WO2016138696A1 - 一种测距设备及其测距方法 - Google Patents

一种测距设备及其测距方法 Download PDF

Info

Publication number
WO2016138696A1
WO2016138696A1 PCT/CN2015/078237 CN2015078237W WO2016138696A1 WO 2016138696 A1 WO2016138696 A1 WO 2016138696A1 CN 2015078237 W CN2015078237 W CN 2015078237W WO 2016138696 A1 WO2016138696 A1 WO 2016138696A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
phase difference
optical path
distance
signals
Prior art date
Application number
PCT/CN2015/078237
Other languages
English (en)
French (fr)
Inventor
蒋洪洲
Original Assignee
金华马卡科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金华马卡科技有限公司 filed Critical 金华马卡科技有限公司
Publication of WO2016138696A1 publication Critical patent/WO2016138696A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/32Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S17/36Systems determining position data of a target for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated with phase comparison between the received signal and the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4911Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4913Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/491Details of non-pulse systems
    • G01S7/4912Receivers
    • G01S7/4915Time delay measurement, e.g. operational details for pixel components; Phase measurement

Definitions

  • the invention relates to a measuring instrument, in particular to a device for measuring distance and a method for measuring the same.
  • the laser ranging system is based on a measuring instrument designed for good directionality or coherence of the laser.
  • the laser signal from the range finder reaches the target object and is reflected by the target object and returned to the distance measuring instrument.
  • the instrument calculates the distance traveled by the signal by calculating the time difference t from the time of transmission to the time of reception, and then multiplying by the speed of light c.
  • Phase laser ranging is the amplitude modulation of the laser beam using a frequency-determined drive signal.
  • the modulated laser beam is irradiated onto the object to be measured, and the phase delay generated by the modulated light reciprocating once is measured. According to the frequency of the modulated light, the distance represented by the phase delay can be calculated for ranging.
  • Phase laser range finder is mainly used in the field of precision ranging, and its accuracy is generally in the millimeter level. In order to effectively reflect the measurement signal and limit the surface accuracy of the measured object to the same standard, some ranging systems are generally equipped with a total reflection prism as a cooperative target.
  • a "calibration method based on two-wavelength laser tube phase measurement and its ranging device” (Patent Publication No. 102540170A) is disclosed in the prior art, which uses two-channel integrated light wave emitting devices to generate different filters respectively.
  • the inner and outer optical path signals respectively receive the return signals of the inner optical path signal and the outer optical path signal through a signal receiving device, and then the two signals are phase-compared to obtain a phase difference for phase compensation and calibration, thereby avoiding environmental changes in the circuit.
  • the introduction of uncertain phase noise improves the measurement accuracy of laser ranging, increases the stability of the system's ranging, reduces the influence of environmental factors on the ranging error, and reduces the system's performance requirements for components, thereby reducing the system.
  • the cost of the system is disclosed in the prior art, which uses two-channel integrated light wave emitting devices to generate different filters respectively.
  • the inner and outer optical path signals respectively receive the return signals of the inner optical path signal and the outer optical path signal through a signal receiving device, and then the two
  • the technical problem to be solved by the present invention is to provide a distance measuring device and a method for performing ranging using the same in view of the above-mentioned deficiencies in the prior art.
  • a distance measuring device comprising: a signal generator for generating two electrical signals having a constant frequency difference of one or two; a laser generating device for receiving an electrical signal and converting it into a measuring optical signal; For receiving the measurement optical signal and converting it into an electrical signal, mixing with the electrical signal 2 and outputting the mixed signal one; the optical path switching device for switching the optical path of the measuring optical signal, the optical path dividing the optical path and the external optical path
  • the external optical path is a path for measuring the optical signal reflected back to the photosensitive device by the measured object, wherein the internal optical path is a path for measuring the optical signal directly to the photosensitive device;
  • the mixer is configured to mix the electrical signals one or two And frequency-outputting the mixed signal two;
  • the signal processing module calculates the phase difference of the mixed signal one and two and calculates the distance of the measured object according to the phase difference.
  • the signal processing module is configured to respectively calculate phase difference data ⁇ 1 and ⁇ 2 of the mixed signals 1 and 2 under the inner optical path and the outer optical path, and then use the difference between the phase difference data ⁇ 1 and ⁇ 2. ( ⁇ 1 - ⁇ 2) Calculate the distance of the measured object.
  • the signal processing module comprises a low pass filter amplifier and a controller module, and the low pass filter amplifier is configured to respectively filter the mixed signal 1 and the mixed signal 2 and obtain a low frequency.
  • the frequency signal one or two the controller module calculates a phase difference between the low frequency signals one and two and calculates a distance of the measured object according to the phase difference.
  • the controller module includes an analog-to-digital conversion module and a processor
  • the analog-to-digital conversion module receives the low-frequency signals one and two and generates digital signals one and two
  • the processor calculates a phase difference between the digital signals one and two. And calculating the distance of the measured object according to the phase difference.
  • the photosensitive device is an avalanche photodiode.
  • the mixer is a triode or a mos tube.
  • the laser generating device comprises a laser driving device and a laser tube, and the laser driving device receives the electrical signal and converts it into a driving signal and outputs the measuring signal, and the laser tube emits the measuring optical signal after receiving the driving signal.
  • Another object of the present invention is to provide a method for performing ranging using the above ranging device, which is specifically as follows:
  • a method for performing ranging using the above ranging device includes:
  • S1 the signal generator generates two electrical signals with a constant phase difference, and the signal processing module obtains the corresponding phase difference data of the electrical signal and stores them together;
  • the signal processing module calculates the corresponding measured object distance data according to the difference ⁇ between the corresponding phase difference data 1 and the phase difference data 2 of each set of electrical signals.
  • the ranging method there are at least one set of electrical signals generated by the signal generator in step S1 with a constant phase difference.
  • the ranging method includes:
  • the signal generator sequentially generates at least one set of electrical signals with a constant phase difference, and the signal processing module obtains the corresponding phase difference data of each set of electrical signals and stores them together;
  • S3 the signal generator sequentially generates the each set of electrical signals, and the signal processing module obtains the corresponding phase difference data of each set of electrical signals and stores them;
  • the signal processing module calculates the corresponding measured object distance coarse data according to the difference ⁇ between the corresponding phase difference data 1 and the phase difference data 2 of each set of electrical signals;
  • the signal processing module combines the distance data of each group to obtain the measured object distance fine data.
  • the technical scheme of the present invention simultaneously mixes signals by a photosensitive device and a mixer, and can complete measurement of multiple groups of frequencies under the premise of switching one internal and external optical paths, thereby greatly reducing internal and external optical path switching.
  • the number of times, the measurement speed is increased, and the two-way mixing signal is provided. Only the phase difference of the two-way mixing signal is calculated, and the starting time or time interval of the internal and external optical path measurement is not required, the measurement accuracy is improved, and the circuit complexity is simplified.
  • the solution uses a laser tube to emit laser light, eliminating the difference between different laser tubes and causing measurement errors and improving accuracy.
  • the scheme uses the phase difference to calculate the distance, that is, eliminates the error generated by the circuit itself, and simultaneously performs optical path calibration to improve the accuracy and speed of the measurement.
  • FIG. 1 is a schematic structural view of an embodiment of a distance measuring device according to the present invention.
  • FIG. 2 is a schematic view of an embodiment of a distance measuring method of the present invention.
  • a distance measuring device as shown in FIG. 1 of the specification includes a laser driving device 3, a laser tube 4, a signal generator 2, an optical path switching device 6, a photosensitive device 5, a mixer 7, a filter amplifier 8, and a number
  • the mode conversion device 9 and the processor 1, in the present embodiment, the filter amplifier 8 is divided into a low pass filter amplifier 81 and a low pass filter amplifier 82, the input end of the signal generator 2 and the first signal output of the processor 1.
  • the second and third signal outputs of the processor 1 are electrically connected to the enable signals input terminals of the laser driving device 3 and the optical path switching device 6, respectively, and the first signal output end of the signal generator 2 is
  • the signal input end of the laser driving device 3 is electrically connected to the first signal input end of the mixer 7, the second signal output end of the signal generator 2 and the signal input end of the photosensor 5 and the second signal input of the mixer 7
  • the signal output end of the mixer 7 is electrically connected to the first signal input end of the digital-to-analog conversion device 9 through the filter amplifier 81, and the signal output end of the photosensor 5 passes through the filter amplifier 82 and the number
  • the second signal input end of the mode conversion device 9 is electrically connected, and the signal output end of the digital-to-analog conversion device 9 is electrically connected to the signal input end of the processor 1;
  • the optical path switching device 6 is mounted on the laser light emitted from the laser tube 4. On the road, The outer switching laser 21 and the optical path within the optical path 11.
  • the processor 1 transmits a start signal and a set of frequency information to be generated to the signal generator 2 through the first signal output end, and the signal generator 2 generates 2
  • the electric frequencies F11 and F12 whose path frequencies are different from each other are constant, and the frequencies of the electric signals F11 and F12 are f11 and f12, respectively.
  • f11 and f12 are respectively selected as 200 mhz and 199.995 mhz, and of course, other frequencies may be selected.
  • the signal generator 2 transmits an electric signal F11 to the laser driving device 3, while the processor 1 controls the laser driving device 3 to illuminate the laser tube 4 and convert the electric signal F11 into an optical signal.
  • the third signal output end of the processor 1 outputs a control signal to switch the optical path switching device to the external optical path, and the laser tube 4 emits an optical signal along the optical path 11 to the object to be measured through the optical path switching device, and the detected object receives the optical signal after the illumination along the optical path.
  • the 12 reflects the optical signal to the photosensor 5, and the photosensor 5 converts the received optical signal into an electrical signal F111 and mixes it with the signal F12 sent to it by the signal generator 2, generating frequencies of (f11 + f12) and ( Two electrical signals of f11-f12), said photosensor 5 transmitting said two electrical signals to a filter amplifier 228, said filter amplifier 280
  • the low-pass filter module and the band-pass amplifier module filter out the electrical signal of frequency (f11+f12) through the low-pass filter module, leaving the low frequency signal of frequency (f11-f12), and the low frequency
  • the signal is amplified by a band-pass amplifier module to generate an electrical signal F14 having a signal frequency of (f11-f12).
  • the photosensor 5 can be implemented in an avalanche diode using an avalanche diode, and also converts the optical signal into an electrical signal.
  • the mixer 7 directly mixes the two signal signals F11 and F12 whose frequency difference is constant from the signal generator 2, and obtains two electric frequencies having frequencies of (f11+f12) and (f11-f12), respectively.
  • the signal is filtered out by a low-pass filter in the filter amplifier 81, and the low-frequency signal F13 having the frequency (f11-f12) is input to the digital-to-analog conversion means 9.
  • the digital-to-analog conversion device 9 converts F13 and F14 under the control of the processor 1, and calculates the phase difference ⁇ 11 between F13 and F14.
  • the frequency of selection is generally three or more groups.
  • f11 in the first group of frequencies can be selected as 200mhz, and the other f12 can be selected as 199.995mhz. Obviously, after mixing, it can be obtained.
  • the frequency of 5khz can reduce the requirement of digital-to-analog conversion without high-speed digital-to-analog conversion.
  • the processor can only judge the phase within one cycle when calculating the phase, so the higher the frequency, the higher the accuracy, and the shorter the distance, the frequency measurement distance of 200mhz is about 0.75m, so It requires lower frequencies, such as 20mhz, 2mhz, so the accuracy is low, but the measurement distance is very long, about 7.5m and 75m respectively. It is necessary to use multiple sets of frequencies in actual operation. By combining, the precise distance is obtained. The combination of the group measurement data is based on the prior art and will not be discussed here.
  • the signal generator 2 again generates another two sets of frequencies, one set of electrical signals F21 and F22 having frequencies f21 and f22, and the other set of electrical signals F31 of frequencies f31 and f32, respectively.
  • F32 in this embodiment, the values of f21, f22, f31, and f32 are 20mhz, 19.995mhz, 2mhz, and 1.995mhz, respectively, and then the working process of the ranging device is the same as the working process of the first group of frequencies mentioned above. Just sit down and briefly discuss:
  • the control signal generator 2 generates a set of signals F21 and F22. At this time, the optical path switching device 6 does not operate, and the optical path is still an external optical path. After receiving the F21 and F22, the mixer 7 outputs a signal and generates an electric power through the filter amplifier 81. Signal F23, after receiving the signals from F21 and F22, the photosensor 5 outputs a signal F24 through the filter amplifier 82. At this time, the MCU controls the digital-to-analog conversion, and simultaneously converts F23 and F24 to calculate the phase difference ⁇ 21 between F23 and F24. .
  • the control signal generator 2 generates a set of signals F31 and F32.
  • the optical path switching device 6 still does not operate, the optical path is still an external optical path, and the mixer 7 receives the F31 and F32 output signals and passes through the filter amplifier 81.
  • the photosensitive device 5 receives the F31 and F32 output signals and generates a signal F34 after filtering the amplifier 82.
  • the single-chip microcomputer controls the digital-to-analog conversion, and simultaneously converts F33 and F34 to calculate F33 and F34. Phase difference ⁇ 31.
  • the third signal output end of the processor 1 outputs a control signal to control the optical path switching device 6 to switch to the internal optical path, and the laser tube 4 is sent along the optical path 21 to the photosensor 5 through the optical path switching device 6.
  • the optical signal, the photosensor 5 converts the received optical signal into an electrical signal and mixes it with the electrical signal F32 sent to it by the signal generator 2, producing two frequencies of (f33+f34) and (f33-f34).
  • An electrical signal, the photosensor 5 sends the two signals to a filter amplifier 82, which includes a low pass filter module and a band pass amplifier module, and the frequency is (f33) through a low pass filter.
  • the electric signal of +f34) is filtered out, and the low frequency signal of frequency (f33-f34) is left, and the low frequency signal is amplified by a band pass amplifier to generate an electric signal F34 having a signal frequency of (f33-f34).
  • the mixer 7 mixes the electrical signals F31 and F32 input from the signal generator 2 to obtain two electrical signals having frequencies (f33+f34) and (f33-f34), respectively, through the filter amplifier 81.
  • the low-pass filter in the filter filters out (f33+f34), leaving the low-frequency signal F33 of the frequency (f33-f34) and inputs it to the digital-to-analog conversion device 9.
  • the digital-to-analog conversion device 9 converts F33 and F34 under the control of the processor 1, and calculates the phase difference ⁇ 32 between F33 and F34.
  • the control signal generator 2 sequentially outputs the other two sets of electrical signals: F21 and F22, F11 and F12.
  • the final processor 1 receives and stores the phase difference data ⁇ 22 and ⁇ 12 under the two sets of electrical signal conditions.
  • the processor 1 can obtain three different precision levels of internal and external optical path phase difference data ( ⁇ 11- ⁇ 12), ( ⁇ 21- ⁇ 22), and ( ⁇ 31- ⁇ 32), according to the phase difference between the internal and external optical paths.
  • the distance data of the above three different precision levels can be obtained, wherein the obtaining the distance data according to the internal and external optical path phase difference data is a prior art of the phase laser ranging method, and will not be discussed here.
  • the precise distance data can be obtained by combining the obtained distance data of three different precision levels, and the combination of the plurality of sets of different precision measurement data adopts the prior art in the phase laser ranging method. Do not discuss it.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种测距设备,包括:用于产生两路频率相差恒定的电信号一、二的信号发生器(2);用于接收电信号一并将其转换为测量光信号发出的激光发生装置(3,4);用于接收测量光信号并将其转换为电信号后与电信号二进行混频并输出混频信号一的光敏器件(5);用于使光信号在内外光路间切换的光路切换装置(6);用于将电信号一、二进行混频并输出混频信号二的混频器(7);用于计算混频信号一、二的相位差并根据所述相位差计算出被测物距离的信号处理模块(1)。该测距设备通过光敏器件(5)和混频器(7)进行混频,在切换一次内外光路的前提下,即可以完成多组频率的测量,简化了电路复杂,增强了切换装置的使用寿命。

Description

一种测距设备及其测距方法 技术领域
本发明涉及一种测量仪器,尤其涉及测量距离的设备及其测距方法。
背景技术
激光测距系统是基于对激光的良好的方向性或相干性而设计的测量仪器。测距仪发出的激光信号并到达目标物体,经目标物体反射后回到测距仪器。仪器通过计算信号从发射时间点到接收时间点的时间差t,然后与光速c相乘后得到信号经过的距离。基本测距公式为D=ct,式中:D测距仪光路起点与目标物体间的距离,c是激光在空气中的传播速度,t是激光束往返一次所需要的时间。相位式激光测距是利用频率己定的驱动信号对激光束进行幅度调制。调制的激光束照射到被测量目标,测定调制光往返一次所产生的相位延迟,根据调制光的频率,就可计算出此相位延迟所代表的距离进行测距。相位式激光测距仪主要应用于精密测距领域,其精度一般为毫米级别。有的测距系统为了有效地反射测量信号并使被测目标的表面精度限制在同一标准上,一般会配有全反射棱镜作为合作目标。
现有技术中公开了以一种“基于双波长激光管相位测量的校准方法及其测距装置”(专利公开号102540170A),该技术采用双路集成的光波发射装置分别通过不同滤光片产生内、外光路信号,再通过一个信号接收装置分别接收内光路信号和外光路信号的返回信号,然后两信号进行相位比较得到相位差以实现相位补偿和校准的目的,避免了环境变化在电路中引入不确定的相位噪音,提高了激光测距的测量精度,增加了系统的测距稳定度,减少了环境因素对测距误差的影响,降低了系统对元器件的性能要求,从而减低了系 统的成本。但是该技术方案在多组频率测量时,需要多次切换内外光路,降低了测量系统的工作效率,只具有一个混频器,只有一路混频信号,必须精确计算内外光路测量的起始时间或者时间间隔,务必给测量带来误差,同时其需要两个激光发射装置来发射测量光信号,避免不了两个激光之间的差异引起的误差,增加了设备的复杂度和制造成本。
发明内容
本发明所要解决的技术问题在于针对上述现有技术中的不足,提供了一种测距设备及利用该设备进行测距的方法。
为实现上述目的,本发明采用的技术方案是:
一种测距设备,包括:信号发生器,用于产生两路频率相差恒定的电信号一、二;激光发生装置,用于接收电信号一并将其转换为测量光信号发出;光敏器件,用于接收测量光信号并将其转换为电信号后与电信号二进行混频并输出混频信号一;光路切换装置,用于切换测量光信号的光路,所述光路分内光路和外光路,所述外光路为测量光信号经被测物反射回光敏器件的路径,所述内光路为测量光信号直接射向光敏器件的路径;混频器,用于将电信号一、二进行混频并输出混频信号二;信号处理模块,计算混频信号一、二的相位差并根据所述相位差计算出被测物距离。
优选的,所述信号处理模块,用于分别计算出光信号在内光路和外光路下的所述混频信号一、二的相位差数据Δ1和Δ2,再利用相位差数据Δ1和Δ2的差值(Δ1-Δ2)计算出被测物距离。
优选的,所述信号处理模块包括低通滤波放大器和控制器模块,所述低通滤波放大器用于对混频信号一和混频信号二分别进行滤波并放大后得到低 频信号一、二,所述控制器模块计算低频信号一、二的相位差并根据所述相位差计算出被测物距离。
优选的,所述控制器模块包括模数转换模块和处理器,所述模数转换模块接收低频信号一、二并生成数字信号一、二,所述处理器计算数字信号一、二的相位差并根据所述相位差计算出被测物距离。
优选的,所述光敏器件为雪崩光电二极管。
优选的,所述混频器为三极管或mos管。
优选的,所述激光发生装置包括激光驱动装置和激光管,所述激光驱动装置接收电信号一并将其转化为驱动信号并输出,所述激光管接收到驱动信号后发出测量光信号。
本发明的另一目的在于提供一种利用上述测距设备进行测距的方法,具体如下:
一种利用上述测距设备进行测距的方法,包括:
S1:信号发生器产生两路频率相差恒定的电信号,信号处理模块获得所述电信号的对应相位差数据一并存储;
S2:光路切换装置切换光路;
S3:信号发生器重新生成所述两路电信号,信号处理模块获得所述两路电信号的对应相位差数据二并存储;
S4:信号处理模块根据每组电信号的对应的相位差数据一和相位差数据二的差值Δ计算出对应的被测物距离数据。
优选的,所述测距方法中,步骤S1中所述信号发生器产生的两路频率相差恒定的电信号有至少1组。
优选的,所述测距方法,包括:
S1:信号发生器依次生成至少一组频率相差恒定的电信号,信号处理模块获得所述每组电信号的对应相位差数据一并存储;
S2:光路切换装置切换光路;
S3:信号发生器重新依次生成所述每组电信号,信号处理模块获得所述每组电信号的对应相位差数据二并存储;
S4:信号处理模块根据每组电信号的对应的相位差数据一和相位差数据二的差值Δ计算出对应的被测物距离粗数据;
S5:信号处理模块组合各组距离粗数据得出被测物距离精数据。
本发明与现有技术相比,本发明技术方案通过光敏器件和混频器同时对信号进行混频,在切换一次内外光路的前提下,即可以完成多组频率的测量,大大减少内外光路切换次数,提升测量速度,同时具有二路混频信号,只需计算二路混频信号的相位差值,不需要计算内外光路测量的起始时间或时间间隔,提高测量精度,简化了电路复杂程度,增强了切换装置的使用寿命,本方案采用一个激光管发射激光,消除不同激光管之间差异引起测量误差,提高精度。本方案采用相位差值计算距离,即消除电路本身产生的误差,同时进行光路校准,提高测量的精度和速度。
附图说明
附图1为本发明测距设备实施例的结构示意图;
附图2为本发明测距方法实施例的示意图。
具体实施方式
下面结合附图对本发明的具体实施例做进一步描述。
如说明书附图1所示的一种测距设备,包括激光驱动装置3、激光管4、信号发生器2、光路切换装置6、光敏器件5、混频器7、滤波放大器8、数 模转换装置9以及处理器1,在本实施例中滤波放大器8分为低通滤波放大器一81和低通滤波放大器二82,所述信号发生器2输入端与处理器1第一信号输出端电连接,所述处理器1的第二、第三信号输出端分别与激光驱动装置3和光路切换装置6的使能信号输入端电连接,所述信号发生器2的第一信号输出端与激光驱动装置3信号输入端和混频器7的第一信号输入端电连接,所述信号发生器2的第二信号输出端与光敏器件5信号输入端和混频器7的第二信号输入端电连接,所述混频器7的信号输出端通过滤波放大器一81与数模转换装置9的第一信号输入端电连接,所述光敏器件5的信号输出端通过滤波放大器二82与数模转换装置9的第二信号输入端电连接,所述数模转换装置9的信号输出端与处理器1的信号输入端电连接;所述光路切换装置6安装于激光管4射出的激光光路上,用于激光在外光路11和内光路21间的切换。
当所述实施例测距设备需要开始测量被测物10距离时,处理器1通过第一信号输出端向信号发生器2传输启动信号及需要生成的一组频率信息,信号发生器2产生2路频率相差恒定的电信号F11和F12,所述电信号F11和F12的频率分别为f11和f12,此实施例中将f11和f12分别选取为200mhz和199.995mhz,当然也可选取其它频率。信号发生器2向激光驱动装置3发送电信号F11,同时处理器1控制激光驱动装置3点亮激光管4且将电信号F11变成光信号。
处理器1第三信号输出端输出控制信号使得光路切换装置切换到外光路,激光管4通过光路切换装置沿光路11向被测物体发出光信号,被测物体接收到光信号的照射后沿光路12反射光信号到光敏器件5,光敏器件5将接收到的光信号转换为电信号F111并与信号发生器2发送给它的信号F12进行混频,产生频率分别为(f11+f12)和(f11-f12)的两个电信号,所述光敏器件5将上述两电信号发送给滤波放大器二82,所述滤波放大器二82中包含 了低通滤波器模块和带通放大器模块,通过低通滤波器模块,将频率为(f11+f12)的电信号滤掉,剩下频率为(f11-f12)的低频信号,将所述低频信号通过带通放大器模块进行放大后产生信号频率为(f11-f12)的电信号F14。其中所述光敏器件5可以采用雪崩二极管,在雪崩二极管里面进行,同时也将光信号转换为电信号。
同时,混频器7直接将从信号发生器2中输入的2路频率相差恒定的信号信号F11和F12进行混频,得到频率分别为(f11+f12)、(f11-f12)的两个电信号,通过滤波放大器一81中的低通滤波器,将(f11+f12)滤掉,剩下频率为(f11-f12)的低频信号F13输入到数模转换装置9中。
所述数模转换装置9在处理器1的控制下对F13和F14进行转换,并计算出F13和F14的相位差Δ11。
为了测量更好的精度和距离,一般选择频率为三组或者三组以上,比如上述第一组频率中的f11可选取为200mhz,另一个f12可选取为199.995mhz,显然通过混频之后可以得到5khz的频率,这样就可以降低数模转换的要求,不用高速数模转换。由于采用相位式激光测距法,处理器在计算相位的时候,只能判断一个周期以内的相位,所以频率越高,精度越高,距离越短,200mhz的频率测量距离为0.75m左右,所以就需要更低频率,比如20mhz、2mhz,这样精度低,但是测量距离很长,分别约为7.5m和75m,使用在实际操作中需要多组的频率,通过组合,得出精确距离,该多组测量数据的组合采用现有技术,在此就不做论述。
因此在得到相位差Δ11后,信号发生器2又再次生成另两组频率,一组为频率分别为f21和f22的电信号F21和F22,另一组为频率分别为f31和f32的电信号F31和F32,在本实施例中f21、f22、f31和f32取值分别为20mhz、19.995mhz、2mhz和1.995mhz,接下来测距设备的工作过程与上述第一组频率的工作过程一样,在此只坐下简单论述:
控制信号发生器2产生一组信号F21和F22,这时候光路切换装置6不进行动作,光路仍为外光路,混频器7接收到F21和F22后输出信号并经滤波放大器一81后产生电信号F23,光敏器件5接受到F21和F22后输出信号并经滤波放大器二82后产生信号F24,这时候单片机控制数模转换,同时对F23和F24进行转换,计算出F23和F24的相位差Δ21。
接下来,控制信号发生器2产生一组信号F31和F32,这时候光路切换装置6仍不运作,光路仍为外光路,混频器7接收到F31和F32后输出信号并经滤波放大器一81后产生电信号F33,光敏器件5接受到F31和F32后输出信号并经滤波放大器二82后产生信号F34,这时候单片机控制数模转换,同时对F33和F34进行转换,计算出F33和F34的相位差Δ31。
在处理器1计算出相位差Δ31并存储后,处理器1第三信号输出端输出控制信号控制光路切换装置6切换到内光路,激光管4通过光路切换装置6沿光路21向光敏器件5发出光信号,光敏器件5将接收到的光信号转换为电信号并与信号发生器2发送给它的电信号F32进行混频,产生频率为(f33+f34)和(f33-f34)的两个电信号,所述光敏器件5将上述两信号发送给滤波放大器二82,所述滤波放大器二82中包含了低通滤波器模块和带通放大器模块,通过低通滤波器,将频率为(f33+f34)的电信号滤掉,剩下频率为(f33-f34)的低频信号,将所述低频信号通过带通放大器进行放大后产生信号频率为(f33-f34)的电信号F34。
同时,混频器7将从信号发生器2中输入的电信号F31和F32进行混频,得到频率分别为(f33+f34)和(f33-f34)的两个电信号,通过滤波放大器一81中的低通滤波器,将(f33+f34)滤掉,剩下频率为(f33-f34)的低频信号F33并输入到数模转换装置9中。
所述数模转换装置9在处理器1的控制下对F33和F34进行转换,并计算出F33和F34的相位差Δ32。
接下来,在光路切换装置6不进行动作,光路仍保持为内光路的情况下,控制信号发生器2又依次输出另两组电信号:F21和F22,F11和F12。最终处理器1接收并储存该两组电信号条件下的相位差数据Δ22和Δ12。
处理器1根据所获得的相位差数据,即可获得三个不同精度等级的内外光路相位差数据(Δ11-Δ12)、(Δ21-Δ22)、(Δ31-Δ32),根据上述内外光路相位差即可得到上述三个不同精度等级的距离数据,其中所述根据内外光路相位差数据获得距离数据是相位式激光测距法的现有技术,在此不做论述。对获得的三个不同精度等级的距离数据的通过组合,即可得出精确距离数据,该多组不同精度的测量数据的组合采用的是相位式激光测距法中的现有技术,在此也不做论述。
以上所述的本发明实施方式,并不构成对本发明保护范围的限定。任何在本发明的精神和原则之内所作的修改、等同替换和改进等,均应包含在本发明的权利要求保护范围之内。

Claims (10)

  1. 一种测距设备,其特征在于,包括:
    信号发生器,用于产生两路频率相差恒定的电信号一、二;
    激光发生装置,用于接收电信号一并将其转换为测量光信号发出;
    光敏器件,用于接收测量光信号并将其转换为电信号后与电信号二进行混频并输出混频信号一;
    光路切换装置,用于切换测量光信号的光路,所述光路分内光路和外光路,所述外光路为测量光信号经被测物反射回光敏器件的路径,所述内光路为测量光信号直接射向光敏器件的路径;
    混频器,用于将电信号一、二进行混频并输出混频信号二;
    信号处理模块,用于计算混频信号一、二的相位差并根据所述相位差计算出被测物距离。
  2. 根据权利要求1所述的测距设备,其特征在于,所述信号处理模块,用于分别计算出光信号在内光路和外光路下的所述混频信号一、二的相位差数据Δ1和Δ2,再利用相位差数据Δ1和Δ2的差值(Δ1-Δ2)计算出被测物距离。
  3. 根据权利要求2所述的测距设备,其特征在于,所述信号处理模块包括低通滤波放大器和控制器模块,所述低通滤波放大器用于对混频信号一和混频信号二分别进行滤波并放大后得到低频信号一、二,所述控制器模块计算低频信号一、二的相位差并根据所述相位差计算出被测物距离。
  4. 根据权利要求3所述的测距设备,其特征在于,所述控制器模块包括模数转换模块和处理器,所述模数转换模块接收低频信号一、二并生成数字信号一、二,所述处理器计算数字信号一、二的相位差并根据所述相位差计算出被测物距离。
  5. 根据权利要求4所述的测距设备,其特征在于,所述光敏器件为雪崩 光电二极管。
  6. 根据权利要求1-5中任一项所述的测距设备,其特征在于,所述混频器为三极管或mos管。
  7. 根据权利要求6所述的测距设备,其特征在于,所述激光发生装置包括激光驱动装置和激光管,所述激光驱动装置接收电信号一并将其转化为驱动信号并输出,所述激光管接收到驱动信号后发出测量光信号。
  8. 一种利用权利要求1-5中任一项所述测距设备进行测距的方法,其特征在于,包括:
    S1:信号发生器产生两路频率相差恒定的电信号,信号处理模块获得所述电信号的对应相位差数据一并存储;
    S2:光路切换装置切换光路;
    S3:信号发生器重新生成所述两路电信号,信号处理模块获得所述两路电信号的对应相位差数据二并存储;
    S4:信号处理模块根据每组电信号的对应的相位差数据一和相位差数据二的差值Δ计算出对应的被测物距离数据。
  9. 根据权利要求8所述测距的方法,其特征在于,包括:
    步骤S1中所述信号发生器产生的两路频率相差恒定的电信号有至少1组。
  10. 根据权利要求9所述测距的方法,其特征在于,包括:
    S1:信号发生器依次生成至少一组频率相差恒定的电信号,信号处理模块获得所述每组电信号的对应相位差数据一并存储;
    S2:光路切换装置切换光路;
    S3:信号发生器重新依次生成所述每组电信号,信号处理模块获得所述每组电信号的对应相位差数据二并存储;
    S4:信号处理模块根据每组电信号的对应的相位差数据一和相位差数据 二的差值Δ计算出对应的被测物距离粗数据;
    S5:信号处理模块组合各组距离粗数据得出被测物距离精数据。
PCT/CN2015/078237 2015-03-02 2015-05-05 一种测距设备及其测距方法 WO2016138696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510092184.3A CN104635239A (zh) 2015-03-02 2015-03-02 一种测距设备及其测距方法
CN201510092184.3 2015-03-02

Publications (1)

Publication Number Publication Date
WO2016138696A1 true WO2016138696A1 (zh) 2016-09-09

Family

ID=53214192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078237 WO2016138696A1 (zh) 2015-03-02 2015-05-05 一种测距设备及其测距方法

Country Status (2)

Country Link
CN (1) CN104635239A (zh)
WO (1) WO2016138696A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105738912A (zh) * 2016-02-05 2016-07-06 上海思岚科技有限公司 一种激光测距设备
CN106054203A (zh) * 2016-05-23 2016-10-26 奇瑞汽车股份有限公司 激光测距装置
CN109917405B (zh) * 2019-03-04 2021-09-03 中国电子科技集团公司第十一研究所 一种激光测距方法及系统
CN111025320A (zh) * 2019-12-28 2020-04-17 深圳奥锐达科技有限公司 一种相位式激光测距系统及测距方法
CN112099036B (zh) * 2020-11-10 2021-03-23 深圳市汇顶科技股份有限公司 距离测量方法以及电子设备
CN113684768B (zh) * 2021-10-27 2023-02-28 四川东泉机械设备制造有限公司 一种小型箱梁定位方法及装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915334A (ja) * 1995-06-28 1997-01-17 Mitsubishi Heavy Ind Ltd レーザ測距装置
US20070236679A1 (en) * 2006-04-07 2007-10-11 Asia Optical Co., Inc. Phase ranging apparatus and method of phase ranging
CN101158572A (zh) * 2007-10-31 2008-04-09 大连海事大学 频分复用式并行激光测长仪
CN101504462A (zh) * 2008-02-04 2009-08-12 深圳市博时雅科技有限公司 相位差检测方法和系统、双晶振混频电路及距离测量装置
CN201514481U (zh) * 2009-09-23 2010-06-23 伊玛精密电子(苏州)有限公司 激光测距仪
CN102540170A (zh) * 2012-02-10 2012-07-04 江苏徕兹光电科技有限公司 基于双波长激光管相位测量的校准方法及其测距装置
CN103472454A (zh) * 2012-06-07 2013-12-25 北京博新精仪科技发展有限公司 相位式测距仪的数字信号处理系统
CN103983962A (zh) * 2014-06-06 2014-08-13 杜鑫 一种相位测量的校准方法、装置及测量装置
CN203858361U (zh) * 2014-06-06 2014-10-01 杜学璋 一种相位测量的校准装置及测量装置
CN104122542A (zh) * 2014-07-30 2014-10-29 杜学璋 一种激光测距的校准方法、校准装置及测量仪器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4785116B2 (ja) * 2005-04-28 2011-10-05 株式会社 ソキア・トプコン 光波距離計
CN205176273U (zh) * 2015-03-02 2016-04-20 金华马卡科技有限公司 一种测距设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0915334A (ja) * 1995-06-28 1997-01-17 Mitsubishi Heavy Ind Ltd レーザ測距装置
US20070236679A1 (en) * 2006-04-07 2007-10-11 Asia Optical Co., Inc. Phase ranging apparatus and method of phase ranging
CN101158572A (zh) * 2007-10-31 2008-04-09 大连海事大学 频分复用式并行激光测长仪
CN101504462A (zh) * 2008-02-04 2009-08-12 深圳市博时雅科技有限公司 相位差检测方法和系统、双晶振混频电路及距离测量装置
CN201514481U (zh) * 2009-09-23 2010-06-23 伊玛精密电子(苏州)有限公司 激光测距仪
CN102540170A (zh) * 2012-02-10 2012-07-04 江苏徕兹光电科技有限公司 基于双波长激光管相位测量的校准方法及其测距装置
CN103472454A (zh) * 2012-06-07 2013-12-25 北京博新精仪科技发展有限公司 相位式测距仪的数字信号处理系统
CN103983962A (zh) * 2014-06-06 2014-08-13 杜鑫 一种相位测量的校准方法、装置及测量装置
CN203858361U (zh) * 2014-06-06 2014-10-01 杜学璋 一种相位测量的校准装置及测量装置
CN104122542A (zh) * 2014-07-30 2014-10-29 杜学璋 一种激光测距的校准方法、校准装置及测量仪器

Also Published As

Publication number Publication date
CN104635239A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2016138696A1 (zh) 一种测距设备及其测距方法
US11726180B2 (en) Light emitting module, light emitting unit, optical signal detection module, optical system and laser radar system
CN105652282B (zh) 一种激光相位测距模块
CN203502587U (zh) 脉冲/相位一体式激光测距仪
WO2015158187A1 (zh) 单光路激光测距系统
CN201130251Y (zh) 光电测距装置
CN104459710A (zh) 脉冲/相位一体式激光测距仪
CN104236464A (zh) 一种激光振动、位移传感器及其测量方法
CN111025315B (zh) 一种深度测量系统及方法
CN110927737A (zh) 一种多频调制激光动态目标测距测速系统及方法
US9041918B2 (en) Measuring apparatus and referencing method for a digital laser distance meter, and laser distance meter
CN108387902B (zh) 一种光测距方法及设备
CN209656894U (zh) 一种单激光相位测距仪
CN111025320A (zh) 一种相位式激光测距系统及测距方法
US20070236679A1 (en) Phase ranging apparatus and method of phase ranging
CN101881833A (zh) 光电测距装置
WO2022057390A1 (zh) 光发射模块、光信号检测模块、光学系统和激光雷达系统
CN116679310B (zh) Fmcw激光测量装置
CN115201843B (zh) 一种基于多频率光发射的相位测距结构及方法
CN116990826A (zh) 高动态精度激光相位式测距仪
CN116699626A (zh) 一种基于扫频干涉的激光测距系统及方法
CN110988901A (zh) 一种tdc结合相位激光测距方法及系统
CN109116329A (zh) 一种提高激光测距性能的结构及方法
TWM439805U (en) Composite fiber events inspection and test device
CN205176273U (zh) 一种测距设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883753

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883753

Country of ref document: EP

Kind code of ref document: A1