CN101865124A - 一种提高直流变频压缩机cop值的控制方法 - Google Patents

一种提高直流变频压缩机cop值的控制方法 Download PDF

Info

Publication number
CN101865124A
CN101865124A CN201010203767A CN201010203767A CN101865124A CN 101865124 A CN101865124 A CN 101865124A CN 201010203767 A CN201010203767 A CN 201010203767A CN 201010203767 A CN201010203767 A CN 201010203767A CN 101865124 A CN101865124 A CN 101865124A
Authority
CN
China
Prior art keywords
electrical angle
compressor
frequency
advance
commutation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010203767A
Other languages
English (en)
Other versions
CN101865124B (zh
Inventor
沈希
黄跃进
顾江萍
王海炳
胡娟
蒋文奇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN 201010203767 priority Critical patent/CN101865124B/zh
Publication of CN101865124A publication Critical patent/CN101865124A/zh
Application granted granted Critical
Publication of CN101865124B publication Critical patent/CN101865124B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

本发明涉及一种提高直流变频压缩机COP值的控制方法,其特征在于:控制变频压缩机驱动电路中的IGBT在设定的提前换相电角度φ下提前换相,切换到下一个通电状态。包括以下步骤:根据制冷系统负载大小确定变频压缩机的目标转速;测量变频压缩机实际转速是否等于目标转速;根据不同的压缩机转速查找在该转速下的最大COP值所对应的提前换相电角度,得到该目标转速下的提前换相电角度;理论计算所得的换相延时电角度减去提前换相电角度即为实际换相延时电角度;控制变频压缩机驱动电路中的IGBT延迟实际换相延时电角度后,切换到下一个通电状态。本发明采用对相切换点进行提前的方法,使压缩机电机始终工作在最(较)大转矩状态,减少转矩波动,以此来提高变频压缩机的COP值。

Description

一种提高直流变频压缩机COP值的控制方法
技术领域
本发明涉及小型制冷压缩机和直流变频电动机领域,尤其涉及小型制冷压缩机直流变频电机驱动器的节能控制方法。
背景技术
随着世界范围内能源危机的到来,特别是由于全球变暖而带来的环境问题越来越迫切地要求我们实行“低碳”经济,制冷压缩机相当于制冷系统中的“心脏”,是冰箱空调等制冷设备电力消耗的主要部件,压缩机COP值(Coefficient of performance,指的是在一定工况下制冷压缩机的制冷量与所消耗功率之比,称为性能系数)的提高对冰箱空调的节能有着直接的正比关系,是冰箱空调降低耗电量的主要手段。目前使用变频压缩机是节能降耗的主要手段,应用变频技术,不仅使制冷压缩机拥有较高的COP值,而且压缩机电机的转速可调,使整个制冷系统的平均运行效率均处于较高的状态,体现节能降耗的特点。
变频压缩机在运行中,其实际的反电势和电流波形都有不同程度的畸变,并且其畸变程度和运行转速有关,使得压缩机电机的电角度延时量不准确,导致电机的相切换点并不在理论的最佳点上,压缩机并不工作在最高效的状态,因此压缩机的COP值也不能达到最大值。
发明内容
本发明所要解决的技术问题是提供一种提高直流变频压缩机COP值的控制方法。直流变频压缩机驱动器根据不同转速,提前电机的相切换点,减少压缩机电机的电角度延时量,对换相时刻进行优化,尽量使压缩机电机工作在最大转矩状态,减少转矩波动,从而实现节能的目的。
为了解决上述技术问题,一种提高直流变频压缩机COP值的控制方法,其特征在于:控制变频压缩机驱动电路中的IGBT在设定的提前换相电角度φ下提前换相,切换到下一个通电状态。
具体包括以下步骤:
1)根据制冷系统负载大小确定变频压缩机的目标转速;
2)测量变频压缩机实际转速是否等于目标转速,若不相等则对压缩机进行调速使其达到目标转速,若相等则执行下一步骤;
3)根据不同的压缩机转速查找在该转速下的最大COP值所对应的提前换相电角度φ,得到该目标转速下的提前换相电角度φ;
4)理论计算所得的换相延时电角度减去提前换相电角度即为实际换相延时电角度;
5)压缩机驱动器检查到反电势过零点,控制变频压缩机驱动电路中的IGBT延迟实际换相延时电角度后,切换到下一个通电状态。
所述的提前换相电角度φ<30°。
所述理论计算所得的换相电角度为30°,实际换相延时电角度(30-φ)°
其中步骤3)进一步包括以下步骤:
31)通过实验,先设定某一提前换相电角度φ;
32)控制变频压缩机驱动电路中的IGBT在设定的提前换相电角度φ下提前换相,切换到下一个通电状态,测量并计算压缩机此时的COP值;
33)调节压缩机转速,重复步骤32);
34)再重新设定另一个提前换相电角度φ,重复步骤32)、步骤33);
35)根据上述实验数据,得到不同提前换相电角度φ下压缩机不同转速与COP值的关系图表,根据压缩机转速查找该关系图表,可得到当变频压缩机的COP值处于最大值时,压缩机某一转速相对应的提前换相电角度φ。
提前的电角度φ跟压缩机转速有关,压缩机转速越大提前的电角度也相对的变大。
在压缩机转速2000-3400rpm下,提前换相电角度φ为5°。
在压缩机转速3400-4000rpm下,提前换相电角度φ为10°。
本发明与现有技术相比具有以下的有益效果:本发明论述的直流变频压缩机驱动器采用“反电势过零点”检测技术,理论上在采样到反电势过零点之后延时30°电角度就是相切换点,本发明中,采用对相切换点进行提前的方法,并根据不同的转速选取不同的提前的电角度,使压缩机电机始终工作在最(较)大转矩状态,减少转矩波动,以此来提高变频压缩机的COP值。本发明使用的方法控制简单,易于实现,不影响转速的调节,同时使得变频压缩机有更高的效率,更为节能。
附图说明
图1为直流变频压缩机电机的驱动电路图
图2为驱动电路中6个IGBT的导通顺序图
图3为驱动电路中6个IGBT的实际与理论换相时序图
图4A为直流变频压缩机电机的实际结构图
图4B为直流变频压缩机电机实际结构的简略示意图
图5A为直流变频压缩机转子实际换相示意图
图5B为直流变频压缩机转子理论换相示意图
图6为在不同提前换相电角度下压缩机转速与COP值的关系图
图7为本发明控制方法的流程图
具体实施方式
直流变频压缩机电机的本体为无刷直流电动机(BLDCM),为使本申请的技术方案更加容易理解,下面对直流变频控制技术以及“反电势过零点”检测技术做简要的说明:
简单地说,直流变频技术就是将50/60Hz的交流电压整流成直流电压,变频器再将直流电压进行变频调压后通电到压缩机电机的定子线圈,定子产生旋转磁场,从而省去了传统的电刷,转子采用永磁体,跟随定子磁场转动,调节通电频率和电压幅值就可以调节速度和转矩。
本发明所论述的压缩机电机的驱动电路见图1,定子采用Y形绕组,三相分别是U、V、W,驱动电路采用6个IGBT,每次只有两相导通,另外一相断开,上下桥臂同时只有一个导通,VT1,VT3,VT5,VT2,VT4,VT6分别是IGBT的控制端,电路将220V的交流电压通过整流器变成直流电压,再通过控制6个IGBT来实现电压频率的变化,导通顺序见图2,图2中A部分为理论上的UVW三相通电波形,B部分为PWM调制后的UVW三相通电波形,C部分为位置切换状况,6个IGBT的通电状态一共有6种,各IGBT的6个导通状态分别为VT1VT6,VT1VT2,VT3VT2,VT3VT4,VT5VT4,VT5VT6,VT1VT6…,对应的状态标记为1,6,5,4,3,2,。图2中A部分的高电平表示该相接调制电压的正极,地电平表示该相接调制电压的负极,零表示该相悬空。图2中B部分所表示的电压调制采用单相产生脉冲的方式,这样可以提高IGBT的寿命。观察图2中B部分,每个悬空端在一个电周期之内,都会有两个反电势过Ud/2的时刻,即到达母线电压的一半,此刻被称为反电势过零点,理论上检测到反电势过零点再延时30°电角度就应该是下一个通电状态的切换点。如图2所示,在状态1中,U相端接Ud,VT1恒导通,V相端接GND,但是VT6采用PWM调制的方式,W相悬空,在电角度为30°的时刻,就是W相的反电势过零点,再转过30°的电角度,即60°的时刻就是相切换点。控制6个IGBT按1->6->5->4->3->2->1…的顺序依次导通,使得定子磁场发生变化,转子就会跟着旋转起来。
变频压缩机在运行中,其实际的反电势和电流波形都有不同程度的畸变,并且其畸变程度和运行转速有关,使得压缩机电机的电角度延时量不准确,导致电机的相切换点并不在理论的最佳点上,压缩机并不工作在最高效的状态,因此压缩机的COP值也不能达到最大值。实验研究发现,通过减小电角度的延时量,提前相切换点,可以弥补因电压电流波形畸变而带来的能量损耗,提高压缩机的COP值。图3中A部分是实际提前切换时序图,图3中B部分是理论切换时序图,a点为6个切换点中的一个,图3中所示的提前换相电角度为φ,提前的电角度φ跟压缩机转速有关,压缩机转速越大提前的电角度也相对的变大。也就是说当检测到V相的过零点时,延时(30-φ)后切换到下一状态,即V、W相导通,U相悬空。此处的提前换相电角度φ<30°,在控制时,提前换相电角度φ具体值可以通过以下步骤获得:
1)通过实验,先设定某一提前换相电角度φ(φ<30°,分度为1°);
2)控制变频压缩机驱动电路中的6个IGBT在设定的提前换相电角度φ下提前换相,切换到下一个通电状态,测量并计算压缩机此时的COP值;
3)调节压缩机转速,重复步骤2);
4)再重新设定另一个提前换相电角度φ,重复步骤2)、步骤3);
5)根据上述实验数据,得到不同提前换相电角度φ下压缩机不同转速与COP值的关系图表(具体可参见表1),这样根据压缩机转速查找该关系图表,便可得到当变频压缩机的COP值处于最大值时,压缩机某一转速相对应的提前换相电角度φ。
表1
Figure BSA00000163804800061
图4A是变频压缩机电机的实际结构图,为3相4极的无刷直流电动机,外圈为定子绕组绕线槽,中心为转子,图4B为实际结构的简略示意图。
图5A是直流变频压缩机转子实际切换示意图,图5-B是直流变频压缩机理论切换示意图。状态从标记6切换到标记5(见图2),切换后电流从V相输入,W相输出。如图5-B所示,阴影面积为此状态时转子的转动的理论空间。在进行电角度提前后,转子预先提前φ进入阴影面积,如图5-A所示。
经过电角度提前换相后,变频压缩机的COP值在各个转速阶段有不同程度的提升,如图6所示。图6中,横坐标为压缩机转速,所示的转速范围为2000-4000rpm;纵坐标为压缩机的COP值;三条不同线段分别表示在提前电角度φ为0°,5°,10°下,所测得的变频压缩机的COP值情况。在2000rpm时,提前电角度对变频压缩机的COP值影响不是很大。在2000-3400rpm下,提前电角度为5°时,所得变频压缩机的COP值均处于最大值。在3400-4000rpm下,提前电角度为10°时,取得的效果更加好。
本发明控制方法的流程如图7所示,具体步骤如下:
1)根据制冷系统负载大小确定变频压缩机的目标转速;
2)测量变频压缩机实际转速是否等于目标转速,若不相等则对压缩机进行调速使其达到目标转速,若相等则执行下一步骤;
3)根据不同的压缩机转速查找在该转速下的最大COP值所对应的提前换相电角度φ,得到该目标转速下的提前换相电角度φ;
4)理论计算所得的换相延时电角度减去提前换相电角度即为实际换相延时的电角度,此处的理论延时电角度已经将硬件电路滤波延时时间计算在内;
5)压缩机驱动器检查到反电势过零点,控制变频压缩机驱动电路中的6个IGBT延迟实际换相延时电角度后,切换到下一个通电状态,此处延时(30-φ)°后切换。
在调速阶段,并不对电角度进行延时,这样可以确保加速阶段更加稳定。在实际转速到达目标转速以后,根据查表得到提前电角度φ,来实现切换提前。

Claims (8)

1.一种提高直流变频压缩机COP值的控制方法,其特征在于:控制变频压缩机驱动电路中的IGBT在设定的提前换相电角度φ下提前换相,切换到下一个通电状态。
2.如权利要求1所述的一种提高直流变频压缩机COP值的控制方法,其特征在于具体包括以下步骤:
1)根据制冷系统负载大小确定变频压缩机的目标转速;
2)测量变频压缩机实际转速是否等于目标转速,若不相等则对压缩机进行调速使其达到目标转速,若相等则执行下一步骤;
3)根据不同的压缩机转速查找在该转速下的最大COP值所对应的提前换相电角度φ,得到该目标转速下的提前换相电角度φ;
4)理论计算所得的换相延时电角度减去提前换相电角度即为实际换相延时电角度;
5)压缩机驱动器检查到反电势过零点,控制变频压缩机驱动电路中的IGBT延迟实际换相延时电角度后,切换到下一个通电状态。
3.如权利要求1或2所述的一种提高直流变频压缩机COP值的控制方法,其特征在于:所述的提前换相电角度φ<30°。
4.如权利要求2所述的一种提高直流变频压缩机COP值的控制方法,其特征在于:所述理论计算所得的换相电角度为30°,实际换相延时电角度(30-φ)°
5.如权利要求2所述的一种提高直流变频压缩机COP值的控制方法,其特征在于其中步骤3)进一步包括以下步骤:
31)通过实验,先设定某一提前换相电角度φ;
32)控制变频压缩机驱动电路中的IGBT在设定的提前换相电角度φ下提前换相,切换到下一个通电状态,测量并计算压缩机此时的COP值;
33)调节压缩机转速,重复步骤32);
34)再重新设定另一个提前换相电角度φ,重复步骤32)、步骤33);
35)根据上述实验数据,得到不同提前换相电角度φ下压缩机不同转速与COP值的关系图表,根据压缩机转速查找该关系图表,可得到当变频压缩机的COP值处于最大值时,压缩机某一转速相对应的提前换相电角度φ。
6.如权利要求1或2所述的一种提高直流变频压缩机COP值的控制方法,其特征在于:提前的电角度φ跟压缩机转速有关,压缩机转速越大提前的电角度也相对的变大。
7.如权利要求1或2所述的一种提高直流变频压缩机COP值的控制方法,其特征在于:在压缩机转速2000-3400rpm下,提前换相电角度φ为5°。
8.如权利要求1或2所述的一种提高直流变频压缩机COP值的控制方法,其特征在于:在压缩机转速3400-4000rpm下,提前换相电角度φ为10°。
CN 201010203767 2010-06-18 2010-06-18 一种提高直流变频压缩机cop值的控制方法 Active CN101865124B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 201010203767 CN101865124B (zh) 2010-06-18 2010-06-18 一种提高直流变频压缩机cop值的控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 201010203767 CN101865124B (zh) 2010-06-18 2010-06-18 一种提高直流变频压缩机cop值的控制方法

Publications (2)

Publication Number Publication Date
CN101865124A true CN101865124A (zh) 2010-10-20
CN101865124B CN101865124B (zh) 2013-03-20

Family

ID=42956995

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 201010203767 Active CN101865124B (zh) 2010-06-18 2010-06-18 一种提高直流变频压缩机cop值的控制方法

Country Status (1)

Country Link
CN (1) CN101865124B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009681A (zh) * 2014-06-05 2014-08-27 惠州市蓝微电子有限公司 一种单相无刷直流电机的驱动控制系统的控制方法
CN111384879A (zh) * 2018-12-29 2020-07-07 江苏美的清洁电器股份有限公司 吸尘器、无刷直流电机的换相控制方法、装置和控制系统
CN111384877A (zh) * 2018-12-27 2020-07-07 宝时得科技(中国)有限公司 电动工具及其控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074225A1 (en) * 1999-05-31 2000-12-07 Aselsan Elektronik Sanayi Ve Ticaret A.S. Alternating current motor drive for electrical multiple units (emu)
JP2004053200A (ja) * 2002-07-23 2004-02-19 Sekisui Chem Co Ltd ヒートポンプ
CN1502918A (zh) * 2002-11-26 2004-06-09 乐金电子(天津)电器有限公司 逆变流空气调节器的逆变流电机的控制电路及方法
JP2004325018A (ja) * 2003-04-28 2004-11-18 Hitachi Ltd 冷凍サイクル
CN101166009A (zh) * 2006-10-17 2008-04-23 邓林 一种新型的无霍尔无刷控制器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000074225A1 (en) * 1999-05-31 2000-12-07 Aselsan Elektronik Sanayi Ve Ticaret A.S. Alternating current motor drive for electrical multiple units (emu)
JP2004053200A (ja) * 2002-07-23 2004-02-19 Sekisui Chem Co Ltd ヒートポンプ
CN1502918A (zh) * 2002-11-26 2004-06-09 乐金电子(天津)电器有限公司 逆变流空气调节器的逆变流电机的控制电路及方法
JP2004325018A (ja) * 2003-04-28 2004-11-18 Hitachi Ltd 冷凍サイクル
CN101166009A (zh) * 2006-10-17 2008-04-23 邓林 一种新型的无霍尔无刷控制器

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104009681A (zh) * 2014-06-05 2014-08-27 惠州市蓝微电子有限公司 一种单相无刷直流电机的驱动控制系统的控制方法
CN111384877A (zh) * 2018-12-27 2020-07-07 宝时得科技(中国)有限公司 电动工具及其控制方法
CN111384879A (zh) * 2018-12-29 2020-07-07 江苏美的清洁电器股份有限公司 吸尘器、无刷直流电机的换相控制方法、装置和控制系统
CN111384879B (zh) * 2018-12-29 2022-04-08 江苏美的清洁电器股份有限公司 吸尘器、无刷直流电机的换相控制方法、装置和控制系统

Also Published As

Publication number Publication date
CN101865124B (zh) 2013-03-20

Similar Documents

Publication Publication Date Title
JP4053968B2 (ja) 同期電動機駆動装置及び冷凍冷蔵庫及び空気調和機
WO2019085106A1 (zh) 电机控制系统、变频空调器
CN101025156B (zh) 一种直流变频压缩机驱动装置和方法
CN103493362A (zh) 电动机控制装置
JP5501132B2 (ja) 空気調和機
CN110657551B (zh) 一种空调系统重负荷过载保护的控制方法、装置及空调器
CN101110543A (zh) 压缩机以及压缩机的控制方法
CN105119536B (zh) 一种电机驱动器拓扑及其控制方法
CN107332490B (zh) 一种开关磁阻电机的模糊直接瞬时转矩控制方法
CN110530083B (zh) 一种压缩机电机控制方法、装置及空调器
CN101865124B (zh) 一种提高直流变频压缩机cop值的控制方法
JP5375260B2 (ja) モータ駆動装置およびこれを用いた冷蔵庫
CN101047358B (zh) 一拖二空调的正弦直流变频控制方法及设备
CN106533294B (zh) 一种基于线电压调制的永磁同步电机弱磁控制方法
CN105429547B (zh) 基于虚拟相构造的单相无刷直流电机矢量控制方法
CN105915122B (zh) 基于直接转矩控制的五相逆变器双电机系统容错控制方法
CN107769628B (zh) 一种永磁无刷直流电机转矩脉动抑制方法及装置
CN110365275B (zh) 一种开关磁阻电机无位置传感器高速运行控制方法
Shi et al. A novel commutation correction method for high-speed PM brushless DC motor
WO2019244743A1 (ja) モータ駆動装置およびこれを用いた冷蔵庫
CN1614869A (zh) 无刷直流电机的基波法无位置传感器直接转矩控制系统
CN112865658B (zh) 一种变频变拓扑调速电机控制系统
Wu et al. Compensation method of DC-link current integral deviation for sensorless control of three-phase BLDC motor
Liu et al. Permanent magnet synchronous motor for ceiling fan
CN206595928U (zh) 矢量电控动力驱动单元

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant