CN101852816B - 压阻式单片集成三轴加速度传感器及制造方法 - Google Patents

压阻式单片集成三轴加速度传感器及制造方法 Download PDF

Info

Publication number
CN101852816B
CN101852816B CN200910215479XA CN200910215479A CN101852816B CN 101852816 B CN101852816 B CN 101852816B CN 200910215479X A CN200910215479X A CN 200910215479XA CN 200910215479 A CN200910215479 A CN 200910215479A CN 101852816 B CN101852816 B CN 101852816B
Authority
CN
China
Prior art keywords
zone
vdr
mass
voltage dependent
dependent resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN200910215479XA
Other languages
English (en)
Other versions
CN101852816A (zh
Inventor
田雷
付博
王永刚
李海博
寇文兵
金建东
齐虹
李玉玲
王晓光
王振
王江
张岩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CETC 49 Research Institute
Original Assignee
CETC 49 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CETC 49 Research Institute filed Critical CETC 49 Research Institute
Priority to CN200910215479XA priority Critical patent/CN101852816B/zh
Publication of CN101852816A publication Critical patent/CN101852816A/zh
Application granted granted Critical
Publication of CN101852816B publication Critical patent/CN101852816B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Pressure Sensors (AREA)

Abstract

压阻式单片集成三轴加速度传感器及制造方法。本发明涉及压阻式加速度传感器领域。它解决了测量时存在的矢量测量精度低、可靠性差、质心不重合、体积大的缺点。它是由一块芯片集成,芯片划分为固支框区、电路区和传感区;第一二质量块沿传感区的纵向中轴线对称设置,第一二质量块之间连有第一二中间梁,第一二质量块外侧面上分别设置两个L型敏感梁,第一至四L型敏感梁相对于传感区的横向中轴线和纵向中轴线对称设置,第一至八压敏电阻设置在L型敏感梁头上,第九至十二压敏电阻设置在第一二中间梁上,芯片的上表面位于同一水平面,从深到浅依次为梁、质量块和敏感区外部。利用压阻效应原理,将加速度计与电路集成在一个芯片上,提高测量精度和可靠性。

Description

压阻式单片集成三轴加速度传感器及制造方法
技术领域
本发明涉及一种压阻式加速度传感器领域。
背景技术
常见的微加速度计产品以单轴为主,而微惯性系统以及其他一些应用场合往往需要双轴或者三轴的加速度计来检测加速度矢量,为满足多轴检测的需要,目前通常使用三个单轴加速度计组合使用,因而会导致矢量测量精度低、可靠性差、质心不重合、体积大的缺点。已有一些文献报道开发的多轴微加速度计器件,使用压电原理设计的三轴加速度计,存在精度低、稳定性差的弱点;使用电容原理设计的三轴加速度计存在信号处理困难,与COMS工艺兼容性差的缺点。
发明内容
本发明为了解决目前使用多种原理所设计出的三轴加速度计在测量时都存在的矢量测量精度低、可靠性差、质心不重合、体积大的缺点,而提出了一种压阻式单片集成三轴加速度传感器及制造方法。
本发明的压阻式单片集成三轴加速度传感器是由一块芯片集成,芯片划分为固支框区、电路区和传感区;传感区由第一质量块、第二质量块、第一中间梁、第二中间梁、第一至第四L型敏感梁和第一至第十二压敏电阻组成;第一质量块和第二质量块沿传感区的纵向中轴线对称设置,第一质量块与第二质量块之间的两个侧面通过两个第一中间梁和第二中间梁连接,第一质量块与第二质量块之间的两个侧面相对的两个侧面上分别设置有两个L型敏感梁,即为第一至第四L型敏感梁的一端分别连接在第一质量块与第二质量块的侧表面上,第一至第四L型敏感梁至相对于传感区M的横向中轴线和纵向中轴线对称设置,第一L型敏感梁的另一端上设置并排有第一压敏电阻和第二压敏电阻;第二L型敏感梁的另一端上设置并排有第三压敏电阻和第四压敏电阻;第三L型敏感梁的另一端上设置并排有第五压敏电阻和第六压敏电阻;第四L型敏感梁的另一端上设置并排有第七压敏电阻和第八压敏电阻;第一中间梁上设置有第九压敏电阻和第十压敏电阻,第十压敏电阻垂直于第九压敏电阻形成T字形,T字形的横边位于第一中间梁的外边缘;第二中间梁上设置有第十一压敏电阻和第十二压敏电阻,第十二压敏电阻垂直于第十一压敏电阻形成T字形,T字形的横边位于第二中间梁的外边缘;第一质量块、第二质量块、第一中间梁、第二中间梁和第一至第四L型敏感梁的上表面位于同一水平面,第一中间梁、第二中间梁和第一至第四L型敏感梁的厚度为20~40微米,第一中间梁、第二中间梁和第一至第四L型敏感梁厚度小于第一质量块和第二质量块的厚度,厚度差值为370~380微米;第一质量块和第二质量块的厚度小于固支框区和电路区的厚度,厚度差值为10~20微米。
本发明的压阻式单片集成三轴加速度传感器制造的步骤如下:
步骤一:对N型单晶硅片进行清洗和一次氧化,在N型单晶硅片的上下表面分别生成上层二氧化硅层和下层二氧化硅层;并划分出固支框区、电路区和传感区;
步骤二:根据电路图在电路区内对上层二氧化硅层进行光刻形成阱区的注入孔;
步骤三:通过大束流注入机对阱区的注入孔内N型单晶硅片注入剂量为4e14~6e14、注入能量为80kev的硼,形成阱区;
步骤四:去除N型单晶硅片上表面上的所有上层二氧化硅层,对去除了上层二氧化硅层的表面依次生长薄二氧化硅层和氮化硅层;
步骤五:根据电路图在电路区N设定有源区,并通过光刻得到P管场区与N管场区;
步骤六:将N管场区以外的区域用光刻胶覆盖,并对N管场区进行光刻,光刻得到N管场区的注入孔;
步骤七:漂去P管场区与N管场区上的薄二氧化硅和氮化硅层,再在P管场区与N管场区四周生长场氧,并且在P管场区与N管场区内生长栅氧;
步骤八:将P管场区以外的区域用光刻胶7覆盖,并对P管场区进行光刻,光刻得到P管场区的注入孔,并在P管场区和N管场区生长多晶硅;
步骤九:通过光刻在P管场区和N管场区形成多晶硅栅和多晶硅电阻;
步骤十:根据传感区M的压敏电阻的位置设定压敏电阻区域;将压敏电阻区域和P管场区以外的区域用光刻胶覆盖,光刻得到P+的注入孔,再通过大束流注入机对P+的注入孔内N型单晶硅片注入剂量为4e14~6e14、注入能量为80kev的硼,形成加速度传感器的压敏电阻,以及PMOS管的源、漏区和P+的保护环;
步骤十一:将N管场区以外的区域用光刻胶覆盖,光刻得到N+的注入孔,再通过大束流注入机对N+的注入孔内N型单晶硅片注入剂量为4e14~6e14、注入能量为80kev的磷,形成NMOS管的源、漏区和N+的保护环;
步骤十二:在电路区N和传感区M的上表面都生长磷硅玻璃;
步骤十三:根据电路图第一次铝引线部分设定第一次铝引线区域;将第一次铝引线区域以外的区域用光刻胶覆盖,光刻去除未覆盖光刻胶的磷硅玻璃,使需要第一次蒸发铝的部位裸露在外部;
步骤十四:在第一次蒸发铝的部位的上表面蒸发厚度为1.2μm的铝;并加以刻蚀形成第一铝引线;
步骤十五:去除上表面上所有的磷硅玻璃,并对去除了磷硅玻璃的表面进行低温二氧化硅的生长;
步骤十六:根据电路图第二次铝引线部分设定第二次铝引线区域;将第二次铝引线区域以外的区域用光刻胶覆盖,光刻去除未覆盖光刻胶的低温二氧化硅,使需要第二次蒸发铝的部位裸露在外部;
步骤十七:在第二次蒸发铝的部位的上表面也蒸发厚度为1.2μm的铝;并加以刻蚀形成第二铝引线;
步骤十八:再在步骤十七完成后的上表面淀积钝化层,并光刻压焊点;
步骤十九:取完成步骤一至步骤十八工艺的N型单晶硅片,在其上下表面均涂覆光刻胶,上表面为满涂覆,下表面涂覆传感区以外的区域;并将敏感区的下表面划分第一质量块区域、第二质量块区域、第一中间梁区域、第二中间梁区域和第一至第四L型敏感梁的区域;
步骤二十:腐蚀裸露在外部的下层二氧化硅层;
步骤二十一:在整个下表面蒸铝,并通过光刻铝,露出下层二氧化硅层的区域、第一质量块区域和第二质量块区域以外要刻蚀掉的N型单晶硅片部分;
步骤二十二:采用感应耦合等离子的方法对要刻蚀掉的N型单晶硅片部分垂直刻蚀,刻蚀去除为10~30微米;
步骤二十三:去除下表面上的铝,保留下层二氧化硅层;
步骤二十四:采用感应耦合等离子的方法对覆盖有下层二氧化硅层以外的部分进行垂直刻蚀,刻蚀去除为10~30微米;
步骤二十五:根据第一中间梁区域、第二中间梁区域和第一至第四L型敏感梁区域的形状和位置去除光刻胶;使刻透部分裸露出来,并湿法去掉要刻透部分的钝化层,露出要刻透部分的N型单晶硅片;
步骤二十六:采用感应耦合等离子的方法对露出要刻透部分的N型单晶硅片进行垂直刻蚀,并刻透,使结构完全释放;
步骤二十七:去掉表面上的光刻胶;并使用玻璃对其进行静电封接;
步骤二十八:最后进行划片、封装、压焊、电路调试和性能测试,最终完成。
本专利采用系统芯片技术和硅微机械加工技术研制的单片集成三轴加速度传感器,将信号处理电路与压阻式三轴加速度传感器制作在同一个芯片上,实现上述目标的关键就在于解决集成电路与传感器的设计技术与工艺兼容技术,使该产品具有体积极小、重量极轻、可靠性高、可用范围广。专利就是将压阻式三轴加速度传感器设计成利于与信号处理电路工艺相兼容的结构与工艺,采用ICP技术加工三维复杂立体结构,将信号处理电路与传感器制作在同一芯片上,有效的减少外部使用电子元器件的数量,缩小三轴加速度传感器的整体尺寸,提高产品的可靠性。该种传感器可以使具有信号处理电路的三轴加速度传感器尺寸小于10×10×5(长×宽×高)。
附图说明
图1是本发明的压阻式单片集成三轴加速度传感器的俯视图;图2是本发明制造方法中步骤一的结构示意图;图3是本发明制造方法中步骤二的结构示意图;图4是本发明制造方法中步骤三的结构示意图;图5是本发明制造方法中步骤四的结构示意图;图6是本发明制造方法中步骤五的结构示意图;图7是本发明制造方法中步骤六的结构示意图;图8是本发明制造方法中步骤七的结构示意图;图9是本发明制造方法中步骤八的结构示意图;图10是本发明制造方法中步骤九的结构示意图;图11是本发明制造方法中步骤十的结构示意图;图12是本发明制造方法中步骤十一的结构示意图;图13是本发明制造方法中步骤十二的结构示意图;图14是本发明制造方法中步骤十三的结构示意图;图15是本发明制造方法中步骤十四的结构示意图;图16是本发明制造方法中步骤十五的结构示意图;图17是本发明制造方法中步骤十六的结构示意图;图18是本发明制造方法中步骤十七的结构示意图;图19是本发明制造方法中步骤十八的结构示意图;图20是本发明的压阻式单片集成三轴加速度传感器的仰视立体图;图21是本发明制造方法中步骤十九的结构示意图;图22是本发明制造方法中步骤二十的结构示意图;图23是本发明制造方法中步骤二十一的结构示意图;图24是本发明制造方法中步骤二十二的结构示意图;图25是本发明制造方法中步骤二十三的结构示意图;图26是本发明制造方法中步骤二十四的结构示意图;图27是本发明制造方法中步骤二十五的结构示意图;图28是本发明制造方法中步骤二十六的结构示意图;图29是本发明制造方法中步骤二十七的结构示意图;图30是压阻式单片集成三轴加速度传感器的等效电路图,
Figure G200910215479XD00051
电阻不变,
Figure G200910215479XD00052
电阻减小,
Figure G200910215479XD00053
电阻增加。
具体实施方式
具体实施方式一:结合图1和图20说明本实施方式,本实施方式的压阻式单片集成三轴加速度传感器是由一块芯片集成,芯片划分为固支框区K、电路区N和传感区M;传感区M由第一质量块M1、第二质量块M2、第一中间梁M3、第二中间梁M4、第一至第四L型敏感梁M5、M6、M7、M8和第一至第十二压敏电阻A、A’、B、B’、C、C’、D、D’、a、b、c、d组成;第一质量块M1和第二质量块M2沿传感区M的纵向中轴线对称设置,第一质量块M1与第二质量块M2之间的两个侧面通过两个第一中间梁M3和第二中间梁M4连接,第一质量块M1与第二质量块M2之间的两个侧面相对的两个侧面上分别设置有两个L型敏感梁,即为第一至第四L型敏感梁M5至M8的一端分别连接在第一质量块M1与第二质量块M2的侧表面上,第一至第四L型敏感梁M5至M8相对于传感区M的横向中轴线和纵向中轴线对称设置,第一L型敏感梁M5的另一端上设置并排有第一压敏电阻A和第二压敏电阻A’;第二L型敏感梁M6的另一端上设置并排有第三压敏电阻B和第四压敏电阻B’;第三L型敏感梁M7的另一端上设置并排有第五压敏电阻C和第六压敏电阻C’;第四L型敏感梁M8的另一端上设置并排有第七压敏电阻D和第八压敏电阻D’;第一中间梁M3上设置有第九压敏电阻a和第十压敏电阻b,第十压敏电阻b垂直于第九压敏电阻a形成T字形,T字形的横边位于第一中间梁M3的外边缘;第二中间梁M4上设置有第十一压敏电阻c和第十二压敏电阻d,第十二压敏电阻d垂直于第十一压敏电阻c形成T字形,T字形的横边位于第二中间梁M4的外边缘;第一质量块M1、第二质量块M2、第一中间梁M3、第二中间梁M4和第一至第四L型敏感梁M5至M8的上表面位于同一水平面,第一中间梁M3、第二中间梁M4和第一至第四L型敏感梁M5至M8的深度小于第一质量块M1和第二质量块M2的深度,深度差值为20~40微米;第一质量块M1和第二质量块M2的深度小于固支框区K和电路区N的深度,深度差值为10~20微米。
具体实施方式二:结合图1和图20说明本实施方式,本实施方式与具体实施方式一不同点在于第一质量块M1和第二质量块M2之间的两个空隙处分别设置有两个纵向限位块。其它组成和连接方式与具体实施方式一相同。设置两个纵向限位块是为实现对x轴方向加速度的过载保护的目的。
具体实施方式三:结合图1和图20说明本实施方式,本实施方式与具体实施方式一或二不同点在于第一L型敏感梁M5和第二L型敏感梁M6之间的空隙处与第三L型敏感梁M7和第四L型敏感梁M8之间的空隙处分别设置有两个横向限位块。其它组成和连接方式与具体实施方式一或二相同。设置两个横向限位块是为实现对y轴方向加速度的过载保护的目的。
具体实施方式四:结合图1至图29说明本实施方式,压阻式单片集成三轴加速度传感器制造的步骤如下:
步骤一:如图2所示;对N型单晶硅片1进行清洗和一次氧化,在N型单晶硅片1的上下表面分别生成上层二氧化硅层2和下层二氧化硅层3;并如图1所示,划分出固支框区K、电路区N和传感区M;清洗采用半导体平面工艺的标准清洗工艺进行清洗;
步骤二:如图3所示;根据电路图在电路区N内对上层二氧化硅层2进行光刻形成阱区的注入孔;
步骤三:如图4所示;通过大束流注入机对阱区的注入孔内N型单晶硅片1注入剂量为4e14~6e14、注入能量为80kev的硼,形成阱区4;
步骤四:如图5所示;去除N型单晶硅片1上表面上的所有上层二氧化硅层2,对去除了上层二氧化硅层2的表面依次生长薄二氧化硅层5和氮化硅层6;薄二氧化硅层5厚度为50nm;氮化硅层6厚度为100nm~150nm;
步骤五:如图6所示;根据电路图在电路区N设定有源区,并通过光刻得到P管场区与N管场区;
步骤六:如图7所示;将N管场区以外的区域用光刻胶7覆盖,并对N管场区进行光刻,光刻得到N管场区的注入孔;
步骤七:如图8所示;漂去P管场区与N管场区上的薄二氧化硅5和氮化硅层6,再在P管场区与N管场区四周生长场氧8,并且在P管场区与N管场区内生长栅氧9;
步骤八:如图9所示;将P管场区以外的区域用光刻胶7覆盖,并对P管场区进行光刻,光刻得到P管场区的注入孔,并在P管场区和N管场区生长多晶硅10;
步骤九:如图10所示;通过光刻在P管场区和N管场区形成多晶硅栅和多晶硅电阻;
步骤十:如图11所示;根据传感区M的压敏电阻的位置设定压敏电阻区域11;将感电阻区域9和P管场区以外的区域用光刻胶7覆盖,光刻得到P+的注入孔,再通过大束流注入机对P+的注入孔内N型单晶硅片1注入剂量为4e14~6e14、注入能量为80kev的硼,形成加速度传感器的压敏电阻,以及PMOS管的源、漏区和P+的保护环;所注入的P+浓度即需要兼顾集成电路中PMOS管的源、漏区及P+的保护环的浓度要求,又需要兼顾加速度传感器的压敏电阻,在保证集成电路的性能的同时,保证加速度传感器的热灵敏度温度系数为正温度系数,以使加速度传感器在恒流源供电下可使用固定电阻进行温度补偿;
步骤十一:如图12所示;将N管场区以外的区域用光刻胶7覆盖,光刻得到N+的注入孔,再通过大束流注入机对N+的注入孔内N型单晶硅片1注入剂量为4e14~6e14、注入能量为80kev的磷,形成NMOS管的源、漏区和N+的保护环;
步骤十二:如图13所示;在电路区N和传感区M的上表面都生长磷硅玻璃12;做为一铝引线的阻挡层,为使传感器与集成电路工艺相兼容,在本专利中采用双层布线工艺,以保证12个压敏电阻的引出;
步骤十三:如图14所示;根据电路图第一次铝引线部分设定第一次铝引线区域13;将第一次铝引线区域13以外的区域用光刻胶7覆盖,光刻去除未覆盖光刻胶7的磷硅玻璃12,使需要第一次蒸发铝的部位裸露在外部;
步骤十四:如图15所示;在第一次蒸发铝的部位的上表面蒸发厚度为1.2μm的铝;并加以刻蚀形成第一铝引线14;刻蚀铝是采用湿法标准工艺;所述光刻采用对准精度优于±1μm的光刻机进行光刻,表面要求涂胶保护,再进行湿法刻蚀;
步骤十五:如图16所示;去除上表面上所有的磷硅玻璃12,并对去除了磷硅玻璃12的表面进行低温二氧化硅15的生长;做为二次铝引线的阻挡层;
步骤十六:如图17所示;根据电路图第二次铝引线部分设定第二次铝引线区域16;将第二次铝引线区域16以外的区域用光刻胶7覆盖,光刻去除未覆盖光刻胶7的低温二氧化硅15,使需要第二次蒸发铝的部位裸露在外部;
步骤十七:如图18所示;在第二次蒸发铝的部位的上表面也蒸发厚度为1.2μm的铝;并加以刻蚀形成第二铝引线17;
步骤十八:如图19所示;再在步骤十七完成后的上表面淀积钝化层18,并光刻压焊点19;
步骤十九:如图21所示;取完成步骤一至步骤十八工艺的N型单晶硅片1,在其上下表面均涂覆光刻胶7,上表面为满涂覆,下表面涂覆传感区M以外的区域;并如图20所示,将敏感区M的下表面划分第一质量块M1区域、第二质量块M2区域、第一中间梁M3区域、第二中间梁M4区域和第一至第四L型敏感梁M5至M8区域;
步骤二十:如图22所示;腐蚀裸露在外部的下层二氧化硅层3;以备后面刻蚀质量块做准备;
步骤二十一:如图23所示;在整个下表面蒸铝20,并通过光刻铝,露出下层二氧化硅层3的区域、第一质量块M1区域和第二质量块M2区域以外要刻蚀掉的N型单晶硅片1部分;
步骤二十二:如图24所示;采用感应耦合等离子的方法(ICP)对要刻蚀掉的N型单晶硅片1部分垂直刻蚀,刻蚀去除为10~30微米;以备形成第一中间梁M3区域、第二中间梁M4区域和第一至第四L型敏感梁M5至M8区域做基础刻蚀;以±70g量程加速度传感器为例,刻蚀剩余深度为80微米;
步骤二十三:如图25所示;去除下表面上的铝,保留下层二氧化硅层3;
步骤二十四:如图26所示;采用感应耦合等离子的方法(ICP)对覆盖有下层二氧化硅层3以外的部分进行垂直刻蚀,刻蚀去除为10~30微米;此时第一质量块M1区域与第二质量块M2区域比固支框区域K低20微米,形成Z轴限位所需要的距离;
步骤二十五:如图27所示;根据第一中间梁M3区域、第二中间梁M4区域和第一至第四L型敏感梁M5至M8区域的形状和位置去除光刻胶7;使刻透部分裸露出来,并湿法去掉要刻透部分的钝化层,露出要刻透部分的N型单晶硅片1;
步骤二十六:如图28所示;采用感应耦合等离子的方法(ICP)对露出要刻透部分的N型单晶硅片1进行垂直刻蚀,并刻透,使结构完全释放;
步骤二十七:如图29所示;去掉表面上的光刻胶;并使用玻璃21对其进行静电封接;
步骤二十八:最后进行划片、封装、压焊、电路调试和性能测试,最终完成。
压阻式单片集成三轴加速度传感器所采用的工作原理:
器件中压敏电阻的位置如图1所示,压敏电阻a,b,c,d,位于中心梁上,用于感受z方向的加速度;压敏电阻A,A’,B,B’,C,C’,D,D’位于末端L形梁上,用于感受x和y方向的加速度。不同的惠斯通电桥构成的压敏电阻以及对加速度的变化如图30所示。
下面是为了说明问题方便,惠斯通电桥Y和惠斯通电桥X是由相同的压敏电阻A,B,C,D构成,实际上它们是在压敏电阻A,B,C,D的位置各有两个不同的压敏电阻A’,B’,C’,D’,共8个电阻分别构成惠斯通电桥Y和惠斯通电桥X,即,实际的三维加速度传感器共12个电阻,构成3个不同的惠斯通电桥,分别用于检测x轴、y轴和z轴的加速度,但x轴、y轴的惠斯通电桥输入和输出接法不同,因而它们之间互不干扰,这样使得信号处理电路变得非常简单,分别处理x轴、y轴和z轴的加速度信号,再对矢量进行求和即可完成。
具体说明如下对于惠斯通电桥Z,当对其施加z轴加速度时,电阻b,c阻值增加,电阻a,d阻值减小,因此惠斯通电桥Z同z轴加速度有一个线性输出,当对其施加对x或y轴加速度时,质量块移动对中心梁的作用相同,因此没有应变产生,惠斯通电桥Z对x或y加速度的输出为零,所以惠斯通电桥Z只对z轴加速度敏感;对于惠斯通电桥Y,对其施加y轴加速度,电阻A,D阻值增加,电阻B,C阻值减小,因此惠斯通电桥Y对y轴加速度敏感,当对其施加z轴加速度时,四个压敏电阻A,B,C,D变化相同,惠斯通电桥Y输出为零,当对其施加对x维加速度时,电阻B,D阻值增加,电阻A,C阻值减小,同样惠斯通电桥Y输出为零,因此惠斯通电桥Y只对y轴加速度敏感。对于惠斯通电桥X,同惠斯通电桥Y的情况类似,只对x轴加速度敏感,对y轴和z轴加速度不敏感。
在传感器的固支边位置采用COMS工艺制作信号处理电路,采用合适的P+注入浓度使所制作的电路与传感器加工工艺相兼容,为了使所做的电路与传感器工艺相兼容,并使三个电桥的压敏电阻合理引出,采用了双层金属布线工艺,信号处理电路采用仪表放大器形式的专用电路,使之适用于加速度传感器的信号处理。

Claims (4)

1.压阻式单片集成三轴加速度传感器,其特征在于它是由一块芯片集成,芯片划分为固支框区(K)、电路区(N)和传感区(M);
传感区(M)由第一质量块(M1)、第二质量块(M2)、第一中间梁(M3)、第二中间梁(M4)、第一至第四L型敏感梁(M5)至(M8)和第一至第十二压敏电阻组成;
第一质量块(M1)和第二质量块(M2)沿传感区(M)的纵向中轴线对称设置,第一质量块(M1)与第二质量块(M2)之间的两个侧面通过两个第一中间梁(M3)和第二中间梁(M4)连接,第一质量块(M1)与第二质量块(M2)之间的两个侧面相对的两个侧面上分别设置有两个L型敏感梁,即为第一至第四L型敏感梁(M5)至(M8)的一端分别连接在第一质量块(M1)与第二质量块(M2)的侧表面上,第一至第四L型敏感梁相对于传感区(M)的横向中轴线和纵向中轴线对称设置,
第一L型敏感梁(M5)的另一端上设置并排有第一压敏电阻(A)和第二压敏电阻(A’);第二L型敏感梁(M6)的另一端上设置并排有第三压敏电阻(B)和第四压敏电阻(B’);第三L型敏感梁(M7)的另一端上设置并排有第五压敏电阻(C)和第六压敏电阻(C’);第四L型敏感梁(M8)的另一端上设置并排有第七压敏电阻(D)和第八压敏电阻(D’);
第一中间梁(M3)上设置有第九压敏电阻(a)和第十压敏电阻(b),第十压敏电阻(b)垂直于第九压敏电阻(a)形成T字形,T字形的横边位于第一中间梁(M3)的外边缘;第二中间梁(M4)上设置有第十一压敏电阻(c)和第十二压敏电阻(d),第十二压敏电阻(d)垂直于第十一压敏电阻(c)形成T字形,T字形的横边位于第二中间梁(M4)的外边缘;
第一质量块(M1)、第二质量块(M2)、第一中间梁(M3)、第二中间梁(M4)和第一至第四L型敏感梁(M5)至(M8)的上表面位于同一水平面,第一中间梁(M3)、第二中间梁(M4)和第一至第四L型敏感梁(M5)至(M8)的厚度为20~40微米,第一中间梁(M3)、第二中间梁(M4)和第一至第四L型敏感梁(M5)至(M8)深度小于第一质量块(M1)和第二质量块(M2)的深度,深度差值为20~40微米;第一质量块(M1)和第二质量块(M2)的深度小于固支框区(K)和电路区(N)的深度,深度差值为10~20微米。
2.根据权利要求1所述的压阻式单片集成三轴加速度传感器,其特征在于第一质量块(M1)和第二质量块(M2)之间的两个空隙处分别设置有两个纵向限位块。
3.根据权利要求1或2所述的压阻式单片集成三轴加速度传感器,其特征在于第一L型敏感梁(M5)和第二L型敏感梁(M6)之间的空隙处与第三L型敏感梁(M7)和第四L型敏感梁(M8)之间的空隙处分别设置有两个横向限位块。
4.压阻式单片集成三轴加速度传感器的制造方法,其特征在于它制造的步骤如下:
步骤一:对N型单晶硅片(1)进行清洗和一次氧化,在N型单晶硅片(1)的上下表面分别生成上层二氧化硅层(2)和下层二氧化硅层(3);并划分出固支框区(K)、电路区(N)和传感区(M);
步骤二:根据电路图在电路区(N)内对上层二氧化硅层(2)进行光刻形成阱区的注入孔;
步骤三:通过大束流注入机对阱区的注入孔内N型单晶硅片(1)注入剂量为4e14~6e14、注入能量为80kev的硼,形成阱区(4);
步骤四:去除N型单晶硅片(1)上表面上的所有上层二氧化硅层(2),对去除了上层二氧化硅层(2)的表面依次生长薄二氧化硅层(5)和氮化硅层(6); 
步骤五:根据电路图在电路区(N)设定有源区,并通过光刻得到P管场区与N管场区;
步骤六:将N管场区以外的区域用光刻胶(7)覆盖,并对N管场区进行光刻,光刻得到N管场区的注入孔;
步骤七:漂去P管场区与N管场区上的薄二氧化硅层(5)和氮化硅层(6),再在P管场区与N管场区四周生长场氧(8),并且在P管场区与N管场区内生长栅氧(9);
步骤八:将P管场区以外的区域用光刻胶(7)覆盖,并对P管场区进行光刻,光刻得到P管场区的注入孔,并在P管场区和N管场区生长多晶硅(10);
步骤九:通过光刻在P管场区和N管场区形成多晶硅栅和多晶硅电阻;
步骤十:根据传感区(M)的压敏电阻的位置设定压敏电阻区域(11);将压敏电阻区域(11)和P管场区以外的区域用光刻胶(7)覆盖,光刻得到P+的注入孔,再通过大束流注入机对P+的注入孔内N型单晶硅片(1)注入剂量为4e14~6e14、注入能量为80kev的硼,形成加速度传感器的压敏电阻,以及PMOS管的源、漏区和P+的保护环;
步骤十一:将N管场区以外的区域用光刻胶(7)覆盖,光刻得到N+的注入孔,再通过大束流注入机对N+的注入孔内N型单晶硅片(1)注入剂量为4e14~6e14、注入能量为80kev的磷,形成NMOS管的源、漏区和N+的保护环;
步骤十二:在电路区(N)和传感区(M)的上表面都生长磷硅玻璃(12);
步骤十三:根据电路图第一次铝引线部分设定第一次铝引线区域(13);将第一次铝引线区域(13)以外的区域用光刻胶(7)覆盖,光刻去除未覆盖光刻胶(7)的磷硅玻璃(12),使需要第一次蒸发铝的部位裸露在外部;
步骤十四:在第一次蒸发铝的部位的上表面蒸发厚度为1.2μm的铝;并加以刻蚀形成第一铝引线(14);
步骤十五:去除上表面上所有的磷硅玻璃(12),并对去除了磷硅玻璃(12)的表面进行低温二氧化硅(15)的生长;
步骤十六:根据电路图第二次铝引线部分设定第二次铝引线区域(16);将第二次铝引线区域(16)以外的区域用光刻胶(7)覆盖,光刻去除未覆盖光刻胶(7)的低温二氧化硅(15),使需要第二次蒸发铝的部位裸露在外部;
步骤十七:在第二次蒸发铝的部位的上表面也蒸发厚度为1.2μm的铝;并加以刻蚀形成第二铝引线(17);
步骤十八:再在步骤十七完成后的上表面淀积钝化层(18),并光刻压焊点(19);
步骤十九:取完成步骤一至步骤十八工艺的N型单晶硅片(1),在其上下表面均涂覆光刻胶(7),上表面为满涂覆,下表面涂覆传感区(M)以外的区域;并将传感区(M)的下表面划分第一质量块(M1)区域、第二质量块(M2)区域、第一中间梁(M3)区域、第二中间梁(M4)区域和第一至第四L型敏感梁(M5)至(M8)的区域;
步骤二十:腐蚀裸露在外部的下层二氧化硅层(3);
步骤二十一:在整个下表面蒸铝(20),并通过光刻铝,露出下层二氧化硅层(3)的区域、第一质量块(M1)区域和第二质量块(M2)区域以外要刻蚀掉的N型单晶硅片(1)部分;
步骤二十二:采用感应耦合等离子的方法对要刻蚀掉的N型单晶硅片(1)部分垂直刻蚀,刻蚀去除为10~30微米;
步骤二十三:去除下表面上的铝,保留下层二氧化硅层(3); 
步骤二十四:采用感应耦合等离子的方法对覆盖有下层二氧化硅层(3)以外的部分进行垂直刻蚀,刻蚀去除为10~30微米;
步骤二十五:根据第一中间梁(M3)区域、第二中间梁(M4)区域和第一至第四L型敏感梁(M5)至(M8)区域的形状和位置去除光刻胶(7);使刻透部分裸露出来,并湿法去掉要刻透部分的钝化层,露出要刻透部分的N型单晶硅片(1);
步骤二十六:采用感应耦合等离子的方法对露出要刻透部分的N型单晶硅片(1)进行垂直刻蚀,并刻透,使结构完全释放;
步骤二十七:去掉表面上的光刻胶;并使用玻璃(21)对其进行静电封接;
步骤二十八:最后进行划片、封装、压焊、电路调试和性能测试,最终完成。 
CN200910215479XA 2009-12-31 2009-12-31 压阻式单片集成三轴加速度传感器及制造方法 Expired - Fee Related CN101852816B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN200910215479XA CN101852816B (zh) 2009-12-31 2009-12-31 压阻式单片集成三轴加速度传感器及制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN200910215479XA CN101852816B (zh) 2009-12-31 2009-12-31 压阻式单片集成三轴加速度传感器及制造方法

Publications (2)

Publication Number Publication Date
CN101852816A CN101852816A (zh) 2010-10-06
CN101852816B true CN101852816B (zh) 2012-07-18

Family

ID=42804395

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910215479XA Expired - Fee Related CN101852816B (zh) 2009-12-31 2009-12-31 压阻式单片集成三轴加速度传感器及制造方法

Country Status (1)

Country Link
CN (1) CN101852816B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417155B (zh) * 2011-08-17 2014-03-26 瑞声声学科技(深圳)有限公司 三轴加速度计的制作方法
FR3000484B1 (fr) * 2012-12-27 2017-11-10 Tronic's Microsystems Dispositif micro-electromecanique comprenant une masse mobile apte a se deplacer hors du plan
CN103777038B (zh) * 2014-01-10 2016-04-27 西安交通大学 一种多梁式超高g值加速度传感器芯片及其制备方法
CN103777037B (zh) * 2014-01-10 2017-02-22 西安交通大学 一种多梁式双质量块加速度传感器芯片及其制备方法
CN107102169A (zh) * 2016-02-23 2017-08-29 英属开曼群岛商智动全球股份有限公司 加速度计
CN107037237B (zh) * 2017-05-12 2022-06-24 深迪半导体(绍兴)有限公司 一种三轴电容式加速度计及电子装置
CN109856425B (zh) * 2018-04-20 2024-08-13 黑龙江大学 一种单片集成三轴加速度传感器及其制作工艺

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2438607Y (zh) * 2000-08-25 2001-07-11 华北工学院微米纳米技术研究中心 集成硅微电阻式加速度传感器
CN101042411A (zh) * 2007-04-19 2007-09-26 中北大学 三轴压阻微加速度计
JP2008107257A (ja) * 2006-10-27 2008-05-08 Hitachi Ulsi Systems Co Ltd 加速度センサ
CN201083760Y (zh) * 2007-10-19 2008-07-09 中国电子科技集团公司第十三研究所 三轴集成压阻式加速度传感器
CN201561985U (zh) * 2009-12-31 2010-08-25 中国电子科技集团公司第四十九研究所 压阻式单片集成三轴加速度传感器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2438607Y (zh) * 2000-08-25 2001-07-11 华北工学院微米纳米技术研究中心 集成硅微电阻式加速度传感器
JP2008107257A (ja) * 2006-10-27 2008-05-08 Hitachi Ulsi Systems Co Ltd 加速度センサ
CN101042411A (zh) * 2007-04-19 2007-09-26 中北大学 三轴压阻微加速度计
CN201083760Y (zh) * 2007-10-19 2008-07-09 中国电子科技集团公司第十三研究所 三轴集成压阻式加速度传感器
CN201561985U (zh) * 2009-12-31 2010-08-25 中国电子科技集团公司第四十九研究所 压阻式单片集成三轴加速度传感器

Also Published As

Publication number Publication date
CN101852816A (zh) 2010-10-06

Similar Documents

Publication Publication Date Title
CN101852816B (zh) 压阻式单片集成三轴加速度传感器及制造方法
CN101692099B (zh) 具有片上零偏补偿的压阻式双轴微加速度计及制作方法
CN103777037B (zh) 一种多梁式双质量块加速度传感器芯片及其制备方法
CN106597016B (zh) 一种电容式mems双轴加速度计
US20140252509A1 (en) Mems device and corresponding micromechanical structure with integrated compensation of thermo-mechanical stress
CN105372449A (zh) 高精度单轴光学微加速度计中抑制串扰的微机械加速度敏感结构及其制造方法
CN104729784A (zh) 一种梁槽结合台阶式岛膜微压传感器芯片及制备方法
CN206321662U (zh) 一种mems双轴加速度计
CN103983395B (zh) 一种微压力传感器及其制备与检测方法
CN110371921B (zh) 一种面内双轴压阻加速度传感器芯片及其制备方法
CN107817364B (zh) 一种mems直拉直压式两轴加速度计芯片及其制备方法
CN102721829B (zh) 电容式微加速度传感器及其单片制作方法
CN107796955A (zh) 多梁式单质量块面内双轴加速度传感器芯片及其制备方法
CN103472260B (zh) 一种mems叉梁电容式加速度计及其制造方法
CN102879609B (zh) “h”形梁的电容式加速度传感器及制备方法
KR100508198B1 (ko) 가속도 센서
CN104502629B (zh) 一种折叠梁式高灵敏度微机械加速度计
CN108828265B (zh) 一种电容式微机械加速度传感器
CN201561985U (zh) 压阻式单片集成三轴加速度传感器
CN103234669B (zh) 一种利用静电负刚度的压力传感器及其制作方法
CN104793015A (zh) 加速度计内嵌压力传感器的单硅片复合传感器结构及方法
CN104198762A (zh) 一种八梁对称硅微加速度计
CN108545691A (zh) 新型表压传感器及其制作方法
CN205374509U (zh) 一种高精度单轴光学微加速度计中抑制串扰的微机械加速度敏感结构
CN103293338A (zh) 电容式加速度传感器的传感部件、制作方法及其应用

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120718

Termination date: 20171231

CF01 Termination of patent right due to non-payment of annual fee