WO2015158187A1 - 单光路激光测距系统 - Google Patents

单光路激光测距系统 Download PDF

Info

Publication number
WO2015158187A1
WO2015158187A1 PCT/CN2015/073617 CN2015073617W WO2015158187A1 WO 2015158187 A1 WO2015158187 A1 WO 2015158187A1 CN 2015073617 W CN2015073617 W CN 2015073617W WO 2015158187 A1 WO2015158187 A1 WO 2015158187A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse signals
optical path
ranging system
single optical
Prior art date
Application number
PCT/CN2015/073617
Other languages
English (en)
French (fr)
Inventor
石昕
Original Assignee
上海诺司纬光电仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海诺司纬光电仪器有限公司 filed Critical 上海诺司纬光电仪器有限公司
Publication of WO2015158187A1 publication Critical patent/WO2015158187A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement

Definitions

  • the invention relates to the field of laser ranging technology, in particular to a single-shot single-receiving phase laser ranging system.
  • phase laser range finder As a non-contact measuring instrument, laser range finder has been widely used in remote control, precision measurement, engineering construction, safety monitoring and intelligent control.
  • the phase laser range finder has high precision and low power.
  • Features, suitable for civil use, have a larger market and application prospects.
  • the phase method ranging determines the path traveled by the light wave by measuring the phase shift generated by the modulated light wave propagating through the air.
  • phase laser range finder generally adopts single-shot dual-receiving or dual-issue single-receiving mode.
  • single-shot dual-receiver mode requires two APD photodiodes and one laser diode (abbreviated as LD), which is issued by LD.
  • LD laser diode
  • the optical modulation signal is generated by the optical modulation signal on the APD photodiode of the inner optical path and the outer optical path, and the APD photodiode of the LD and the internal optical path are closely connected, so that the APD photodiode is generated on the internal optical path.
  • the mixing signal can be used as the ranging reference signal S1.
  • the beam emitted by the LD reaches the measurement target and is reflected onto the APD photodiode of the external optical path to generate the optical mixing, the mixed signal S2, the reference signal S1 and the photoelectric mixing signal.
  • the S2 frequency has the same phase, and the time represented by the phase difference, that is, the laser flight time, is calculated based on this time.
  • the dual-issue single-receiving mode requires two LDs (laser diode D1, laser diode D2) and one APD photodiode.
  • the laser diode D1 and the APD photodiode are closely connected together to form an internal optical path.
  • the laser diode D1 emits a light beam at APD photoelectric.
  • the diode is optically mixed with the electrical modulation signal to generate the signal S1 as a phase reference, and the laser diode D2 and the APD are externally composed.
  • the optical path the beam emitted by the laser diode D2 reaches the measurement target and is reflected to the APD photodiode and mixed with the modulation signal to generate the signal S2; the signal S1 and the signal S2 are in different phases, and the processor sampling signals S1 and S2 are simulated.
  • the signal using Fourier decomposition to find the phase difference between the two can get the laser flight time, so that the measurement distance can be calculated.
  • Chinese Patent No. CN102393522A discloses a measuring method of a laser range finder and a photometric ranging device, which discloses a measuring method and device for single-issue, single-receiving, and no internal and external optical path switching devices, as shown in FIG.
  • the patented laser ranging device including microprocessor, phase-locked loop circuit, low-frequency sine wave RC circuit, quadrature modulator, laser driver, laser module, avalanche diode and signal amplification and filtering circuit, specific work
  • the principle is: the microprocessor controls the phase-locked loop circuit to output a high-frequency signal to form a main vibration signal; the microprocessor controls the low-frequency sine wave RC circuit to output a low-frequency signal, and the low-frequency signal and the phase-locked loop circuit generate a high-frequency signal in the mixer.
  • the up-conversion or down-conversion forms a local oscillator signal, and the local oscillator signal enters the avalanche diode.
  • the control laser module After the main vibration signal is modulated by the laser driver, the control laser module emits a measurement laser beam, and the main vibration signal is reflected by the measurement laser beam to the same object to be reflected to the avalanche diode to form a return signal, and each return signal and corresponding signal
  • the local oscillator signal is mixed, and after mixing, a low frequency signal with the same distance information is formed, and the low frequency signal with the same distance information enters the microprocessor through the signal amplification and filtering circuit.
  • the metering and ranging device uses an analog RC oscillator to output a low frequency signal, and the analog RC oscillator output signal is unstable, and it is difficult to generate a stable difference frequency signal by mixing with the main vibration signal.
  • the mixing process needs to be done twice in the ranging process.
  • the first mixing is the low frequency signal output by the RC oscillator and the high frequency main vibration signal output by the phase locked loop circuit is mixed to generate the local oscillator signal, and the second mixing is performed. Is the main vibration signal modulated on the laser diode, the emitted light is returned to the APD photodiode, in the APD
  • the second mixing of the photodiode with the local oscillator signal makes the measurement process complicated, which easily affects the measurement accuracy of the distance measuring device.
  • the object of the present invention is to overcome the defects of the prior art and provide a single optical path laser ranging system.
  • a circuit simulation method to obtain an analog signal for two-way ranging, and simultaneously sampling the two analog signals, the frequency is not reduced.
  • the cost of the laser range finder is reduced, the size is convenient, and the accuracy of the distance measurement is greatly improved.
  • a single optical path laser ranging system including a microprocessor, a signal generator, a laser transmitter, a photodiode and a mixer:
  • the microprocessor controls the signal generator to output two sets of pulse signals, which are respectively a first group of pulse signals and a second group of pulse signals, each of the group of pulse signals having two first modulation signals having different frequencies and a second modulated signal; the first set of pulse signals are respectively sent to the laser emitter and the photodiode for forming an optical mixing signal for the external optical path, and the second set of pulse signals are sent to the mixer for forming a distance measuring Reference signal.
  • the laser emitter emits a laser beam, and the laser beam emits a laser beam to the object under test under modulation of a first one of the first set of pulse signals;
  • the photodiode receives the laser beam reflected by the object to be measured, and optically mixes with a second modulation signal of the first group of pulse signals to form an opto-electrical mixing signal;
  • the mixer receives and mixes the first modulation signal and the second modulation signal of the second group of pulse signals to form a reference signal, which is used as a phase reference signal for ranging, and is calculated by a microprocessor.
  • the phase difference between the photoelectric mixing signal and the reference signal is described.
  • the microprocessor controls the signal generator to synchronously output two sets of pulse signals.
  • the frequencies and phases of the first modulated signals of the two sets of the pulse signals are identical, and the frequencies and phases of the second modulated signals of the two sets of the pulse signals are also identical, thereby ensuring the output of the photoelectric mixing signals and the reference signals.
  • the frequency is the same.
  • the photoelectric mixing signal and the reference signal have the same frequency, different phases, and a slight difference
  • the processor calculates the phase difference between the two to obtain the measured distance value.
  • the frequency of the photoelectric mixing signal and the reference signal are the difference between the frequencies of the first modulation signal and the second modulation signal in each group of pulse signals.
  • a synchronous sampling signal generator is disposed in the microprocessor, and the synchronous sampling signal generator outputs a synchronous sampling signal, and the microprocessor is controlled to synchronously sample the photoelectric mixing signal and the reference signal, thereby improving the ranging The measurement accuracy of the system.
  • the microprocessor performs fast Fourier transform on the sampled optical mixing signal and the reference signal, and calculates a phase difference between the photoelectric mixing signal and the reference signal.
  • the signal generator uses a digital circuit to output two modulated signals with different frequencies, the output signal is stable and reliable, and the output signal frequency can be flexibly set.
  • the laser generator is a laser diode
  • the photodiode is an avalanche diode
  • the mixer is a normal mixer or an analog quadrature mixer, and the analog generates a phase reference signal.
  • This utility model newly uses circuit simulation to generate two analog signals, which are the reference signal for ranging and the photoelectric mixing signal for external optical path.
  • the two analog signals are synchronously used by the microprocessor to calculate the two.
  • the phase difference is obtained by the phase difference, so that the measured distance value can be accurately calculated.
  • the digital signal generator is used to replace the existing analog oscillator, which improves the stability and reliability of the output signal.
  • the analog internal frequency path is replaced by the analog mixing method to generate a phase reference signal, which realizes the single-shot and single-receiving of the ranging system, effectively reducing the cost of the range finder, reducing the volume, and being convenient to carry and use.
  • Billing and single-issue and dual-receiving have obvious cost advantages in short-distance ranging.
  • 1 is a schematic structural view of a conventional laser distance measuring device
  • FIG. 2 is a schematic structural view of a single optical path laser ranging system of the present invention.
  • the single-path laser ranging system disclosed by the invention outputs an analog signal for two-way ranging by a circuit simulation method, and simultaneously samples the two analog signals and calculates by using a fast Fourier transform (FFT) method.
  • FFT fast Fourier transform
  • the phase difference between the two analog signals is obtained, and the laser flight time is obtained, thereby calculating the measured distance value.
  • the invention can effectively reduce the cost of the range finder, reduce the volume thereof, is convenient to carry and use, and greatly improves the precision of the ranging.
  • a single optical path laser ranging system disclosed by the present invention includes a microprocessor, a signal generator, a laser transmitter, a photodiode and a mixer, which are different from the prior art, and are controlled by a microprocessor.
  • the signal generator synchronously outputs two sets of pulse signals.
  • the signal generator 1 and the signal generator 2 are used to generate two sets of pulse signals, one set of pulse signals are used to generate the photoelectric mixing signals, and the other set of pulse signals are used.
  • the reference signal for generating the ranging reference of course, the number of setting of the signal generator can be set according to the actual number of sets of pulse signals required.
  • the signal generator employs a digital signal generator to generate two signals of different frequencies.
  • the digital signal generator has the advantages that the output signal is stable and reliable, and the output signal frequency can be adjusted and changed.
  • the utility model adopts a digital signal generator as a signal generator, which has a simplified ranging system and reduces processing. Cost, output signal stability, and improved range accuracy.
  • Each group of pulse signals has two first modulation signals and second modulation signals having different frequencies.
  • the first modulation signal A1 and the second modulation signal B1 are a group of pulse signals
  • the first modulation signal A2 and the second modulation signal B2 are another group of pulse signals.
  • the frequency and phase of the first modulation signal A1 and the first modulation signal A2 are completely identical
  • the frequency and phase of the second modulation signal B1 and the second modulation signal B2 are completely identical, thereby ensuring the photoelectric mixing signals respectively obtained by the two sets of pulse signals.
  • the frequency of the first modulation signal A1 is f1
  • the frequencies of the second modulation signal B1 and the second modulation signal B2 are also f1 and f2, respectively.
  • the first modulation signal A1 and the second modulation signal B1 are respectively supplied to the laser generator and the photodiode to form an optical mixing signal S1.
  • the first modulation signal A1 is sent to the laser generator, and the laser beam emitted by the laser generator is modulated by the first modulation signal A1, and is reflected by the object to be measured to the photodiode; the second modulation signal B1 is also amplified and sent
  • the laser beam modulated by the first modulation signal A1 and the second modulation signal B1 are optically mixed on the photodiode, and the optical mixing signal S1 is mixed, and the frequency of the photoelectric mixing signal S1 is the first modulation signal.
  • the frequency difference f1-f2 of A1 and the second modulation signal B1 is ⁇ .
  • the first modulation signal A2 and the second modulation signal B2 are supplied to the mixer for mixing, and the reference signal S2 is output.
  • the frequency of the reference signal S2 is the same as the frequency of the photoelectric mixing signal S1, and the phases are different, wherein the frequency is the frequency difference value f1-f2 and the phase is ⁇ .
  • the present invention replaces the existing internal optical path by analog mixing, and generates a signal as the phase reference signal S2 of the ranging, instead of the existing dual-issue single-shot and single-shot dual-receive internal optical path mixing.
  • the signal can not only reduce the production cost of the range finder, but also reduce the size of the range finder and is convenient to use.
  • the laser generator can adopt a laser diode (LD)
  • the photodiode can adopt an avalanche diode
  • the mixer can adopt a common mixer or an analog quadrature mixer.
  • the existing microprocessor cannot simultaneously sample the photoelectric mixing signal S1 and the reference signal S2, in order to ensure that the microprocessor can synchronously sample the two analog signals of the photoelectric mixing signal S1 and the reference signal S2, the utility model is newly processed in micro processing.
  • a synchronous sampling signal generator is added to the device for input
  • a synchronous sampling signal with a fixed frequency is output, and the synchronous sampling signal is output to an external interrupt port of the microprocessor (not shown), that is, the photoelectric mixing signal S1 and the reference signal S2 are synchronously sampled when an interrupt is generated at the interrupt port, so that Under the control of the synchronous sampling signal, the microprocessor synchronously samples the two analog signals of the photoelectric mixing signal S1 and the reference signal S2, which greatly improves the accuracy of the calculation result of the ranging system.
  • the microprocessor After the microprocessor samples the data, it performs FFT transformation to calculate the phase difference ( ⁇ - ⁇ ) of the two signals. Since the frequencies of the two analog signals are fixedly equal, the microprocessor can calculate the actual time of the laser beam flight based on the phase difference between the two, thereby obtaining the measured distance value.

Abstract

一种单光路激光测距系统,用于对被测目标物的距离进行准确测定,该测距系统包括微处理器,信号发生器,激光发生器,光电二极管及混频器,所述微处理器控制所述信号发生器输出两组脉冲信号,一组脉冲信号被分别送至激光发生器和光电二极管,形成外光路用的光电混频信号;另一组脉冲信号被送至混频器,混频产生测距用的参考信号,微处理器同步采样光电混频信号和参考信号,并计算出两者的电压值,从而精确得到测量的距离值。该测距系统不仅降低了激光测距仪的成本、减小了尺寸,方便使用,另外也大大提高了测距的精度。

Description

单光路激光测距系统 技术领域
本发明涉及激光测距技术领域,尤其是涉及一种单发单收的相位激光测距系统。
背景技术
激光测距仪,作为非接触式的测量仪器,已被广泛使用于遥控、精密测量、工程建设、安全监测及智能控制等领域,相位式激光测距仪以其精度高、功率小何便捷的特点,适用于民用范畴,有较大的市场和应用前景。相位法测距通过测定调制光波经空气传播后所产生的相位移,从而求得光波所走过的路程。
传统的相位激光测距仪一般采用单发双收或双发单收模式,其中,单发双收模式需要2个APD光电二极管和1个激光二极管(Laser diode,缩写为LD),LD发出的激光束经过透镜后分别在内光路和外光路的APD光电二极管上与电调制信号产生光电混频,LD和内光路的APD光电二极管紧挨在一起,所以在内光路的APD光电二极管上产生的混频信号可以做为测距参考信号S1,LD发出的光束到达测量目标后被反射到外光路的APD光电二极管上,产生光电混频,混频出信号S2,参考信号S1和光电混频信号S2频率相同相位不同,其相位差所代表的时间,也就是激光飞行时间,根据这个时间算出测量距离。
双发单收模式就是需要2个LD(激光二极管D1、激光二极管D2)和1个APD光电二极管,激光二极管D1和APD光电二极管紧挨在一起组成内光路,激光二极管D1发出的光束在APD光电二极管上与电调制信号产生光电混频,产生信号S1作为相位参考,激光二极管D2和APD组成外 光路,激光二极管D2发出的光束到达测量目标后被反射到APD光电二极管上与调制信号混频,产生信号S2;信号S1和信号S2同频不同相,处理器采样信号S1、S2这两路模拟信号,用傅里叶分解求出两者相位差可以得到激光飞行时间,这样就可以计算出测量距离。
以上两种方法是最传统的两种测量方法,但是由于都需要内外两路光路,所以存在结构、电路复杂,实现成本高等问题。鉴于此,中国专利CN102393522A中公开了一种激光测距仪的测量方法及测光测距装置,其揭示了一种单发单收、无需内外光路切换装置的测量方法和装置,如图1所示,该专利中的激光测距装置,包括微处理器,锁相环电路,低频正弦波RC电路,正交调制器,激光驱动器,激光模组,雪崩二极管和信号放大及滤波电路,具体工作原理为:微处理器控制锁相环电路输出高频信号,形成主振信号;微处理器控制低频正弦波RC电路输出低频信号,低频信号与锁相环电路产生的高频信号在混频器中上变频或下变频形成本振信号,本振信号进入雪崩二极管。
主振信号通过激光驱动器调制后控制激光模组发出测量激光束,主振信号经测量激光束投射到同一个被测物后反射到所述雪崩二极管形成返回信号,每个返回信号和相对应的本振信号进行混频,混频后形成带有相同距离信息的低频信号,带有相同距离信息的低频信号通过信号放大及滤波电路后进入所述微处理器。
在具体实施过程中我们发现,上述专利所揭示的测光测距装置存在以下几个缺点:
1、该测光测距装置采用模拟的RC振荡器输出低频信号,模拟的RC振荡器输出信号不稳定,与主振信号混频难以产生稳定的差频信号。
2、测距过程中需要做两次混频,第一次混频是RC振荡器输出的低频信号和锁相环电路输出的高频主振信号混频产生本振信号,第二次混频是主振信号调制在激光二极管上,发出的光返回到APD光电二极管,在APD 光电二极管上与本振信号进行第二次混频,测量过程复杂,从而易影响测距装置的测量精度。
发明内容
本发明的目的在于克服现有技术的缺陷,提供一种单光路激光测距系统,通过用电路模拟的方法得到两路测距用的模拟信号,同时同步采样这两路模拟信号,不仅降低了激光测距仪的成本、减小了尺寸,方便使用,另外也大大提高了测距的精度。
为实现上述目的,本发明提出如下技术方案:一种单光路激光测距系统,包括微处理器,信号发生器,激光发射器,光电二极管和混频器:
所述微处理器控制所述信号发生器输出两组脉冲信号,分别为第一组脉冲信号和第二组脉冲信号,每组所述脉冲信号中均具有两路频率不同的第一调制信号和第二调制信号;第一组脉冲信号分别送至激光发射器和光电二极管,用于形成外光路用的光电混频信号,第二组脉冲信号送至混频器,用于形成测距用的参考信号。
所述激光发射器发出激光束,所述激光束在所述第一组脉冲信号中的第一调制信号的调制下,发出激光束至被测目标物;
所述光电二极管接收经所述被测目标物反射过来的所述激光束,与所述第一组脉冲信号中的第二调制信号光电混频,形成光电混频信号;
所述混频器接收并混频所述第二组脉冲信号中的第一调制信号和第二调制信号,形成参考信号,用作测距用的相位参考信号,并由微处理器计算出所述光电混频信号与参考信号的相位差。
优选地,所述微处理器控制所述信号发生器同步输出两组脉冲信号。
优选地,两组所述脉冲信号的第一调制信号的频率和相位一致,两组所述脉冲信号的第二调制信号的频率和相位也一致,从而保证输出的光电混频信号和参考信号的频率相同。
优选地,所述光电混频信号和参考信号的频率相同,相位不同,微处 理器计算出两者的相位差,从而得到测量的距离值。
优选地,所述光电混频信号和参考信号的频率均为每组脉冲信号中的第一调制信号和第二调制信号的频率之差。
优选地,所述微处理器中设置同步采样信号发生器,所述同步采样信号发生器输出同步采样信号,控制所述微处理器同步采样所述光电混频信号和参考信号,提高了测距系统的测量精度。
优选地,所述微处理器对采样到的所述光电混频信号和参考信号进行快速傅里叶变换,计算出所述光电混频信号和参考信号的相位差。
优选地,所述信号发生器采用数字电路输出两路频率不同的调制信号,输出信号稳定可靠,且输出的信号频率可灵活设定。
优选地,所述激光发生器为激光二极管,所述光电二极管为雪崩二极管。
优选地,所述混频器为普通的混频器或者模拟正交混频器,模拟产生相位参考信号。
本实用型新采用电路模拟的方式产生两路模拟信号,分别为测距用的参考信号和外光路用的光电混频信号,通过微处理器同步采用这两路模拟信号,计算得出两者的相位差,由相位差得到激光飞行的时间,从而能够精确算出测量的距离值。
与现有技术不同,本发明的有益效果是:
1、采用数字信号发生器替代现有的模拟振荡器,提高了输出信号的稳定性和可靠性。
2、采用模拟混频的方式替代现有内光路,产生一路相位参考信号,实现了测距系统的单发单收,有效降低测距仪成本,减小体积,方便携带和使用,相比双发单收和单发双收在短距离测距方面有着明显的成本优势。
3、由信号发生器产生两路信号,每路信号只需做一次混频,与现有一路信号需要做两次混频相比,简化了测距流程,而且混频输出信号的相位 和频率稳定,可以获得高精度的测量结果。
4、控制两路模拟信号输出和采样的同步,大大提高了测量结果的精度。
附图说明
图1是现有激光测距装置的结构示意图;
图2是本发明单光路激光测距系统的结构示意图。
具体实施方式
下面将结合本发明的附图,对本发明实施例的技术方案进行清楚、完整的描述。
本发明所揭示的一种单光路激光测距系统,通过电路模拟的方法,输出两路测距用的模拟信号,通过同步采样这两路模拟信号,并用快速傅里叶变换(FFT)法计算出两路模拟信号的相位差,得到激光飞行时间,从而算出测量的距离值。本发明能够有效降低测距仪的成本、减小其体积,方便携带和使用,同时也大大提高了测距的精度。
如图2所示,本发明所揭示的一种单光路激光测距系统,包括微处理器,信号发生器,激光发射器,光电二极管和混频器,与现有技术不同,微处理器控制信号发生器同步输出两组脉冲信号,在本实施例中,采用信号发生器1和信号发生器2产生两组脉冲信号,一组脉冲信号用于产生光电混频信号,另一组脉冲信号则用于产生测距参考用的参考信号,当然,信号发生器的设置数量可根据实际需要的脉冲信号的组数来进行设定。
优选地,信号发生器采用数字信号发生器,产生频率不同的两路信号。数字信号发生器具有输出信号稳定可靠,且输出信号频率可调控改变等优点。与现有需要采用锁相环电路和RC振荡器两种电路来分别产生频率不同的两路信号相比,本实用型新采用数字信号发生器作为信号发生器,具有简化测距系统,降低加工成本,输出信号稳定,提高测距精度等优点。
每组脉冲信号中均具有两路频率不同的第一调制信号和第二调制信号。具体地,如图2所示,第一调制信号A1和第二调制信号B1为一组脉冲信号,第一调制信号A2和第二调制信号B2为另一组脉冲信号。第一调制信号A1与第一调制信号A2的频率和相位完全一致,第二调制信号B1与第二调制信号B2的频率和相位完全一致,从而保证由两组脉冲信号分别得到的光电混频信号和参考信号的频率相同。设第一调制信号A1的频率为f1,第一调制信号A2的频率为f2,则第二调制信号B1与第二调制信号B2的频率也分别为f1和f2。
第一调制信号A1和第二调制信号B1被分别送给激光发生器和光电二极管,形成光电混频信号S1。具体地,第一调制信号A1送给激光发生器,激光发生器发出的激光束被第一调制信号A1调制后,经被测目标物反射到光电二极管;第二调制信号B1被放大后也送给光电二极管,经第一调制信号A1调制的激光束和第二调制信号B1在光电二极管上产生光电混频,混频出光电混频信号S1,光电混频信号S1的频率是第一调制信号A1和第二调制信号B1的频率差值f1-f2,相位为β。
第一调制信号A2和第二调制信号B2送给混频器进行混频,输出参考信号S2。参考信号S2的频率与光电混频信号S1的频率相同,相位不同,其中频率为频率差值f1-f2,相位为α。与现有技术不同,本发明采用模拟混频的方式替代现有的内光路,产生一路信号作为测距的相位参考信号S2,代替现有双发单收和单发双收的内光路混频信号,这样不仅可以降低测距仪的生产成本,还可以减小测距仪的尺寸,方便使用。
其中,激光发生器可采用激光二极管(LD),光电二极管可采用雪崩二极管,混频器可采用普通的混频器或者模拟正交混频器。
由于现有微处理器不能同时采样光电混频信号S1和参考信号S2,因此为了保证微处理器能够同步采样光电混频信号S1和参考信号S2这两路模拟信号,本实用型新在微处理器中加设一同步采样信号发生器,用于输 出一路频率固定的同步采样信号,同步采样信号输出到微处理器的外部中断口(图未示),即在该中断口处产生中断时同步采样光电混频信号S1和参考信号S2,这样在该同步采样信号的控制下,微处理器同步采样光电混频信号S1和参考信号S2这两路模拟信号,大大提升了测距系统计算结果的精度。
微处理器采样到数据后进行FFT变换,计算出两路信号的相位差(α-β)。由于两路模拟信号的频率是固定相等的,所以微处理器可以根据两者的相位差计算出激光束飞行的实际时间,从而得到测量的距离值。
本发明的技术内容及技术特征已揭示如上,然而熟悉本领域的技术人员仍可能基于本发明的教示及揭示而作种种不背离本发明精神的替换及修饰,因此,本发明保护范围应不限于实施例所揭示的内容,而应包括各种不背离本发明的替换及修饰,并为本专利申请权利要求所涵盖。

Claims (10)

  1. 一种单光路激光测距系统,其特征在于,包括微处理器,信号发生器,激光发生器,光电二极管及混频器:
    所述微处理器控制所述信号发生器输出两组脉冲信号,分别为第一组脉冲信号和第二组脉冲信号,每组所述脉冲信号中均具有两路频率不同的第一调制信号和第二调制信号;
    所述激光发射器发出激光束,所述激光束在所述第一组脉冲信号中的第一调制信号的调制下,发送至被测目标物;
    所述光电二极管接收经所述被测目标物反射过来的所述激光束,与所述第一组脉冲信号中的第二调制信号光电混频,形成光电混频信号;
    所述混频器接收并混频所述第二组脉冲信号中的第一调制信号和第二调制信号,形成参考信号,并由微处理器计算出所述光电混频信号与参考信号的相位差。
  2. 根据权利要求1所述的单光路激光测距系统,其特征在于,所述微处理器控制所述信号发生器同步输出两组脉冲信号。
  3. 根据权利要求1或2所述的单光路激光测距系统,其特征在于,两组所述脉冲信号的第一调制信号的频率和相位一致。
  4. 根据权利要求3所述的单光路激光测距系统,其特征在于,两组所述脉冲信号的第二调制信号的频率和相位一致。
  5. 根据权利要求4所述的单光路激光测距系统,其特征在于,所述光电混频信号和参考信号的频率相同,相位不同。
  6. 根据权利要求5所述的单光路激光测距系统,其特征在于,所述光电混频信号和参考信号的频率均为每组脉冲信号中的第一调制信号和第二调制信号的频率之差。
  7. 根据权利要求6所述的单光路激光测距系统,其特征在于,所述微处 理器中设置同步采样信号发生器,所述同步采样信号发生器输出同步采样信号,控制所述微处理器同步采样所述光电混频信号和参考信号。
  8. 根据权利要求1所述的单光路激光测距系统,其特征在于,所述微处理器对采样到的所述光电混频信号和参考信号进行快速傅里叶变换,计算出所述光电混频信号和参考信号的相位差。
  9. 根据权利要求1所述的单光路激光测距系统,其特征在于,所述激光发生器为激光二极管。
  10. 根据权利要求1所述的单光路激光测距系统,其特征在于,所述光电二极管为雪崩二极管。
PCT/CN2015/073617 2014-04-16 2015-03-04 单光路激光测距系统 WO2015158187A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410152898.4 2014-04-16
CN201410152898.4A CN105005051A (zh) 2014-04-16 2014-04-16 单光路激光测距系统

Publications (1)

Publication Number Publication Date
WO2015158187A1 true WO2015158187A1 (zh) 2015-10-22

Family

ID=54323469

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/073617 WO2015158187A1 (zh) 2014-04-16 2015-03-04 单光路激光测距系统

Country Status (2)

Country Link
CN (1) CN105005051A (zh)
WO (1) WO2015158187A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196262A (zh) * 2017-12-07 2018-06-22 常州华达科捷光电仪器有限公司 一种激光测距系统
CN108828615A (zh) * 2018-06-11 2018-11-16 深圳市镭神智能系统有限公司 光发射单元、光信号检测模块、光学系统和激光雷达系统
CN109116329A (zh) * 2018-10-18 2019-01-01 成都捷测科技有限公司 一种提高激光测距性能的结构及方法
CN109633672A (zh) * 2019-01-17 2019-04-16 杜鑫 脉冲式激光测距系统及其测距方法
CN113630232A (zh) * 2021-08-17 2021-11-09 哈尔滨工业大学 一种多频混合外差式干涉信号同步分离与同步测相系统及方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105490681B (zh) * 2015-11-20 2020-01-14 东软医疗系统股份有限公司 一种信号处理方法及装置
CN106199624B (zh) * 2016-07-08 2018-07-17 东南大学 一种基于激光测距的门窗开度记录装置及其应用方法
CN107064949A (zh) * 2017-02-21 2017-08-18 莱赛激光科技股份有限公司 一种绿光测距仪
CN110716193B (zh) * 2019-12-12 2020-05-08 深圳市迈测科技股份有限公司 一种信号生成的方法和装置
US11747474B2 (en) 2019-11-18 2023-09-05 Shenzhen Mileseey Technology Co., Ltd. Systems and methods for laser distance measurement
CN111398978B (zh) * 2019-11-26 2023-11-03 中国矿业大学 一种改进的中远程相位式激光测距仪及测距方法
CN111596303B (zh) * 2020-07-02 2023-06-30 国科光芯(海宁)科技股份有限公司 激光测距方法、系统和激光雷达

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100540A (en) * 1999-02-22 2000-08-08 Visidyne, Inc. Laser displacement measurement system
CN2650149Y (zh) * 2003-03-27 2004-10-20 中国科学院安徽光学精密机械研究所 基于直接数字合成dds技术的dsp连续波激光相位测距系统
CN101158572A (zh) * 2007-10-31 2008-04-09 大连海事大学 频分复用式并行激光测长仪
CN101504462A (zh) * 2008-02-04 2009-08-12 深圳市博时雅科技有限公司 相位差检测方法和系统、双晶振混频电路及距离测量装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7046345B2 (en) * 2004-01-12 2006-05-16 Asia Optical Co., Inc. Apparatus for precise distance measurement
CN201876545U (zh) * 2010-09-02 2011-06-22 淄博职业学院 脉冲相位式激光测距仪
CN102393522B (zh) * 2011-10-24 2013-10-16 陆建生 激光测距仪的测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6100540A (en) * 1999-02-22 2000-08-08 Visidyne, Inc. Laser displacement measurement system
CN2650149Y (zh) * 2003-03-27 2004-10-20 中国科学院安徽光学精密机械研究所 基于直接数字合成dds技术的dsp连续波激光相位测距系统
CN101158572A (zh) * 2007-10-31 2008-04-09 大连海事大学 频分复用式并行激光测长仪
CN101504462A (zh) * 2008-02-04 2009-08-12 深圳市博时雅科技有限公司 相位差检测方法和系统、双晶振混频电路及距离测量装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108196262A (zh) * 2017-12-07 2018-06-22 常州华达科捷光电仪器有限公司 一种激光测距系统
CN108828615A (zh) * 2018-06-11 2018-11-16 深圳市镭神智能系统有限公司 光发射单元、光信号检测模块、光学系统和激光雷达系统
CN109116329A (zh) * 2018-10-18 2019-01-01 成都捷测科技有限公司 一种提高激光测距性能的结构及方法
CN109633672A (zh) * 2019-01-17 2019-04-16 杜鑫 脉冲式激光测距系统及其测距方法
CN109633672B (zh) * 2019-01-17 2023-09-01 杜鑫 脉冲式激光测距系统及其测距方法
CN113630232A (zh) * 2021-08-17 2021-11-09 哈尔滨工业大学 一种多频混合外差式干涉信号同步分离与同步测相系统及方法
CN113630232B (zh) * 2021-08-17 2023-09-01 哈尔滨工业大学 一种多频混合外差式干涉信号同步分离与同步测相系统及方法

Also Published As

Publication number Publication date
CN105005051A (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2015158187A1 (zh) 单光路激光测距系统
CN201130251Y (zh) 光电测距装置
US20120176594A1 (en) Phase Measurement Calibrating Method And Calibrating Device Based on Liquid Crystal Light Valve Principle
CN105487067B (zh) 粗测和精测距离信号处理方法、处理模块及基于该模块的啁啾调制光子计数激光雷达系统
CN108303704B (zh) 一种基于偏振调制的激光测量方法及激光雷达
CN104459710A (zh) 脉冲/相位一体式激光测距仪
CN203502587U (zh) 脉冲/相位一体式激光测距仪
CN204719233U (zh) 一种基于双频激光的目标探测装置
US8964169B2 (en) Ranging method and system
CN106646502B (zh) 一种激光测距设备及方法
CN110927737A (zh) 一种多频调制激光动态目标测距测速系统及方法
CN111158007A (zh) 一种基于fpga数字混频的脉冲-相位式激光测距方法及系统
WO2016138696A1 (zh) 一种测距设备及其测距方法
CN204044355U (zh) 一种激光测距的校准装置及测量仪器
CN105758421A (zh) 一种光纤陀螺本征频率测量设备及其应用
CN104865577A (zh) 一种激光测距系统
CN109579820A (zh) 一种提高光纤陀螺仪标度因数性能的方法
CN203535223U (zh) 一种激光相位测距电路
CN116699626A (zh) 一种基于扫频干涉的激光测距系统及方法
CN103983962A (zh) 一种相位测量的校准方法、装置及测量装置
CN104111450A (zh) 一种利用双脉冲探测目标微多普勒特征的方法及系统
CN108007307B (zh) 一种光纤的测量方法以及测量装置
CN106249246B (zh) 测距方法及装置、测量电路
CN104296740A (zh) 一种基于反熔丝fpga的光纤陀螺主控板晶振选取方法
KR100780525B1 (ko) 레이저 광파기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15779243

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10.02.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15779243

Country of ref document: EP

Kind code of ref document: A1