1,第一参考信号R可以表示为
Figure BSA00000142487300081
其中,A为幅值,
Figure BSA00000142487300082
为初始相位,f1为主振频率即第一频率,C1为直流偏置。当f1=30MHz时,第一参考信号R的波形图如图6中所示。
步骤502:发射单元接收主控单元发送的发射指令,并向被测物体发射调制激光,以及同时向参考单元发送第一参考信号。
发射单元在接收到发射指令之前会持续产生调制激光,当接收到主控单元发送的发射指令后,向被测物体发射调制激光,同时向参考单元发送第一参考信号。
步骤503:参考单元将第一参考信号与存储的第一背景信号进行比较,获得含有第一参考信号到达时刻信息的第一信号。
参考单元在接收第一参考信号之前,会根据主控单元的指令采集参考信号通路的背景信号并存储,即采集激光测距设备的参考单元的第一背景信号Rk,然后进行保存。
这样,当激光测距设备产生了第一参考信号R后,参考单元将第一参考信号R与保存的第一背景信号Rk进行比较,得到第一信号Rc。该第一信号Rc一般为方波信号。即当第一参考信号R的幅值大于第一背景信号Rk时,该时刻对应高电平,当第一参考信号R的幅值小于或等于第一背景信号Rk时,该时刻对应低电平。或者,第一参考信号R的幅值小于或等于第一背景信号Rk时,该时刻对应高电平,第一参考信号R的幅值大于等于第一背景信号Rk时,该时刻对应低电平。这样,即可获得第一信号Rc
第一参考信号
Figure BSA00000142487300083
其中,A为幅值,f1为第一频率,
Figure BSA00000142487300084
为初始相位,第一背景信号Rk是一个直流分量,这样,第一信号Rc中携带了第一参考信号R到达时刻的信息。如上例,f1=30MHz,第一背景信号Rk比较小,则第一信号Rc如图6中所示。
步骤504:接收单元接收被测物体反射回来的调制激光,并对该调制激光进行光电转换,获得第一测量信号。
第一测量信号S可表示为
Figure BSA00000142487300091
其中,B为幅值,f1为第一频率,
Figure BSA00000142487300092
为初始相位,τ为激光飞行时间,C2为直流偏置。由于第一参考信号
Figure BSA00000142487300093
显然,本发明实施例中,该激光测距设备与被测物体之间的距离L可以表示为:L=Cτ/2,其中,C为光速,τ为激光飞行时间。同样,当f1=30MHz时,第一测量信号S如图6中所示。
步骤505:接收单元将第一测量信号与保存的第二背景信号进行比较,获得含有反射激光到达时刻信息的第二信号。
同样,激光测距设备的接收单元在发射单元发射调制激光之前,会采集测量接收信号通路的背景信号,即激光测距设备的接收单元的第二背景信号Sk,然后进行保存。这里,在进行测量之前,主控单元向接收单元发送第二采样保持指令,这样,接收单元根据第二采样保持指令,采样该参考单元的第二背景信号并保存。
这样,当激光测距设备获得第一测量信号S后,接收单元将第一测量信号S与保存的第二背景信号Sk进行比较,得到第二信号Sc。第二信号Sc一般也为方波信号,产生的过程与步骤502中相同,不再累述。
第一测量信号
Figure BSA00000142487300094
其对应的频率为f1,第二背景信号Sk是一个直流分量,这样,第二信号Sc中携带了第一测量信号S到达时刻的信息。如上例,f1=30MHz,第二背景信号Sk比较小,则第二信号Sc如图6中所示。
本发明实施例中,步骤503获得第一信号的过程,与步骤504及505获得第二信号的过程是一个并行的过程,即激光测距设备同时产生了调制激光和第一参考信号后,该设备立刻进行步骤503。在此过程中接到反射激光后,即可顺序执行步骤504以及505。
步骤506:测量单元根据第一信号以及第二信号获得激光飞行时间。
这里,一般测量单元根据时间模式,通过检查第二信号与第一信号之间的时间延时,获得激光飞行时间。因此,获得激光飞行时间之前,还可以包括:接收主控单元的时间测量指令,并根据时间测量指令,进行对应的时间模式设置。
这样,根据所述时间模式,当检测到所述第一信号的上升沿时,开始计时;当检测到所述第二信号的上升沿时,停止计时;确定计时得到的时间为激光飞行时间τ。
根据图6所示,第一信号的上升沿与第二信号的上升沿之间跨越了多个完整的f1对应的波长,这样,采用本实施例中所述的方法可以实现长距离的测量。
步骤507:主控单元根据激光飞行时间,获得与被测物体之间的第一距离。
根据上述分析可知,该激光测距设备与被测物体之间的距离L可以表示为:L=Cτ/2,其中,C为光速,τ为激光飞行时间。
当然本发明实施例中,主控单元还可以将第一距离发送给显示单元进行显示。
在上述实施例中,激光测距设备利用上述方法可以获得与测量物体之间的距离。但是,由于激光测距设备检测第二信号与第一信号之间的时间延迟的检测精度有限,假定时间延迟的检测精度为τp,则测距精度为ΔL=Cτp,一般时间延迟的检测精度为ns级,对应于距离精度为m级,目前最好的时间延迟的检测精度也只能到几十ps,对应于测距精度为cm级,因此,获得的与测量物体之间的距离的精度还较低,可以作为一个粗测的过程。
本发明实施例中,利用上述方法首先进行粗测,解决了相位法中的多值问题,但本发明实施例中,还可以进一步提高测量的精度。在该发明实施例中,激光测距设备的结构框图仍如图1所示,包括:发射单元100,参考单元200,接收单元300、测量单元400和主控单元500。其中,
发射单元100,不仅用于产生调制激光和第一参考信号,当接收到主控单元500发送的发射指令时,向被测物体发射调制激光,同时向参考单元200发送第一参考信号;还用于产生本振信号,并向参考单元200和接收单元300发送该本振信号。
参考单元200,不仅用于将接收到的第一参考信号与该参考单元存储的第一背景信号进行比较,得到含有接收到第一参考信号时刻信息的第一信号,并将第一信号发送给测量单元400;还用于将第一参考信号和接收到的本振信号进行混频,获得混频后的第二参考信号,并将第二参考信号发送给测量单元400。
接收单元300,不仅用于将被测物体反射的调制激光转换为第一测量信号,将第一测量信号与该接收单元存储的第二背景信号进行比较,得到含有反射的调制激光到达时刻信息的第二信号,并将第二信号发送给测量单元400;还用于将第一测量信号与接收的本振信号进行混频,获得混频后的第二测量信号,并将第二测量信号发送给测量单元400。
这样,测量单元400,不仅用于根据所述第一信号和第二信号获得激光飞行时间,并将所述激光飞行时间发送给主控单元500,还用于测量第二测量信号与第二参考信号之间的相位差,根据所述相位差,获得与被测物体之间的第二距离,并将所述第二距离发送给主控单元。
主控单元500,不仅用于根据所述激光飞行时间,获得与被测物体之间的第一距离,还用于根据所述第一距离和第二距离,获得与被测物体之间的精确距离。
可见,该实施例中,通过产生的本振信号分别与第一测量信号以及第一参考信号进行混频,获得对应的第二测量信号以及第二参考信号,这样,不仅降低了测量信号与参考信号的频率,并且通过测量第二测量信号与第二参考信号之间的相位差,以及根据所述相位差,获得与被测物体之间的第二距离,从而,根据第一距离和第二距离,获得与被测物体之间的精确距离。
当然,在如图2所示的激光测距设备中,参考单元200,接收单元300、测量单元400和主控单元500也可具体有上述功能。此时,显示单元600,不仅用于主控单元500获得的第一距离,还用于显示主控单元获得的精确距离。
实施例五:由于在精确距离的测量过程中,激光测距设备的各个单元都增加了新的功能,因此,可将上述实施例中的激光测距设备进行进一步细化,如图7所示,该激光测距设备发射单元100包括:主振模块101,调制发射模块102和本振模块104。
其中,主振模块101,用于产生调制信号。
调制发射模块102,与主振模块101电连接,根据调制信号产生调制激光和第一参考信号,这里,调制发射模块102还与主控单元500电连接,当接收到主控单元500发送的发射指令时,向被测物体发射调制激光,并同时向参考单元200的接收模块201发送第一参考信号。
本振模块104,用于产生本振信号,并向参考单元200的第一混频模块204以及接收单元300的第二混频模块304发送本振信号。
参考单元200包括:第一接收模块201,第一采样保持模块202、第一比较模块203和第一混频模块204。
第一接收模块201,用于接收调制发射模块102发送的第一参考信号。
第一采样保持模块202,用于在发射单元100发射调制激光之前,根据主控单元500发送的第一采样保持指令,存储第一背景信号。
第一比较模块203,用于将第一参考信号与第一背景信号进行比较,得到含有接收到第一参考信号时刻信息的第一信号,并将第一信号发送给测量单元400。
第一混频模块204,用于将第一参考信号与接收的本振信号进行混频,得到混频后的的第二参考信号,并将第二参考信号发送给测量单元400。
接收单元300包括:第二接收模块301、第二采样保持模块320、第二比较模块303和第二混频模块304。
第二接收模块301,用于接收调制发射模块102发送的调制激光,并将调制激光转换为电信号,即获得第一测量信号。
第二采样保持模块302,在发射单元100发射调制激光之前,根据主控单元500发送的第二采样保持指令,存储第二背景信号。
第二比较模块303,用于将第二接收模块301根据调制激光转换而来的第一测量信号与第二背景信号进行比较,得到含有反射的调制激光到达时刻信息的第二信号,并将第二信号发送给测量单元400。
第二混频模块304,用于将第一测量信号与本振信号进行混频,得到混频后的第二测量信号,并将第二测量信号发送给测量单元400。
测量单元400,用于根据第一信号和第二信号获得调制激光的飞行时间,并将该飞行时间发送给主控单元500,并接收的相位测量指令后,测量所述第二测量信号与所述第二参考信号之间的相位差,根据所述相位差,获得与被测物体之间的第二距离,并将所述第二距离发送给主控单元
当然,主控单元500,还用于向所述测量单元发送相位测量指令,则测量单元400,还用于根据所述相位测量指令,进行对应的相位模式设置。
主控单元500,还用于将所述第一距离中整数个波长对应的距离与第二距离之间的和确定为与被测物体之间的精确距离,该波长为主振模块产生的主振信号的频率对应的波长。
当然,主控单元500,还可以根据其他的设定规则,根据第一距离和第二距离,获得与被测物体之间的精确距离。例如,第一距离和第二距离采用同样的量度值表示,这样,提取第一距离小数点前的有效数字,提取第二距离的小数点后的有效数字,即可得出被测物体之间的精确距离。
当然,该激光测距设备还可以含有显示单元,用于显示主控单元获得的精确距离。
本发明实施例中,主振模块101产生的调制信号与本振模块104产生的本振信号一般都为高频信号,两者之间相差一个中频信号,这样,当进行混频后的,获得的第二参考信号以及第二测量信号都是中频信号,从而,可以比较精确地测量这两个中频信号之间的相位差。
实施例六:本发明实施例还包括另一种具体的激光测距设备如图8所示,与图7所示激光测距设备相比,只是在发射单元100中增加了部分反射模块103。该实施例中,主振模块101,调整发射模块102、部分反射模块103,以及第一接收模块201的功能分别与如图4所示的设备中的主振模块101,调整发射模块102、部分反射模块103,以及第一接收模块201的功能一致,其他模块的功能与图7所示的设备中的对应的模块一致,具体就不再累述。
该激光测距设备同样包括两个通路,分别是参考信号通路和测量信号通路。
上述实施例五或六中激光测距设备进行激光测距所采用的激光测距方法的流程,参见图9,包括:
步骤901:发射单元产生调制激光和第一参考信号,以及本振信号。
激光测距设备的发射单元产生调制激光以及第一参考信号
Figure BSA00000142487300141
而本振模块产生本振信号Csin(2πf2t)。
这里,f1为主振频率即第一频率,f2为本振频率即第二频率,f1、f2一般为高频,两者之间相差一个设定频率fm,一般为中频。当f1=30MHz,f2=30.01MHz时,其第一参考信号,以及本振信号的波形示意图如图6中所示。
步骤902:发射单元接收主控单元发送的发射指令,向被测物体发射该调制激光,同时向参考单元发送第一参考信号,以及发射单元向参考单元和接收单元发送本振信号。
步骤903:参考单元将第一参考信号与保存的第一背景信号进行比较,获得含有第一参考信号到达时刻信息的第一信号,将第一参考信号与本振信号进行混频,获得混频后的第二参考信号。
将第一参考信号
Figure BSA00000142487300142
与保存的第一背景信号为Rk进行比较,获得第一信号Rc。本发明实施例中,获取第一信号Rc的过程与上述步骤503相同,不再重复描述了。当然,还可以采用其他类似的方法获得第一信号Rc
f1为第一频率,f2为第二频率,fm为混频后的频率,则第二参考信号
Figure BSA00000142487300143
当f1=30MHz,f2=30.01MHz时,混频后的频率为fm=10KHz,则第二参考信号的波形示意图如图6中所示。
步骤904:接收单元接收被测物体反射回来的调制激光,并对该调制激光进行光电转换,获得第一测量信号。
这里,采用如上述步骤504相同方法获得第一测量信号S,当然,还可以采用其他类似的方法获得第一测量信号S。
步骤905:接收单元将第一测量信号与保存的第二背景信号进行比较,获得含有反射激光到达时刻信息的第二信号,将第一测量信号与本振信号进行混频和滤波,获得混频后的第二测量信号。
这里,采用如上述步骤505相同方法获得第二信号Sc,当然,还可以采用其他类似的方法获得第二信号Sc
第一测量信号信号S相对于第一参考信号R具有
Figure BSA00000142487300151
的相位差,其中,τ为激光飞行时间,同时
Figure BSA00000142487300153
可以表示为若干个整波和剩余相位的和,即
Figure BSA00000142487300154
因此S信号简化为
Figure BSA00000142487300155
这样,
Figure BSA00000142487300156
所表示的距离为
Figure BSA00000142487300157
当第一测量信号S与本振信号Csin(2πf2t)进行混频并滤波后,得到第二测量信号Sm,其中,
Figure BSA00000142487300158
当f1=30MHz,f2=30.01MHz时,混频后的频率为fm=10KHz,则第二测量信号的波形示意图如图6中所示。
同样,本发明实施例中,步骤903获得第二参考信号的过程,与步骤904及905获得第二测量信号的过程是一个并行的过程。
步骤906:测量单元根据第一信号以及第二信号获得激光飞行时间,并测量第二测量信号与第二参考信号之间的相位差。
这里,采用如上述步骤505相同方法获得激光飞行时间τ。当然,还可以采用其他类似的方法获得激光飞行时间τ。
第二测量信号
Figure BSA00000142487300159
第二参考信号
Figure BSA000001424873001510
因此,两者之间的相位差为
Figure BSA000001424873001511
这里,测量单元测量完第二信号与第一信号之间的时间延迟后,测量单元接收主控单元发送相位测量指令,并根据所述相位测量指令,进行对应的相位模式设置,然后根据相位模式测量第二测量信号与第二参考信号之间的相位差。
本发明实施例中,可以将相位差的测量转换为时间的测量,分别将第二测量信号与第二参考信号输入过零比较器,这样,可以获得第二测量信号对应的测量方波信号,以及第二参考信号对应的参考方波信号。
然后,重置计时器,当检测到参考方波信号的上升沿时,重新开始计时;当检测到测量方波信号的上升沿时,停止计时,确定计时得到的时间为相位差对应的延迟时间
Figure BSA00000142487300161
,从而,根据公式
Figure BSA00000142487300162
获得相位差
Figure BSA00000142487300163
同样,当第二测量信号与第二参考信号的波形示意图如图6所示时,其对应的参考方波信号以及测量方波信号的波形示意图也如图6所示。其参考方波信号的上升沿与测量方波信号的上升沿之间并不包括整数个波长。但由于混频后,fm=10KHz,参考方波信号的上升沿与测量方波信号的上升沿之间时间差相对于第一信号的上升沿与第二信号的上升沿之间时间差长一些。
当然,还可以根据现有技术获得第二测量信号与第二参考信号之间的相位差。
步骤907:主控单元根据激光飞行时间,获得与被测物体之间的第一距离,根据相位差,获得与被测物体之间的第二距离。
根据公式L1=Cτ/2获得第一距离L1。根据公式
Figure BSA00000142487300164
获得第二距离L2
步骤908:主控单元根据第一距离和第二距离,获得与被测物体之间的精确距离。
这里,可以根据设定的规则,从第一距离中提取一些有效数字,以及从第二距离中提取一些有效数字,将这些有效数字组合,即可获得与被测物体之间的精确距离。
例如:确定第一频率对应f1的波长,将上述第一距离L1中整数个波长对应的距离与第二距离L2之间的和确定为与被测物体之间的精确距离。或者,第一距离和第二距离采用同样的量度值表示,这样,提取第一距离小数点前的有效数字,提取第二距离的小数点后的有效数字,即可得出被测物体之间的精确距离。
本实施例中,假定时间延时的检测精度为τp,相位差测量精度为
Figure BSA00000142487300171
因此测量距离的精度为
Figure BSA00000142487300172
可见,对比不采用混频的粗测精度提高了
Figure BSA00000142487300173
倍,通常主振频率f1为MHz级,中频频率为fm为KHz级,这样,精度可以提高3个量级,因此,可以很容易实现高精度的测量,同时结合上述粗测可以对任意长度的距离进行测量。
下面结合说明书附图对本发明实施例作进一步详细描述。
本实施例中,如图10所示,发射单元中的主振模块采用锁相环电路,包括鉴相鉴频器、环路滤波器和压控振荡源,主振频率选择30MHz,即f1=30MHz;本振模块同样采用锁相环电路,产生30.01MHz频率的本振信号,即f2=30.01MHz,这样,混频后的中频频率fm为10KHz。本实施例中选择的具体的主振频率和本振频率只是为了方便说明,并不是对本发明保护范围的限制。
主振模块将主振频率30MHz的主振信号发送给调制发射模块中的调制电路,调制电路连接激光驱动电路,驱动激光器发出调制激光。调制出的调制激光采用部分反射镜将10%的激光反射给参考单元,其余部分向被测物体发射。
反射部分的激光被参考信号通路接收,即参考单元接收。该参考单元中的第一接收单元由光电二极管(Avalanche Photo Diode,PIN)和放大电路组成,将反射激光转化为电压信号并放大,获得第一参考信号。第一采样保持模块和第一比较模块分别由采样/保持器和比较器构成,首先,采样/保持器在激光发射之前,根据主控单元的指令采集的该参考单元的第一背景信号并保持,然后比较器将获得的第一参考信号与第一背景信号进行比较,产生第一信号Rc
第一混频模块由混频芯片和滤波电路组成,用于将参考单元中的第一接收模块获得第一参考信号与本振模块产生的本振信号进行混频,并滤出其中的中频10Khz的分量,得到第二参考信号Rm
被测物体接收到调制激光后,反射回来激光,该反射回来的调制激光被接收信号通路接收,即接收单元接收,这样,该接收单元的第一接收模块由雪崩光电二极管(Avalanche Photo Diode,APD)和放大电路组成,将反射回来的调制激光转化为电压信号并放大,获得第一测量信号。第二采样保持模块和第二比较模块也分别由采样/保持器和比较器构成,同样,采样/保持器在激光发射之前,根据主控单元的指令采集的该接收单元的第二背景信号并保持,然后比较器将获得的第一测量信号与第二背景信号进行比较,产生第二信号Sc
第二混频模块也由混频芯片和滤波电路组成,用于将接收单元中的第二接收模块获得第一测量信号与本振模块产生的本振信号进行混频,并滤出其中的中频10KHz的分量,得到第二测量信号Sm
测量单元包括两个双路开关,以及时间检查芯片,第一比较模块输出的第一信号Rc和第一混频模块输出第二参考信号Rm接入其中一个双路开关的两个输入端,并将开关的信号输出端连接到时间检测芯片的START端口;而第二比较模块输出的第二信号Sc和第二混频模块输出第二测量信号Sm接入另一双路开关的两个输入端,该开关的信号输出端连接时间检测芯片的STOP端口,双路开关通过主控单元控制选择。
主控单元可以为单片机但不限定于单片机,例如:其他的一些智能处理芯片。本发明实施例中各种波形示意图如图6所示。
这样,该实施例的工作流程如下:开机后,主振模块和本振模块开始工作并产生两个频率30MHz和30.01MHz,第一接收模块和第二接收模块处于预备状态等待激光的到来,主控单元设置双路开关,将其设置为选择第一信号信号Rc和第二信号Sc,时间检测芯片处于预备状态等待信号的到来。
首先,主控单元分别控制第一采样保持模块和第二采样保持模块,使第一采样保持模块和第二采样保持模块分别获取背景水平信号Sk和Rk并保持,然后,主控单元控制调制发射模块,发出调制激光,其中,部分调制激光经发射后发送给参考模块。
参考模块获得反射的部分激光,并转换为第一参考信号R,将转换后的第一参考信号R传送给第一比较模块和第一混频模块;第一比较模块中的比较器通过比较第一参考信号R和背景水平信号Rk,而获得带有发射激光到达时刻信息的方波信号Rc
时间检测芯片接收该方波信号Rc的上升沿后开始计时,并等待测量信号通路的第二信号Sc;其中,测量信号通路上的调制激光反射回来到达第二接收模块后,将该调制激光转换为第一测量信号S,并传输给第二比较模块和第二混频模块,通过与参考信号通路同样的方式获得Sc
这样,时间检测芯片接收到Sc的上升沿后停止计时,记下测量时间t1,该测量时间t1即为第一测量信号与第一参考信号之间的延时,也就是激光飞行时间。
然后,主控单元对双路开关进行重置,将双路开关选择混频单元输出的信号Rm和Sm,同时主控单元对时间检测芯片进行重置,重置后的时间检测芯片将在START端口检测到参考信号通路中第一混频模块输出信号Rm对应的参考方波的的上升沿作为计时开始,然后在STOP端口检测到测量信号通路第二混频模块输出信号Sm对应的测量方波的的上升沿作为计时结束,并记下测量时间t2
这样,根据时间t1获得与测量物理之间的第一距离,根据时间t2获得与测量物理之间的第二距离,其中,第一距离L1
Figure BSA00000142487300191
第二距离L2然后,将L1中含有的整数个波长的距离加上L2即可得出最终测量距离。例如:在本实施例中,由于f1=30MHz,f2=30.01MHz则假定粗测时间t1为320ns,精测时间t2为60303ns,则可以根据
Figure BSA00000142487300201
计算出第一距离为48m,由于30MHz的整波长周期对应的距离为5m,48米中含有9个5m,则整数个波长对应的距离为45m,根据
Figure BSA00000142487300202
计算出第二距离为3.01515m,因此,最终的测量距离为48.01515m。
当然,本发明实施例中,还可以包括显示单元,用于显示最终的测量距离。该显示单元可以是LED显示屏,或者是数码显示,当然其他的一些显示装置也可以。
本发明实施例中,激光测距设备产生调制激光以及第一参考信号,并向被测物体发射所述调制激光,以及同时向参考单元发送所述第一参考信号,这样,第一参考信号通过该设备的参考单元后,获得含有第一参考信号到达时刻信息的第一信号,调制激光经被测物体发射后返回调制激光,并通过该设备的接收单元后,获得含有所述调制激光到达时刻信息的第二信号,根据第一信号以及第二信号获得激光飞行时间,并根据所述激光飞行时间,获得与被测物体之间的第一距离。这样,只需要一套频率的激光光波,从而只需要一套调制电路,滤波电路,从而,大简化了激光测距设备,减少了系统的成本。并且,只需要发射一次激光测量信号,就可以获得激光飞行时间,得到确定的结果,实现对任意长度的距离进行测量,这样,极大地提高激光测距的效率。
另外,在采用相位激光测距的过程中,通过信号混频电路,将测量信号和参考信号间的相位差信息搬移到中频段,极大提高了相位差测量精度,亦即极大提高了距离测量精度。从而,本发明实施例中通过调制激光飞行时间来获取激光测距设备与被测物体之间的距离,进一步,采用相位测量来修正获取的距离,得到高精度的距离,实现任意距离的高精度测量。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (22)

1.一种激光测距设备,其特征在于,包括:
发射单元,用于产生调制激光和第一参考信号,当接收到主控单元发送的发射指令时,向被测物体发射所述调制激光,同时向参考单元发送所述第一参考信号;
参考单元,用于将接收的第一参考信号与该参考单元存储的第一背景信号进行比较,得到含有所述第一参考信号到达所述参考单元时刻信息的第一信号,并将所述第一信号发送给测量单元;
接收单元,用于将所述被测物体反射的调制激光转换为第一测量信号,将所述第一测量信号与该接收单元存储的第二背景信号进行比较,得到含有所述反射的调制激光到达所述接收单元时刻信息的第二信号,并将所述第二信号发送给测量单元;
测量单元,用于根据所述第一信号和所述第二信号获得激光飞行时间,并将所述激光飞行时间发送给主控单元;
主控单元,用于向发射单元发送发射指令,并根据所述激光飞行时间,获得与被测物体之间的第一距离。
2.如权利要求1所述的设备,其特征在于,所述发射单元包括:
主振模块,用于产生调制信号;
调制发射模块,与所述主振模块以及主控单元连接,用于根据所述调制信号产生调制激光和第一参考信号,并当接收到所述主控单元发送的发射指令时,向被测物体发射所述调制激光,并同时向参考单元发送所述第一参考信号。
3.如权利要求2所述的设备,其特征在于,所述发射单元还包括:部分反射模块,则,
所述调制发射模块,用于根据所述主振模块产生的调制信号产生调制激光,当接收到所述主控单元发送的发射指令时,向所述部分反射模块发送所述调制激光;
所述部分反射模块,用于将设定比例的调制激光发射到参考单元,并同时向被测物体发射其余的调制激光。
4.如权利要求1所述的设备,其特征在于,所述参考单元包括:
第一接收模块,用于接收所述发射单元发送的第一参考信号;
第一采样保持模块,用于在所述发射单元发射调制激光之前,根据所述主控单元发送的第一采样保持指令,存储第一背景信号;
第一比较模块,用于将所述第一参考信号与第一背景信号进行比较,得到含有接收到第一参考信号时刻信息的第一信号,并将第一信号发送给测量单元。
5.如权利要求4所述的设备,其特征在于,
所述第一接收模块,还用于接收所述发射单元反射的调制激光,并将调制激光转换为第一参考信号。
6.如权利要求1所述的设备,其特征在于,所述接收单元包括:
第二接收模块,用于接收被测物体反射的调制激光,并将该调制激光转换为第一测量信号;
第二采样保持模块,用于在所述发射单元发射调制激光之前,根据主控单元发送的第二采样保持指令,存储第二背景信号;
第二比较模块,用于将所述第一测量信号与第二背景信号进行比较,得到含有反射的调制激光到达时刻信息的第二信号,并将第二信号发送给测量单元。
7.如权利要求1所述的设备,其特征在于,
所述主控单元,还用于向所述测量单元发送时间测量指令;
所述测量单元,还用于根据时间测量指令,进行对应的时间模式设置,并根据所述时间模式,当检测到所述第一信号的上升沿时,开始计时,当检测所述第二信号的上升沿时,停止计时,确定计时得到的时间为激光飞行时间。
8.如权利要求1所述的设备,其特征在于,
所述发射单元还包括:本振模块,用于产生本振信号;
所述参考单元还包括:第一混频模块,用于将所述参考单元获得的第一参考信号,与所述本振信号进行混频,获得混频后的第二参考信号,并将所述第二参考信号发送给测量单元;
所述接收单元还包括:第二混频模块,用于将所述接收单元获得的第一测量信号,与所述本振信号进行混频,获得混频后的第二测量信号,并将所述第二测量信号发送给测量单元;
则,所述测量单元,还用于测量所述第二测量信号与所述第二参考信号之间的相位差,根据所述相位差,获得与被测物体之间的第二距离,并将所述第二距离发送给主控单元;
所述主控单元,还用于根据所述第一距离和第二距离,获得与被测物体之间的精确距离。
9.如权利要求8所述的设备,其特征在于,
所述主控单元,还用于向所述测量单元发送相位测量指令;
所述测量单元,还用于根据所述相位测量指令,进行对应的相位模式设置。
10.如权利要求8所述的设备,其特征在于,
所述主控单元,还用于将所述第一距离中整数个波长对应的距离与第二距离之间的和确定为与被测物体之间的精确距离。
11.如权利要求1-7任一所述的设备,其特征在于,还包括:
显示单元,用于获取并显示所述主控单元获得的第一距离。
12.如权利要求8-10任一所述的设备,其特征在于,还包括:
显示单元,用于获取并显示所述主控单元获得的第一距离和/或精确距离。
13.一种激光测距的方法,其特征在于,包括:
发射单元产生调制激光以及第一参考信号,并当接收到主控单元发送的发射指令时,向被测物体发射所述调制激光,同时向参考单元发送所述第一参考信号;
所述参考单元将所述第一参考信号与存储的第一背景信号进行比较,得到含有所述第一参考信号到达所述参考单元时刻信息的第一信号,并将所述第一信号发送给测量单元;
接收单元将所述被测物体反射的调制激光转换为第一测量信号,将所述第一测量信号与存储的第二背景信号进行比较,得到含有所述反射的调制激光到达所述接收单元时刻信息的第二信号,并将所述第二信号发送给测量单元;
测量单元根据所述第一信号和所述第二信号获得激光飞行时间,并将所述激光飞行时间发送给主控单元;
所述主控单元根据所述激光飞行时间,获得与被测物体之间的第一距离。
14.如权利要求13所述的方法,其特征在于,所述发射单元向参考单元发送所述第一参考信号包括:
所述发射单元将设定比例的调制激光发射到参考单元;
所述参考单元将所述调制激光转换为第一参考信号。
15.如权利要求13或14所述的方法,其特征在于,所述参考单元存储第一背景信号包括:
在所述发射单元发射调制激光之前,所述参考单元接收所述主控单元发送的第一采样保持指令,并根据所述第一采样保持指令,采样并保存该参考单元的第一背景信号。
16.如权利要求13或14所述的方法,其特征在于,所述接收单元存储第二背景信号包括:
在所述发射单元发射调制激光之前,所述接收单元接收所述主控单元发送的第二采样保持指令,并根据所述第二采样保持指令,采样并保存该接收单元的第二背景信号。
17.如权利要求13或14所述的方法,其特征在于,所述获得激光飞行时间之前,还包括:
接收所述主控单元的时间测量指令,并根据时间测量指令,进行对应的时间模式设置;
则所述获得激光飞行时间包括:
根据所述时间模式,当检测到所述第一信号的上升沿时,开始计时;
当检测所述第二信号的上升沿时,停止计时;
确定计时得到的时间为激光飞行时间。
18.如权利要求13或14所述的方法,其特征在于,所述获得与被测物体之间的第一距离之后,还包括:
显示单元显示所述主控单元获得的第一距离。
19.如权利要求13或14所述的方法,其特征在于,还包括:
本振模块产生本振信号;
第一混频模块将所述第一参考信号,与所述本振信号进行混频,获得混频后的第二参考信号,并将所述第二参考信号发送给测量单元;
第二混频模块将第一测量信号,与所述本振信号进行混频,获得混频后的第二测量信号,并将所述第二测量信号发送给测量单元;
所述测量单元测量所述第二测量信号与所述第二参考信号之间的相位差,根据所述相位差,获得与被测物体之间的第二距离,并将所述第二距离发送给主控单元;
所述主控单元根据所述第一距离和第二距离,获得与被测物体之间的精确距离。
20.如权利要求19所述的方法,其特征在于,所述测量单元测量所述第二测量信号与所述第二参考信号之间的相位差之前,还包括:
接收所述主控单元发送的相位测量指令,并根据所述相位测量指令,进行对应的相位模式设置。
21.如权利要求19所述的方法,其特征在于,所述主控单元获得与被测物体之间的精确距离包括:
将所述第一距离中整数个波长对应的距离与第二距离之间的和确定为与被测物体之间的精确距离。
22.如权利要求19所述的方法,其特征在于,所述主控单元获得与被测物体之间的精确距离之后,还包括:
显示单元显示所述主控单元获得的精确距离。
CN 201010191960 2010-05-26 2010-05-26 一种激光测距设备及方法 Expired - Fee Related CN101865997B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010191960 CN101865997B (zh) 2010-05-26 2010-05-26 一种激光测距设备及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010191960 CN101865997B (zh) 2010-05-26 2010-05-26 一种激光测距设备及方法

Publications (2)

Publication Number Publication Date
CN101865997A CN101865997A (zh) 2010-10-20
CN101865997B true CN101865997B (zh) 2012-07-25

Family

ID=42957798

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010191960 Expired - Fee Related CN101865997B (zh) 2010-05-26 2010-05-26 一种激光测距设备及方法

Country Status (1)

Country Link
CN (1) CN101865997B (zh)

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102347799A (zh) * 2011-07-06 2012-02-08 哈尔滨工业大学 多频调制激光的锁相转发方法和装置
CN103744176A (zh) * 2014-01-21 2014-04-23 武汉虹识技术有限公司 一种基于锁相环的液态镜头对焦系统及方法
DE102014214733B3 (de) * 2014-07-28 2015-07-23 Pmd Technologies Gmbh Lichtlaufzeitsensor mit einer Vorrichtung zur Ladungskompensation
DE102014111431A1 (de) * 2014-08-11 2016-02-11 Infineon Technologies Ag Flugzeitvorrichtungen und eine Beleuchtungsquelle
CN104865577A (zh) * 2015-05-25 2015-08-26 上海翌森信息科技有限公司 一种激光测距系统
CN105717512A (zh) * 2016-01-29 2016-06-29 北京万集科技股份有限公司 激光测距装置及方法
CN105866783A (zh) * 2016-04-15 2016-08-17 中国科学院上海技术物理研究所 以半连续方波调制和飞行时间测量的激光测距方法及装置
CN105785385A (zh) * 2016-04-15 2016-07-20 中国科学院上海技术物理研究所 基于同步采样和多重相位测量的激光测距方法及装置
US10145948B2 (en) * 2016-07-13 2018-12-04 Texas Instruments Incorporated Methods and apparatus for narrowband ranging systems using coarse and fine delay estimation
CN107884762A (zh) * 2016-09-30 2018-04-06 比亚迪股份有限公司 激光雷达及车辆
CN107884779B (zh) * 2016-09-30 2020-08-07 比亚迪股份有限公司 激光雷达、车辆、测距误差测量方法、及测距方法
CN106646502B (zh) * 2016-11-10 2023-12-08 深圳市摩天射频技术有限公司 一种激光测距设备及方法
CN107015232A (zh) * 2017-03-29 2017-08-04 许志超 利用相干激光差频实现目标物体的距离测量的装置及方法
CN109425865B (zh) 2017-08-22 2020-09-08 深圳市道通智能航空技术有限公司 一种无人机测距方法、装置及无人机
CN107607962A (zh) * 2017-09-22 2018-01-19 北京航天计量测试技术研究所 一种提高相位激光测距测量频率的方法
CN108594254B (zh) * 2018-03-08 2021-07-09 北京理工大学 一种提高tof激光成像雷达测距精度的方法
CN108555438B (zh) * 2018-07-06 2024-05-10 温州大学激光与光电智能制造研究院 激光加工基频倍频切换系统及其方法
CN109270547A (zh) * 2018-08-22 2019-01-25 深亮智能技术(中山)有限公司 一种激光飞行时间光雷达
WO2020061969A1 (zh) * 2018-09-27 2020-04-02 深圳市大疆创新科技有限公司 一种激光发射装置和测距装置
CN109298428B (zh) * 2018-11-16 2020-07-14 杭州一隅千象科技有限公司 多台tof深度信息采集同步方法及系统
TWI696842B (zh) * 2018-11-16 2020-06-21 精準基因生物科技股份有限公司 飛時測距感測器以及飛時測距方法
CN109269413A (zh) * 2018-11-28 2019-01-25 信利光电股份有限公司 基于飞行时间法测量物件尺寸的设备
CN109782262A (zh) * 2019-01-30 2019-05-21 Oppo广东移动通信有限公司 相位测距方法、装置、分体式电子设备及可读存储介质
CN112099026B (zh) * 2019-05-31 2023-11-24 宁波飞芯电子科技有限公司 退相干效应处理装置、退相干效应处理系统及其方法
CN111596303B (zh) * 2020-07-02 2023-06-30 国科光芯(海宁)科技股份有限公司 激光测距方法、系统和激光雷达
CN112525089A (zh) * 2020-12-25 2021-03-19 国网福建省电力有限公司 水轮发电机组轴线测量方法
CN113504532B (zh) * 2021-06-11 2024-04-19 深圳市灵明光子科技有限公司 基于直接飞行时间法的光信号发射方法及测距系统

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349757A (zh) * 2008-09-10 2009-01-21 哈尔滨工业大学 有源协作式相位激光测距方法与装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3935897B2 (ja) * 2004-06-15 2007-06-27 北陽電機株式会社 光波測距装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101349757A (zh) * 2008-09-10 2009-01-21 哈尔滨工业大学 有源协作式相位激光测距方法与装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
龙卓群等.《激光多周期测距脉冲飞行时间的测量》.《西安航空技术高等专科学校学报》.2009,第27卷(第5期),全文. *

Also Published As

Publication number Publication date
CN101865997A (zh) 2010-10-20

Similar Documents

Publication Publication Date Title
CN101865997B (zh) 一种激光测距设备及方法
CN206147097U (zh) 一种激光测距装置
CN100565243C (zh) 光波测距仪
CN101349751B (zh) 采用脉冲再混合方法的手提激光测距设备
CN108594254A (zh) 一种提高tof激光成像雷达测距精度的方法
CN105487067B (zh) 粗测和精测距离信号处理方法、处理模块及基于该模块的啁啾调制光子计数激光雷达系统
WO2015158187A1 (zh) 单光路激光测距系统
CN103616696A (zh) 一种激光成像雷达装置及其测距的方法
CN205608186U (zh) 基于同步采样和多重相位测量的激光测距装置
CN105785385A (zh) 基于同步采样和多重相位测量的激光测距方法及装置
CN102435347B (zh) 一种基于荧光光纤温度传感器实时测量多点温度的方法
CN102073051A (zh) 激光多脉冲扩时测距装置
CN203502587U (zh) 脉冲/相位一体式激光测距仪
CN102073050A (zh) 基于深度相机的测量三维场景深度的装置
CN104459710A (zh) 脉冲/相位一体式激光测距仪
CN103293947A (zh) 一种星地激光时间比对系统
CN106353765B (zh) 二维激光雷达测距装置及方法
CN102169176A (zh) 观测信号处理装置
CN106324613B (zh) 用于飞秒激光跟踪仪的数据采集与处理系统及方法
CN202563087U (zh) 一种激光测距仪
CN103412312A (zh) 激光测距方法及装置
CN108387902A (zh) 一种光测距方法及设备
CN110174664A (zh) 激光雷达系统和激光雷达回波信号的确定方法
CN110927737A (zh) 一种多频调制激光动态目标测距测速系统及方法
CN100397061C (zh) 多波段脉冲激光模拟发射器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CP01 Change in the name or title of a patent holder

Address after: 100015 Beijing city Chaoyang District Dongzhimen West eight Street No. 2 room Wanhong Yan Dong Business Garden

Patentee after: BEIJING WATCHDATA Co.,Ltd.

Address before: 100015 Beijing city Chaoyang District Dongzhimen West eight Street No. 2 room Wanhong Yan Dong Business Garden

Patentee before: BEIJING WATCH DATA SYSTEM Co.,Ltd.

CP01 Change in the name or title of a patent holder
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120725

CF01 Termination of patent right due to non-payment of annual fee