CN101852731A - 生物感测装置及其系统 - Google Patents
生物感测装置及其系统 Download PDFInfo
- Publication number
- CN101852731A CN101852731A CN201010196501A CN201010196501A CN101852731A CN 101852731 A CN101852731 A CN 101852731A CN 201010196501 A CN201010196501 A CN 201010196501A CN 201010196501 A CN201010196501 A CN 201010196501A CN 101852731 A CN101852731 A CN 101852731A
- Authority
- CN
- China
- Prior art keywords
- grating
- substrate
- light
- sample
- metal nanoparticle
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
- G01N21/552—Attenuated total reflection
- G01N21/553—Attenuated total reflection and using surface plasmons
- G01N21/554—Attenuated total reflection and using surface plasmons detecting the surface plasmon resonance of nanostructured metals, e.g. localised surface plasmon resonance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/4788—Diffraction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/7703—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides
- G01N21/774—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure
- G01N21/7743—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator using reagent-clad optical fibres or optical waveguides the reagent being on a grating or periodic structure the reagent-coated grating coupling light in or out of the waveguide
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/701—Integrated with dissimilar structures on a common substrate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/832—Nanostructure having specified property, e.g. lattice-constant, thermal expansion coefficient
- Y10S977/834—Optical properties of nanomaterial, e.g. specified transparency, opacity, or index of refraction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
- Y10S977/932—Specified use of nanostructure for electronic or optoelectronic application
Landscapes
- Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Pathology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Nanotechnology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Plasma & Fusion (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
本发明涉及一种生物感测装置及其系统,其包含光源、生物感测装置、检测平台以及处理单元,所述生物感测装置具有基板、试样、至少一个光栅、复数个金属奈米粒子以及盖板,所述基板含至少一个光栅,所述试样含至少一个生物分子,而后将所述金属奈米粒子固定于所述光栅或所述基板的另一面上,并覆盖所述盖板,其中出射光因所述试样折射率变化或与所述复数个金属奈米粒子表面的所述生物分子产生交互作用而产生改变。所述检测平台测定所述光在所述光栅中所产生的绕射现象产生的出射光,检测所述出射光的绕射角度及强度,并将数据传送至所述处理单元。
Description
本申请是申请日为2009年1月16日、申请号为200910002098.3、题为“生物感测装置及其系统”的专利申请的分案申请。
技术领域
本发明涉及一种生物感测装置及其系统,尤其涉及一种具备定域电浆共振及绕射耦合技术的生物感测装置及其系统。
背景技术
目前,根据表面电浆共振(SPR)光谱学取决于金属内自由电子电荷密度波的微小改变量的量测结果,以更广泛的应用于探讨面际之间现象,而SPR感测的实验配置可应用于贵重金属薄膜及折光物体的平坦表面,其可使光偏极化为单一波长,如此即可量测内部反射系数。分子间的交互作用扮演重要的角色,且其还提供免标记生物感测以探讨生物分子间的吸引力。然而,标准的SPR生物传感器依据出射光的纪录及量测结果设计,对应最理想的表面电浆结合金属薄膜产生入射光束的角度偏移。因此,所述光学配置非常昂贵、不方便且不易微型化。
发明内容
本发明是为了解决上述问题而提出的,本发明的目的在于提供一种生物感测装置及其系统,以解决现有技术存在的问题。
为了达到本发明目的,本发明提供一种生物感测装置,具有基板、试样、至少一个光栅、复数个金属奈米粒子以及盖板,所述基板含至少一个光栅,所述试样含至少一个生物分子,将所述复数个金属奈米粒子固定于光栅或基板的另一面上,并覆盖所述盖板,其中出射光因所述试样折射率变化或与所述复数个金属奈米粒子表面的生物分子产生交互作用而产生改变。
为了达到本发明的另一目的,本发明提供一种生物感测系统,其包含光源、生物感测装置、检测平台以及处理单元,所述生物感测装置包含基板、试样、至少一个光栅、复数个金属奈米粒子以及盖板,所述基板含至少一个光栅,所述试样含至少一个生物分子,将所述复数个金属奈米粒子固定于光栅或基板的另一面上,并覆盖所述盖板,其中出射光因所述试样折射率变化或与所述复数个金属奈米粒子表面的所述生物分子产生交互作用而产生改变。所述检测平台用于检测出射光的绕射角度及/或光强度,并传送数据给所述处理单元。
附图说明
图1A为本发明的生物感测系统的实施例的光学配置图;
图1B为本发明的生物感测装置的实施例的示意图;
图1C为本发明的生物感测装置的另一实施例的示意图;
图2A为本发明的生物感测系统的折射率-位置的曲线图;
图2B为本发明的生物感测装系统的折射率-光强度的曲线图;
图3为本发明的生物感测系统的光波长-吸收比的曲线图;
图4为本发明的生物感测系统的反硝基苯抗体(Anti-DNP)浓度-位移的曲线图;
图5为本发明的生物感测系统的位移-时间的曲线图;以及
图6为本发明的生物感测装置的阵列格式的示意图。
主要符号说明:11为光源,17为盖板,12为生物感测装置,18为金属奈米粒子,13为检测平台,19为微流道,14为处理单元,151为波导层,以及15为基板,51为注入点,16为光栅。
具体实施方式
金属奈米粒子的一个自由电子波的固有共振现象被称为定域电浆共振(LPR),人们将其发展为一种技术。LPR决定奈米粒子的集体电荷密度震荡,且可不使用衰减全反射(ATR)设置光学配置。类似建立于ATR上的传统SPR,此共振情况可检测出四周材料界面间折射率当前的变化以及生物分子在胶体溶液界面的相互作用。因此,通过使用LPR技术再加上简单的光学配置可构成极小的传感器。
LPR技术不需要繁杂的光学系统即可提供高感度免标记光学生物检测。在该生物传感器中,绕射光栅利用压印、全像术或射出成型的方式建立于玻璃或高分子聚合物薄片上。之后,金属奈米粒子固定于光栅或基板另一侧上。利用光绕射光栅后的出射光,可根据检测平台检测光反射式绕射现象产生的角度或强度的信号,检测平台可为位置灵敏检测器或光强度感应器。所述信号对金属奈米粒子外在环境折射率改变或金属奈米粒子表面的生物分子交互作用具有高度灵敏性。本领域技术人员应注意,自然界金属奈米粒子不限于金,其可为其它贵重金属奈米粒子。所述传感器可通过简单的光学设计来制造及建立。更进一步来说,所述检测器可进行现场检测且不受任何条件的限制。
参照图1A,其为本发明的生物感测系统的实施例的光学配置图。光源11由激光装置发射的激光束构成,其以入射角θi入射生物感测装置12的光栅内以激发表面电浆模态。当入射角在特定范围内时,激光束与基板耦合。基板上的光栅绕射激光束由位于角度θr的检测平台13所量测,该检测平台13可为位置灵敏传感器或光强度传感器。所述检测平台13接收所述生物感测装置的出射光后产生检测信号。处理单元14电性连接到所述检测平台,以接收并分析所述检测信号。由此,该检测信号通过处理单元14加以计算并显示给实验者观看,如此即完成整个光学配置的运作流程。此时,所述光源11除了如上所述的激光之外,还可以采用发光二极管(LED)构成。而且,所述处理单元可为计算机处理器。
参照图1B,其为本发明的生物感测装置的示意图。图中,生物感测装置用于出射光束以产生至少一个出射光,该出射光的绕射角度及/或光强度由检测平台13加以检测,生物感测装置包含基板15、至少一个光栅16、盖板17及复数个金属奈米粒子18。光栅16形成于所述基板15上,金属奈米粒子18固定于光栅16的另一侧,所述基板还包含波导层,所述波导层用以導引光束。所述生物感测装置为具有光栅16耦合定域电浆共振(LPR)的结构。其中,所述生物感测装置盖板17还包含微流道19以覆盖金属奈米粒子18,金属奈米粒子18可为金奈米粒子(gold-nanoparticle),其设置于波导层上。更进一步说,所述贵金属奈米粒子的表面可以设置各种辨识单元,所述辨识单元为化学辨识分子、抗体(antibody)、抗原(antigen)、凝集素(lectin)、激素受体(hormone receptor)、核酸(nucleic acid)或醣类。所述辨识单元用于感测金属离子、抗体(antibody)、抗原(antigen)、细胞激素(cytokine)、激素受体(hormone)、成长因子(growth factor)、神经胜肽(neuropeptide)、血红素(hemoglobin)、血浆蛋白(plasma protein)、胺基酸(amino acid)、维生素(vitamin)、核酸(nucleic acid)、碳水化合物(carbohydrate)、醣蛋白(glycoprotein)、脂肪酸(fatty acid)、磷脂酸(phosphatidic acid)、固醇(sterol)、抗生素(antibiotic)、细胞(cell)、毒素(toxin)、病毒(virus)或细菌(bacterium)。例如在贵金属奈米粒子的表面设置具有螯合能力化学分子时,就可以用来感测特定大小的醣类或金属离子等等;又例如可以通过在贵金属奈米粒子的表面设置抗体,传感器便能针对特定的抗原做检测;相反的,也可以在贵金属奈米粒子的表面设置特定的抗原,以检测特定的抗体;又例如可以在贵金属奈米粒子的表面修饰上核醣核酸或是脱氧核醣核酸等物质,用以检测特定序列的遗传物质;在贵金属奈米粒子的表面设置诸如醣类的其它物质,也能用来细菌检测。
将三甲氧基硅烷(MPTMS)溶于甲苯溶剂里,并将基板15浸泡于含有所述MPTMS溶液的瓶子中,以此处理基板15的表面。然后,将所述基板取出并放入具有金奈米粒子的溶液中,使金奈米粒子附着在基板15上,以自我组装的方式在基板的处理表面上形成金奈米粒子薄层。利用聚甲基丙烯酸甲酯(PMMA)制成的盖片17具有微射流通道19,该微射流通道19设置于基板上的具有金奈米粒子的一侧。利用压印所形成的光栅还可设置于基板的另一侧以达到感测效果。
参照图1C,其为本发明的生物感测装置的另一实施例的示意图。其中,波导层151采用如溶胶凝胶薄层、溅镀薄膜或光阻剂薄层等,其设置于基板15上,且光栅16直接设置于所述波导层151上。不同种类的金属奈米粒子18形成于所述光栅16上。具有微射流通道19的盖板17设置于基板上的设有金属奈米粒子18的一侧。其中,基板15为玻璃或高分子薄片,金属奈米粒子18为贵金属奈米粒子,光栅16为绕射光栅。
参照图2,其为本发明的生物感测系统的折射率-位置的曲线图。所述检测平台13量测经由生物感测装置12反射式绕射所产生的出射光,检测平台13的量测依据出射光在检测平台的位置。将金奈米粒子表面浸于蔗糖溶液中时,光因折射率的不同,使位移量产生变化。所述检测平台13可为位置灵敏传感器(PSD)或光强度感应器。当蔗糖溶液的折射率增加至特定范围,在PSD中的反射式绕射光束的位置与折射率的关系形成如图2A所示的线性关系,而反射式绕射光束的光强度与折射率的关系形成如图2B所示的线性关系。
参照图3,其为本发明的生物感测系统的光波长-吸收比的曲线图。对金奈米粒子进行处理以使其具有抗原二硝基苯(DNP)的抗原,并进一步结合反硝基苯抗体(anti-DNP)之后,观察波长峰值的位移量及峰值吸收比的增加量。其峰值吸收比因二硝基苯(DNP)抗原及反硝基苯抗体(anti-DNP)的表面结合而增加。如上的光谱的变化与实际情况一致,金奈米粒子的光谱随着四周环境的折射率不同产生变化。
参照图4,其为本发明的生物感测系统的反硝基苯抗体(Anti-DNP)浓度-位移的曲线图。该曲线图对应反硝基苯抗体浓度范围。在该浓度范围内,检测平台13对抗体的反应曲线如图4所示,并针对X坐标值取对数,得出一个线性关系,如图4的插图所示。通过实时检测可立即得到样品(sample)的互动信息。检测平台13依据浓度的不同使反射式绕射光的位置位移产生变化并实时显示于相位感测检测器(PSD)中。
参照图5,其为本发明的生物感测系统的时间-位移的曲线图。经过观察可得到二硝基苯(DNP)抗原及反硝基苯抗体(anti-DNP)之间所产生的明确反应。在注入点51注入反硝基苯抗体(anti-DNP)溶液,约900秒后,生物感应装置12发生了明显的反应变化并回归至稳定状态。经由实验后所取得的图2、图3、图4及图5可得知,生物感测装置12所绕射的光对金属奈米粒子外在环境的折射率或所述金属奈米粒子表面的生物分子的交互作用具有高度灵敏性,所述出射光最终由检测平台检测反射式绕射光的强度或位移结果。图6为本发明的生物感测装置的阵列格式示意图,由图中可知,通过一个由复数个光栅所形成的阵列格式即可实现多重检测的功效。
如上所述,采用简单且符合成本效益的光学配置搭配生物感测装置以形成生物感测系统,该生物感测系统包含光源、生物感测装置、检测平台及处理单元(如图1A所示),如此即可利用生物相互作用的方式分析出分析样品的浓度。所述生物感测系统具有免标记、快速及小量样品的需求,且其不因激光光点的缩小而影响其灵敏度,且更可整合生物感测装置上的微流道以配合大产量的测定。
以上所述仅为举例性,而非为限制性。任何未脱离本发明的精神与范畴,而对其进行的等效修改或变更,均应包含于本发明的权利要求范围之内。
Claims (9)
1.一种生物感测装置,其特征在于包含:
基板,其包含波导层,所述波导层用以导引光束;
试样,其包含至少一个生物分子;
至少一个光栅,所述光栅用于反射式绕射光束,以产生至少一个出射光;
盖板,其包含微流道,所述试样置于所述微流道上;以及
复数个金属奈米粒子,所述金属奈米粒子和所述光栅分别固定于所述基板的两侧表面;
其中所述出射光因所述试样折射率变化或与所述复数个金属奈米粒子表面的所述生物分子产生交互作用而产生改变。
2.根据权利要求1所述的生物感测装置,其特征在于所述光栅为绕射光栅。
3.根据权利要求1所述的生物感测装置,其特征在于所述盖板覆盖所述金属奈米粒子。
4.根据权利要求1所述的生物感测装置,其特征在于所述金属奈米粒子上设有辨识单元,以应用在不同物质的检测上。
5.一种生物感测系统,其特征在于包含:
光源,其提供光束;
生物感测装置,其包含:
基板,包含波导层,所述波导层用以导引所述光束;
试样,其包含至少一个生物分子;
至少一个光栅,所述光栅用于反射式绕射所述光束,以产生至少一个出射光;
盖板,其包含微流道,所述试样置于所述微流道上;以及
复数个金属奈米粒子,所述金属奈米粒子和所述光栅分别固定于所述基板的两侧;
检测平台,其接收所述生物感测装置的出射光以产生检测信号;以及
处理单元,其电性连接所述检测平台,接收并分析所述检测信号;
其中所述出射光因所述试样折射率变化或与所述复数个金属奈米粒子表面的所述生物分子产生交互作用而产生改变。
6.根据权利要求5所述的生物感测系统,其特征在于所述光栅为绕射光栅。
7.根据权利要求5所述的生物感测系统,其特征在于所述盖板覆盖所述金属奈米粒子。
8.根据权利要求5所述的生物感测系统,其特征在于所述检测平台检测所述出射光的反射角度/或光强度。
9.根据权利要求5所述的生物感测系统,其特征在于所述金属奈米粒子上设有辨识单元,以应用在不同物质的检测上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US1152708P | 2008-01-18 | 2008-01-18 | |
US61/011,527 | 2008-01-18 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2009100020983A Division CN101487794A (zh) | 2008-01-18 | 2009-01-16 | 生物感测装置及其系统 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN101852731A true CN101852731A (zh) | 2010-10-06 |
Family
ID=40877113
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010196501A Pending CN101852731A (zh) | 2008-01-18 | 2009-01-16 | 生物感测装置及其系统 |
CNA2009100020983A Pending CN101487794A (zh) | 2008-01-18 | 2009-01-16 | 生物感测装置及其系统 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNA2009100020983A Pending CN101487794A (zh) | 2008-01-18 | 2009-01-16 | 生物感测装置及其系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8068995B2 (zh) |
CN (2) | CN101852731A (zh) |
TW (1) | TWI384214B (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006116362A2 (en) | 2005-04-25 | 2006-11-02 | The Trustees Of Boston University | Structured substrates for optical surface profiling |
GB0904934D0 (en) * | 2009-03-23 | 2009-05-06 | Geneseqe As | Method and apparatus for detecting molecules |
TW201416061A (zh) * | 2012-10-19 | 2014-05-01 | Nat Univ Chung Cheng | 雙面光柵波導生物感測器 |
US8976359B2 (en) * | 2012-12-15 | 2015-03-10 | Board Of Trustees Of The University Of Alabama, For And On Behalf Of The University Of Alabama In Huntsville | Nanostructure diffraction gratings for integrated spectroscopy and sensing |
CN104020139A (zh) * | 2014-05-30 | 2014-09-03 | 燕山大学 | 一种衍射光栅输入输出的表面等离子共振传感器 |
AU2016327573B2 (en) | 2015-09-22 | 2022-07-14 | Trustees Of Boston University | Multiplexed phenotyping of nanovesicles |
TWI570410B (zh) | 2015-10-28 | 2017-02-11 | 國立清華大學 | 液體樣本之檢測元件、檢測套組及檢測方法 |
US11262359B2 (en) | 2016-02-05 | 2022-03-01 | NanoView Biosciences, Inc. | Detection of exosomes having surface markers |
ITUA20163876A1 (it) * | 2016-05-27 | 2017-11-27 | Univ Del Salento | Biorecettore per ioni metallici. |
CN106645038A (zh) * | 2016-12-27 | 2017-05-10 | 中国科学院大学 | 一种O‑GlcNAc定量检测方法 |
CN109211852A (zh) * | 2017-06-30 | 2019-01-15 | 曦医生技股份有限公司 | 生物检测系统 |
NL2020623B1 (en) | 2018-01-24 | 2019-07-30 | Illumina Inc | Structured illumination microscopy with line scanning |
NZ760171A (en) | 2018-03-29 | 2023-05-26 | Illumina Inc | Illumination for fluorescence imaging using objective lens |
TWI687676B (zh) | 2019-04-29 | 2020-03-11 | 國立中正大學 | 生物感測器自我補償系統 |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986000138A1 (en) * | 1984-06-13 | 1986-01-03 | Unilever Plc | Devices for use in chemical test procedures |
US5017009A (en) * | 1986-06-26 | 1991-05-21 | Ortho Diagnostic Systems, Inc. | Scattered total internal reflectance immunoassay system |
EP0455067B1 (de) * | 1990-05-03 | 2003-02-26 | F. Hoffmann-La Roche Ag | Mikrooptischer Sensor |
US5350697A (en) * | 1990-08-28 | 1994-09-27 | Akzo N.V. | Scattered light detection apparatus |
EP0517930B1 (en) * | 1991-06-08 | 1995-05-24 | Hewlett-Packard GmbH | Method and apparatus for detecting the presence and/or concentration of biomolecules |
US5515163A (en) * | 1994-09-01 | 1996-05-07 | Sunshine Medical Instruments, Inc. | Method and apparatus for detection, analysis and identification of particles |
US5629213A (en) * | 1995-03-03 | 1997-05-13 | Kornguth; Steven E. | Analytical biosensor |
JPH09292334A (ja) * | 1996-04-30 | 1997-11-11 | Fuji Photo Film Co Ltd | 表面プラズモンセンサー |
US6330387B1 (en) * | 1996-11-08 | 2001-12-11 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared spectral ranges |
US5991488A (en) * | 1996-11-08 | 1999-11-23 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties |
JP3399836B2 (ja) * | 1998-05-21 | 2003-04-21 | 富士写真フイルム株式会社 | 表面プラズモンセンサー |
IL131903A0 (en) * | 1999-09-15 | 2001-03-19 | Technion Res & Dev Foundation | Plasmon resonance phase imaging |
US6421128B1 (en) * | 2000-05-17 | 2002-07-16 | The Arizona Board Of Regents On Behalf Of The University Of Arizona | Coupled plasmon-waveguide resonance spectroscopic device and method for measuring film properties in the ultraviolet and infrared special ranges |
US6833542B2 (en) * | 2000-11-13 | 2004-12-21 | Genoptix, Inc. | Method for sorting particles |
JP2002357542A (ja) * | 2001-06-01 | 2002-12-13 | Mitsubishi Chemicals Corp | 分析素子、並びにそれを用いた試料の分析方法 |
US7110585B2 (en) * | 2001-08-03 | 2006-09-19 | Nanosphere, Inc. | Nanoparticle imaging system and method |
EP1434994A2 (en) * | 2001-09-13 | 2004-07-07 | Axela Biosensors Inc. | Method and apparatus for assay based on light diffraction |
TW586005B (en) * | 2003-01-23 | 2004-05-01 | Univ Nat Central | Highly sensitive surface plasma resonance sensor |
US20050053974A1 (en) * | 2003-05-20 | 2005-03-10 | University Of Maryland | Apparatus and methods for surface plasmon-coupled directional emission |
US7420682B2 (en) * | 2003-09-30 | 2008-09-02 | Arizona Board Of Regents On Behalf Of The University Of Arizona | Sensor device for interference and plasmon-waveguide/interference spectroscopy |
CN1749735A (zh) * | 2005-09-29 | 2006-03-22 | 华中师范大学 | 塑料制造的非光栅型表面等离子激元共振光学耦合器 |
TWI296044B (en) * | 2005-11-03 | 2008-04-21 | Ind Tech Res Inst | Coupled waveguide-surface plasmon resonance biosensor |
TWI337254B (en) * | 2005-11-11 | 2011-02-11 | Nat Univ Chung Cheng | Localized surface plasmon resonance sensing system and method thereof |
TWI354781B (en) * | 2005-11-11 | 2011-12-21 | Laikwan Chau | Surface plasmon resonance sensing system, apparatu |
TWI312413B (en) * | 2005-12-30 | 2009-07-21 | Ind Tech Res Inst | Inspection system of bio-chip sample and method of grating-type bio-chip inspection |
US7407817B2 (en) * | 2006-01-19 | 2008-08-05 | The Chinese University Of Hong Kong | Surface plasmon resonance sensors and method for detecting samples using the same |
-
2008
- 2008-11-14 TW TW097144238A patent/TWI384214B/zh active
-
2009
- 2009-01-14 US US12/353,635 patent/US8068995B2/en active Active
- 2009-01-16 CN CN201010196501A patent/CN101852731A/zh active Pending
- 2009-01-16 CN CNA2009100020983A patent/CN101487794A/zh active Pending
Also Published As
Publication number | Publication date |
---|---|
US8068995B2 (en) | 2011-11-29 |
CN101487794A (zh) | 2009-07-22 |
TW200935042A (en) | 2009-08-16 |
US20090187350A1 (en) | 2009-07-23 |
TWI384214B (zh) | 2013-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101852731A (zh) | 生物感测装置及其系统 | |
Prabowo et al. | Surface plasmon resonance optical sensor: A review on light source technology | |
Ahn et al. | A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches | |
Mukundan et al. | Waveguide-based biosensors for pathogen detection | |
Magnusson et al. | Resonant photonic biosensors with polarization-based multiparametric discrimination in each channel | |
Levitsky | Porous silicon structures as optical gas sensors | |
TWI383139B (zh) | Tubular waveguide type plasma resonance sensing device and sensing system | |
De Stefano et al. | DNA optical detection based on porous silicon technology: from biosensors to biochips | |
Frascella et al. | A fluorescent one-dimensional photonic crystal for label-free biosensing based on Bloch surface waves | |
Zhang et al. | A novel fiber optic surface plasmon resonance biosensors with special boronic acid derivative to detect glycoprotein | |
Lechuga | Optical biosensors | |
Abbas et al. | Patterned resonance plasmonic microarrays for high-performance SPR imaging | |
Chang et al. | Using a fiber optic particle plasmon resonance biosensor to determine kinetic constants of antigen–antibody binding reaction | |
US7655421B2 (en) | Cytometer on a chip | |
WO2013171197A1 (en) | Compact plasmon-enhanced fluorescence biosensor | |
Seok et al. | Plasmonic optical biosensors for detecting c-reactive protein: A review | |
Karabchevsky et al. | Study of immobilization procedure on silver nanolayers and detection of estrone with diverged beam surface plasmon resonance (SPR) imaging | |
Sun et al. | Integration of curved D-type optical fiber sensor with microfluidic chip | |
Sadrolhosseini et al. | Nanoplasmonic sensor based on surface plasmon-coupled emission | |
Zuppella et al. | Palladium on plastic substrates for plasmonic devices | |
Lee et al. | High-throughput and dynamic study of drug and cell interactions using contrast images in aluminum-based nanoslit arrays | |
Singh et al. | Multicolor surface plasmon resonance imaging of ink jet-printed protein microarrays | |
Schuderer et al. | Development of a multichannel fluorescence affinity sensor system | |
CN101825629A (zh) | 波导耦合金属光子晶体生物传感器及其检测方法 | |
US6870237B1 (en) | Repeated structure of nanometer thin films with symmetric or asymmetric configuration for SPR signal modulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C02 | Deemed withdrawal of patent application after publication (patent law 2001) | ||
WD01 | Invention patent application deemed withdrawn after publication |
Open date: 20101006 |