CN101839575A - 适用于槽式太阳能热发电的集热管的内管及其镀膜方法 - Google Patents

适用于槽式太阳能热发电的集热管的内管及其镀膜方法 Download PDF

Info

Publication number
CN101839575A
CN101839575A CN 201010142316 CN201010142316A CN101839575A CN 101839575 A CN101839575 A CN 101839575A CN 201010142316 CN201010142316 CN 201010142316 CN 201010142316 A CN201010142316 A CN 201010142316A CN 101839575 A CN101839575 A CN 101839575A
Authority
CN
China
Prior art keywords
rete
stainless steel
sio
target
meagre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN 201010142316
Other languages
English (en)
Other versions
CN101839575B (zh
Inventor
郭廷玮
俞科
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ROYAL TECH CSP LIMITED
Original Assignee
Changzhou Longteng Solar Energy Heating Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Longteng Solar Energy Heating Equipment Co Ltd filed Critical Changzhou Longteng Solar Energy Heating Equipment Co Ltd
Priority to CN201010142316A priority Critical patent/CN101839575B/zh
Publication of CN101839575A publication Critical patent/CN101839575A/zh
Application granted granted Critical
Publication of CN101839575B publication Critical patent/CN101839575B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers

Landscapes

  • Physical Vapour Deposition (AREA)

Abstract

本发明所公开的是一种适用于槽式太阳能热发电的集热管的内管及其镀膜方法,本发明内管以其在不锈钢管表面,由内至外依次分别是红外反射铜膜层,SS-Al2O3膜层、SS-SiO2膜层和SiO2保护膜层为主要特征;而其镀膜方法,以其采用直立筒式多靶中频反应磁控溅射镀膜机为镀膜手段,依次按照对不锈钢管清洗烘干装机并实施Ar气粒子轰击,溅射沉积反射铜膜层,溅射沉积SS-Al2O3膜层,溅射沉积SS-SiO2膜层和溅射沉积SiO2保护膜层步骤进行为主要特征。本发明产品内管,具有吸收率高,发射率低,耐受温度高,使用寿命长等特点;而本发明镀膜方法,具有方法简单可行,生产效率高,制成品质量好等特点。

Description

适用于槽式太阳能热发电的集热管的内管及其镀膜方法
技术领域
本发明涉及一种适用于槽式太阳能热发电的集热管的内管及其镀膜方法,属于太阳能热利用技术。
背景技术
槽式太阳能热发电的集热管,由不锈钢内管1与设在不锈钢内管外部的玻璃外管2组成,在所述内管与外管之间是抽真空的(请参见附图1)。
为了最大限度地提高太阳能热发电系统的热效率,就必须最大限度地提高所述集热管的集热效率。也就是说,位于真空集热管中承受高温高压的不锈钢内管以及玻璃外管,都应当具备很高的太阳能吸收率和极低的发射率。为此,已有技术采用在不锈钢内管表面,镀布太阳能选择性吸收膜,以实现太阳光的辐射能获得充分的利用。
德国、美国、以色列和意大利等国的研究机构,开发适用于槽式太阳能热发电真空集热管的高温选择性吸收膜,例如Farooq M、O等采用Ni/SiO2金属陶瓷作选择性吸收层,可在300℃温度条件下长期工作,其吸收率可达96%,而其发射率最高可达14%。旅居澳大利亚的华人学者章其初先生等人,采用Mo-Al2O3金属陶瓷作为太阳光辐射能吸收层,可在350℃温度条件下长期稳定工作,其吸收率可达96%,其发射率为11%。德国Shott公司和以色列Solel公司开发的吸收涂层,其工作温度可达500℃,其吸收率为≥95%,而在其工作温度为400℃时,其发射率为≤13%。
近年来,我国国内相关单位也研发了所述选择性吸收层,诸如中国专利号公开号CN101451773A和授权公告号CN201373612y,以及授权公告号CN201344667y等,都取得了一定的效果。而公开号CN101451773A采用的是至少1层不锈钢/氮化不锈钢吸收层,它的吸收率和放射率分别为83~84%和5~6%。其吸收率是很低的。而公告号CN201373612y采用的是Mo/SiO2吸收层。这种吸收层的吸收率和发射率未见描述。而仅说明其具有耐高温、抗氧化性能,结构稳定等特点。而公告号CN201344667y,采用的是氮化铝/三氧化二铝复合吸收层。这种吸收层的吸收率和发射率未见描述,而仅说明其具有较高的结合强度和良好的耐侯性等特点。
由以上所公开的已有技术可见,国外已有技术的吸收率最高为96%,其发射率最低为11%。而国内已有技术的吸收率仅为84%,在400℃温度以下的发射率为6%。
而所述槽式太阳能热发电的位于聚光器焦线上的每根真空集热管的结构长度在1000m左右,且其内管必须承受高温(>400℃)高压(>80Kpa)的长期作用。理论设计要求其吸收率≥96%,发射率≤10%,能在所述高温高压条件下长期正常工作。检索结果显示,至今未见有如此性能的集热管的内管报道。
发明内容
本发明旨在提供一种发射率≥96%,发射率≤10%的适用于槽式太阳能热发电的集热管的内管,以满足槽式太阳能热电装备的技术要求。
与此同时,提供一种上述集热管的内管的镀膜方法。
本发明实现其目的的技术构想是,选择一种耐高温选择性吸收涂层,即采用小金属颗粒(不锈钢316L)分散在电介质(Al2O3或SiO2)中的复合金属陶瓷膜。由于其金属的带间跃迁和小颗粒的共振,使所述金属陶瓷膜对太阳光谱,具有很强的吸收作用,但在红外光区它们是透明的。而其制备过程,是,采用多靶中频反应磁控溅射镀膜机(自行设计)在不锈钢基体管表面,溅射红外反射金属(Cu或A1)层,在红外反射金属层上先后溅射沉积SS-Al2O3(其中SS为不锈钢,以下同),最好是316L不锈钢高体积分数的金属陶瓷膜层,以及316L不锈钢低体积分数的SS-SiO2金属陶瓷膜层,从而构成SS-Al2O3/SS-SiO2复合耐高温选择性吸收涂层。再在所述耐高温选择性吸收涂层表面,溅射沉积SiO2保护膜层。以由这样的膜层系列,实现在400~500℃温度条件下,吸收率达到95~96%,在室温下的发射率≤5%,在400℃温度条件下的发射率达到≤8%的目的,从而实现本发明的目的。
有鉴于上述技术构想,本发明实现其第一个目的的技术方案是:
一种适用于槽式太阳能热发电集热管的内管,包括基体件不锈钢管,设置在基体件不锈钢管表面的红外反射金属膜层,和设置在红外反射金属膜层表面的双金属陶瓷吸收膜层,其创新点在于:
a、所述红外反射金属膜层是铜膜层;但不局限于此,例如采用铝反射膜层;
b、所述双金属陶瓷吸收膜层,是由一层高体积分数SS-Al2O3膜层,和一层低体积分数SS-SiO2膜层构成;所述SS-Al2O3膜层设置在铜膜层的表面;而SS-SiO2膜层设置在SS-Al2O3膜层的表面;
c、还包括SiO2保护膜层,所述SiO2保护膜层设置在SS-SiO2薄膜层的表面。
在以上所给出的技术方案中,所述红外反射金属膜层,也可以是铝膜层。应当说明的是,邻近不锈钢管基体表面,采用高体积分数即不锈钢金属含量高的SS-Al2O3金属陶瓷层,而远离不锈钢管基体表面,采用低体积分数即不锈钢金属含量低的SS-SiO2金属陶瓷层,且两者构成复合结构,从而提高了金属带间跃迁和小颗粒金属的共振,有效提高了其对太阳光能的吸收率,加上位于不锈钢管基体表面的红外反射金属膜层和位于最外表面的SiO2保护膜层(SiO2膜层兼具减反射能力),从而有效降低了红外发射率。而且由于SiO2保护膜层的存在,对于有效提高本发明耐高温选择性吸收层的实用寿命,起到了很好的作用。尤其是本发明所采用的SS-Al2O3金属陶瓷层和SS-SiO2金属陶瓷层中的金属,均为不锈钢(优选316L不锈钢),这不但具有很强的耐侯性,和形状尺寸的稳定性,而且还具备较高的耐温性,非常适宜在槽式太阳能热电系统的工艺温度条件下长期工作。从而实现了本发明了的目的。本发明初样例行试验结果显示,其吸收率≥96%,其发射率≤5%,在450℃~500℃温度条件下1000小时的例行试验表明,所述耐高温选择性吸收膜层,与不锈钢管基体之间的粘着牢固,未发现有裂纹,结构稳定,取得了十分令人满意的效果。
为了进一步提高存在于金属陶瓷层中不锈钢金属的带间跃迁(或称迁延)效果,进而令不锈钢金属小颗粒在金属陶瓷层中均匀分布(分布不均匀会造成对太阳光能吸收的盲点),与此同时有效解决SS-Al2O3和SS-SiO2镀膜工艺中的难点,本发明所述SS-Al2O3膜层,是由若干层第一SS不锈钢微薄膜层,与若干层Al2O3微薄膜层相间复合构成;所述SS-SiO2膜层,是由若干层第二SS不锈钢微薄膜层,与若干层SiO2微薄膜层相间复合构成。如此技术方案,同时解决了不锈钢金属带间跃迁和小颗粒均匀分布,以及镀膜工艺难点等两个问题。
本发明通过反复实验,优选的所述SS-Al2O3膜层和SS-SiO2膜层的厚度均在120~240nm范围内;所述第一和第二SS不锈钢微薄膜层、Al2O3微薄膜层和SiO2微薄膜层,各有10~12层,且每层的厚度在3~6nm范围内。当然在所述SS-Al2O3膜层和SS-SiO2膜层的设定厚度条件下,所述SS-Al2O3微薄膜层和SS-SiO2微膜层的层数越多越好,其厚度越薄越好,但这样做,势必会提升本发明制备成本,降低其性价比。
本发明实现其第二个目的的技术方案是:
一种制备如以上所述的适用于槽式太阳能热发电集热管的内管的镀膜方法,以不锈钢管为基体件,其创新点在于:
A、采用直立筒式多靶中频反应磁控溅射镀膜机为镀膜手段;所述镀膜机包括圆筒状镀膜室,设置在所述镀膜室内且沿镀膜室内壁圆周布置的基体件不锈钢管装载组件,基体件不锈钢管通过传动机构自转且围绕圆筒状镀膜室的中心公转;在圆筒状镀膜室内沿径向设置的一分隔板,由分隔板将圆筒状镀膜室分隔成左镀膜室和右镀膜室;分别设置在分隔板的两侧,且位于与分隔板呈正相交的直径线X上的且能转动的SS不锈钢靶和Cu靶;设置在分隔板的两侧,且位于基体件不锈钢管回转轨迹外围的至少2个Si靶和至少2个Al靶;所述至少2个Si靶和至少2个Al靶,布置在所述直径线X的两侧,以及抽真空装置、供电控制器、和供气排气控制器;
B、在所述镀膜机上,依次按照以下步骤进行镀膜:
a、对基体件不锈钢管作清洗烘干处理后,装在所述镀膜室内的基体件不锈钢管装载组件上;驱动传动机构令基体件不锈钢管自转和公转;
b、在不锈钢管基体表面,溅射沉积红外反射铜膜层;
c、在所述铜膜层表面,溅射沉积SS-Al2O3膜层
d、在所述SS-Al2O3膜层表面,溅射沉积SS-SiO2膜层;
e、在所述SS-SiO2膜层表面,溅射沉积SiO2保护膜层;
本发明积极主张,所述SS-Al2O3膜层,是分别通过若干层第一SS不锈钢微薄膜层,和若干层Al2O3微薄膜层交替相间溅射沉积而成的;
所述SS-SiO2膜层,是分别通过若干层第二SS不锈钢微薄膜层,和若干层SiO2微薄膜层交替相间溅射沉积而成的。
本发明还主张,
所述基体件不锈钢管的清洗步骤a,还包括Ar氩气粒子轰击清洗;所述Ar氩气粒子轰击清洗,是在对所述镀膜室抽真空到6.0×10-4Pa条件下,充入Ar气,Ar气流量为100Sccm,待镀膜室内压达到0.1~1×10-2Pa时,进行Ar气粒子轰击清洗;
所述在不锈钢管基体表面,溅射沉积红外反射铜膜层步骤b,是在清洗步骤a之后,起动铜靶,且令镀膜室的内压达到3.7×10-1Pa,溅射沉积铜膜层,待所述铜膜层达到设定厚度之后,关闭铜靶;
所述在铜膜层表面溅射沉积SS-Al2O3膜层步骤c,是在溅射沉积铜膜层步骤c之后,先启动SS不锈钢靶,经溅射沉积第一SS不锈钢微薄膜层厚度达到3~6nm后,关闭SS不锈钢靶;再启动Al靶和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室内压达到4.2×10-1Pa,溅射沉积Al2O3微薄膜层厚度达到3~6nm后,关闭氧气和中频电源,且排除镀膜室内的污气;如此通过反复交替溅射沉积SS不锈钢和Al2O3、构成由若干层第一SS不锈钢微薄膜层和若干层Al2O3微薄膜层相间复合构成的SS-Al2O3膜层;
所述在SS-Al2O3膜层表面溅射沉积SS-SiO2薄层步骤d,是在溅射沉积SS-Al2O3膜层步骤c步骤之后,先启动不锈钢靶,经溅射沉积第二SS不锈钢微薄膜层厚度达到3~6nm后,关闭SS不锈钢靶,再启动Si靶和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室内压达到4.2×10-1Pa,溅射沉积SiO2微薄膜层厚度达到3~6nm后,关闭中频电源,且排除镀膜室内污气;如此通过反复交替溅射沉积SS不锈钢和SiO2,构成由若干层SS不锈钢微薄膜层和若干层SiO2微薄膜层相间复合构成的SS-SiO2膜层;
所述在SS-SiO2膜层表面,溅射沉积SiO2保护膜层步骤e,是在溅射沉积SS-SiO2膜层步骤d之后,启动Si靶和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室内压达到4.2×10-1Pa,溅射沉积SiO2保护膜层,直至SiO2保护膜层达到设定厚度,即制得集热管的高增透膜内管。
本发明还主张,所述SS不锈钢靶为316L型不锈钢,Cu靶的纯度为99.95%,Si靶的纯度为99.999多晶硅,Al靶的纯度为99.99%;所述Cu靶和SS不锈钢靶均为圆柱型靶,且位于所述镀膜室的中心,Al靶和Si靶均为平面靶,且位于所述镀膜室内靠近内侧壁部位。
上述技术方案得以实施后,本发明产品所述内管,所具备的吸收率高,反射率低,耐受温度高,吸收膜层与不锈钢基体间粘着力强,结构稳定和使用寿命长等特点;以及本发明所述镀膜方法,所具备的工艺合理先进,所用镀膜设备简单可行,生产效率高,制成品质量好等特点,都是非常显著的。
附图说明
图1是一种槽式太阳能热发电集热管的结构示意图;图中所示1为不锈钢内管,3为金属陶瓷吸收膜层,6为玻璃外管、7为抽真空层;
图2是本发明产品所述集热管的内管一种具体实施方式的结构示意图;
图3是本发明所述镀膜方法所采用的直立筒式多靶中频反应磁控溅射镀膜机4的结构简示图(俯视状态)。
具体实施方式
以下对照附图,通过具体实施方式的描述,对本发明作进一步说明,
具体实施方式之一,如附图2。
一种适用于槽式太阳能热发电集热管的内管,包括φ70mm304不锈钢管1,设置在基体件不锈钢管1表面的红外反射金属膜层2,和设置在红外反射金属膜层2表面的双金属陶瓷吸收膜层3,而其:
a、所述红外反射金属膜层2是铜膜层;
b、所述双金属陶瓷吸收膜层3,是由一层高体积分数SS-Al2O3膜层3-1,和一层低体积分数SS-SiO2膜层3-2构成;所述SS-Al2O3膜层3-1设置在铜膜层2的表面;而SS-SiO2膜层3-2设置在SS-Al2O3膜层3-1的表面;
c、还包括SiO2保护膜层4,所述SiO2保护膜层4设置在SS-SiO2薄膜层3-2的表面。
且所述SS-Al2O3膜层3-1,是由若干层第一SS不锈钢微薄膜层3-1-1,与若干层Al2O3微薄膜层3-1-2相间复合构成;所述SS-SiO2膜层3-2,是由若干层第二SS不锈钢微薄膜层3-2-1,与若干层SiO2微薄膜层3-2-2相间复合构成。可通过加减第一SS不锈钢微薄膜层3-1-1和第二SS不锈钢微薄膜3-2-1的厚度,分别制备高体积分数SS-Al2O3膜层3-1和低体积分数SS-SiO2膜层3-2。
而所述SS-Al2O3膜层31和SS-SiO2膜层3-2的厚度均在120~240nm范围内;所述第一和第二SS不锈钢微薄膜层3-1-1、3-2-1,Al2O3微薄膜层3-1-2和SiO2微薄膜层3-2-2,各有10~12层,且每层的厚度在3~6nm范围内。
具体实施方式之二,请参读附图3,
一种适用于如具体实施方式之一所述的适用于槽式太阳能热发电集热管的内管的镀膜方法,以φ70mm304不锈钢管1为基体件,而其:
A、采用直立筒式多靶中频反应磁控溅射镀膜机5为镀膜手段;所述镀膜机5包括圆筒状镀膜室5-1,设置在所述镀膜室5-1内且沿镀膜室5-1内壁圆周布置的基体件不锈钢管装载组件5-2,基体件不锈钢管1通过传动机构(所述传动机构是业内常用的传动机构)自转且围绕圆筒状镀膜室5-1的中心公转;在圆筒状镀膜室5-1内沿径向设置的一分隔板5-3,由分隔板5-3将圆筒状镀膜室5-1分隔成左镀膜室5-1-1和右镀膜室5-1-2;分别设置在分隔板5-3的两侧,且位于与分隔板5-3呈正相交的直径线X上的且能转动的SS不锈钢靶5-4和Cu靶5-5;对称设置在分隔板5-3的两侧,且位于基体件不锈钢管1回转轨迹外围的2个Si靶5-6和2个Al靶5-7;所述2个Si靶5-6和2个Al靶5-7,在所述直径线X的两侧,以及抽真空装置5-8、供电控制器5-9、和供气排气控制器5-10;
B、在所述镀膜机5上,依次按照以下步骤进行镀膜:
a、对基体件不锈钢管1作清洗烘干处理后,装在所述镀膜室5-1内的基体件不锈钢管装载组件5-2上;驱动传动机构令基体件不锈钢管1自转和公转;
b、在不锈钢管1基体表面,溅射沉积红外反射铜膜层2;
c、在所述铜膜层2表面,溅射沉积SS-Al2O3膜层3-1
d、在所述SS-Al2O3膜层3-1表面,溅射沉积SS-SiO2膜层3-2;
e、在所述SS-SiO2膜层3-2表面,溅射沉积SiO2保护膜层4;
且所述SS-Al2O3膜层3-1,是分别通过若干层第一SS不锈钢微薄膜层3-1-1,和若干层Al2O3微薄膜层3-1-2交替相间溅射沉积而成的;
所述SS-SiO2膜层3-2,是分别通过若干层第二SS不锈钢微薄膜层3-2-1,和若干层SiO2微薄膜层3-2-2交替相间溅射沉积而成的。
而:
所述基体件不锈钢管1的清洗步骤a,还包括Ar氩气粒子轰击清洗;所述Ar氩气粒子轰击清洗,是在对所述镀膜室5-1抽真空到6.0×10-4Pa条件下,充入Ar气,Ar气流量为100Sccm,待镀膜室5-1的内压达到0.1~1×10-2Pa时,进行Ar气粒子轰击清洗;
所述在不锈钢管1基体表面,溅射沉积红外反射铜膜层2步骤b,是在清洗步骤a之后,起动铜靶5-5,且令镀膜室5-1的内压达到3.7×10-1Pa,溅射沉积铜膜层2,待所述铜膜层2达到设定厚度120~150nm之后,关闭铜靶5-5;
所述在铜膜层2表面溅射沉积SS-Al2O3膜层3-1步骤c,是在溅射沉积铜膜层2步骤c之后,先启动SS不锈钢靶5-4,经溅射沉积第一SS不锈钢微薄膜层3-1-1厚度达到3~6nm后,关闭SS不锈钢靶5-4;再启动Al靶5-7和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室5-1的内压达到4.2×10-1Pa,溅射沉积Al2O3微薄膜层3-1-2厚度达到3~6nm后,关闭氧气和中频电源,且排除镀膜室5-1内的污气(包括氧气);如此通过反复交替溅射沉积SS不锈钢和Al2O3、构成由若干层第一SS不锈钢微薄膜层3-1-1和若干层Al2O3微薄膜层3-1-2相间复合构成的SS-Al2O3膜层3-1;
所述在SS-Al2O3膜层3-1表面溅射沉积SS-SiO2薄层3-2步骤d,是在溅射沉积SS-Al2O3膜层3-1步骤c步骤之后,先启动不锈钢靶5-4,经溅射沉积第二SS不锈钢微薄膜层3-2-1厚度达到3~6nm后,关闭SS不锈钢靶5-4,再启动Si靶5-6和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室5-1内压达到4.2×10-1Pa,溅射沉积SiO2微薄膜层3-2-2厚度达到3~6nm后,关闭中频电源,且排除镀膜室5-1内污气(包括氧气);如此通过反复交替溅射沉积SS不锈钢和SiO2,构成由若干层第二SS不锈钢微薄膜层3-2-1和若干层SiO2微薄膜层3-2-2相间复合构成的SS-SiO2膜层3-2;
所述在SS-SiO2膜层3-2表面,溅射沉积SiO2保护膜层4步骤e,是在溅射沉积SS-SiO2膜层3-2步骤d之后,启动Si靶5-6和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室5-1内压达到4.2×10-1Pa,溅射沉积SiO2保护膜层4,直至SiO2保护膜层4厚度达到120~150nm,即制得集热管的高增透膜内管。
该具体实施方式的所述SS不锈钢靶5-4为316L型不锈钢,Cu靶5-5的纯度为99.95%,Si靶5-6的纯度为99.999多晶硅,Al靶5-7的纯度为99.99%;所述Cu靶5-5和SS不锈钢靶5-4均为圆柱型靶,且位于所述镀膜室5-1的中心,Al靶5-7和Si靶5-6均为平面靶,且位于所述圆筒状镀膜室5-1内靠近内侧壁部位。
该具体实施方式所述SS靶5-4,Cu靶5-5,Si硅5-6和铝靶5-7的启动溅射的电压及电流,均采用通常同样材料磁控溅射镀膜的电压及电流。所述所有的各膜层和各微薄膜层的镀膜厚度,均通过溅射镀膜的时间来控制。
本发明的应用范围,不受本说明书描述的限制。

Claims (7)

1.一种适用于槽式太阳能热发电集热管的内管,包括基体件不锈钢管(1),设置在基体件不锈钢管(1)表面的红外反射金属膜层(2),和设置在红外反射金属膜层(2)表面的双金属陶瓷吸收膜层(3),其特征在于:
a、所述红外反射金属膜层(2)是铜膜层;
b、所述双金属陶瓷吸收膜层(3),是由一层高体积分数SS-Al2O3膜层(3-1),和一层低体积分数SS-SiO2膜层(3-2)构成;所述SS-Al2O3膜层(3-1)设置在铜膜层(2)的表面;而SS-SiO2膜层(3-2)设置在SS-Al2O3膜层(3-1)的表面;
c、还包括SiO2保护膜层(4),所述SiO2保护膜层(4)设置在SS-SiO2薄膜层(3-2)的表面。
2.根据权利要求1所述的适用于槽式太阳能热发电集热管的内管,其特征在于:所述SS-Al2O3膜层(3-1),是由若干层第一SS不锈钢微薄膜层(3-1-1),与若干层Al2O3微薄膜层(3-1-2)相间复合构成;所述SS-SiO2膜层(3-2),是由若干层第二SS不锈钢微薄膜层(3-2-1),与若干层SiO2微薄膜层(3-2-2)相间复合构成。
3.根据权利要求2所述的适用于槽式太阳能热发电集热管的内管,其特征在于:所述SS-Al2O3膜层(3-1)和SS-SiO2膜层(3-2)的厚度均在120~240nm范围内;所述第一和第二SS不锈钢微薄膜层(3-1-1、3-2-1)、Al2O3微薄膜层(3-1-2)和SiO2微薄膜层(3-2-2),各有10~12层,且每层的厚度在3~6nm范围内。
4.一种制备如权利要求1所述的适用于槽式太阳能热发电集热管的内管的镀膜方法,以不锈钢管(1)为基体件,其特征在于:
A、采用直立筒式多靶中频反应磁控溅射镀膜机(5)为镀膜手段;所述镀膜机(5)包括圆筒状镀膜室(5-1),设置在所述镀膜室(5-1)内且沿镀膜室(5-1)内壁圆周布置的基体件不锈钢管装载组件(5-2),基体件不锈钢管(1)通过传动机构自转且围绕圆筒状镀膜室(5-1)的中心公转;在圆筒状镀膜室(5-1)内沿径向设置的一分隔板(5-3),由分隔板(5-3)将圆筒状镀膜室(5-1)分隔成左镀膜室(5-1-1)和右镀膜室(5-1-2);分别设置在分隔板(5-3)的两侧,且位于与分隔板(5-3)呈正相交的直径线(X)上的且能转动的SS不锈钢靶(5-4)和Cu靶(5-5);设置在分隔板(5-3)的两侧,且位于基体件不锈钢管(1)回转轨迹外围的至少2个Si靶(5-6)和至少2个Al靶(5-7);所述至少2个Si靶(5-6)和至少2个Al靶(5-7),布置在所述直径线(X)的两侧,以及抽真空装置(5-8)、供电控制器(5-9)、和供气排气控制器(5-10);
B、在所述镀膜机(5)上,依次按照以下步骤进行镀膜:
a、对基体件不锈钢管(1)作清洗烘干处理后,装在所述镀膜室(5-1)内的基体件不锈钢管装载组件(5-2)上;驱动传动机构令基体件不锈钢管(1)自转和公转;
b、在不锈钢管(1)基体表面,溅射沉积红外反射铜膜层(2);
c、在所述铜膜层(2)表面,溅射沉积SS-Al2O3膜层(3-1)
d、在所述SS-Al2O3膜层(3-1)表面,溅射沉积SS-SiO2膜层(3-2);
e、在所述SS-SiO2膜层(3-2)表面,溅射沉积SiO2保护膜层(4)。
5.根据权利要求4所述的适用于槽式太阳能热发电集热管的内管的镀膜方法,其特征在于:
所述SS-Al2O3膜层(3-1),是分别通过若干层第一SS不锈钢微薄膜层(3-1-1),和若干层Al2O3微薄膜层(3-1-2)交替相间溅射沉积而成的;
所述SS-SiO2膜层(3-2),是分别通过若干层第二SS不锈钢微薄膜层(3-2-1),和若干层SiO2微薄膜层(3-2-2)交替相间溅射沉积而成的。
6.根据权利要求5所述的适用于槽式太阳能热发电集热管的内管的镀膜方法,其特征在于:
所述基体件不锈钢管(1)的清洗步骤a,还包括Ar氩气粒子轰击清洗;所述Ar氩气粒子轰击清洗,是在对所述镀膜室(5-1)抽真空到6.0×10-4Pa条件下,充入Ar气,Ar气流量为100Sccm,待镀膜室(5-1)内压达到0.1~1×10-2Pa时,进行Ar气粒子轰击清洗;
所述在不锈钢管(1)基体表面,溅射沉积红外反射铜膜层(2)步骤b,是在清洗步骤a之后,起动铜靶(5-5),且令镀膜室(5-1)的内压达到3.7×10-1Pa,溅射沉积铜膜层(2),待所述铜膜层(2)达到设定厚度之后,关闭铜靶(5-5);
所述在铜膜层(2)表面溅射沉积SS-Al2O3膜层(3-1)步骤c,是在溅射沉积铜膜层(2)步骤c之后,先启动SS不锈钢靶(5-4),经溅射沉积第一SS不锈钢微薄膜层(3-1-1)厚度达到3~6nm后,关闭SS不锈钢靶(5-4);再启动Al靶(5-7)和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室(5-1)内压达到4.2×10-1Pa,溅射沉积Al2O3微薄膜层(3-1-2)厚度达到3~6nm后,关闭氧气和中频电源,且排除镀膜室(5-1)内的污气;如此通过反复交替溅射沉积SS不锈钢和Al2O3、构成由若干层第一SS不锈钢微薄膜层(3-1-1)和若干层Al2O3微薄膜层(3-1-2)相间复合构成的SS-Al2O3膜层(3-1);
所述在SS-Al2O3膜层(3-1)表面溅射沉积SS-SiO2薄层(3-2)步骤d,是在溅射沉积SS-Al2O3膜层(3-1)步骤c步骤之后,先启动不锈钢靶(5-4),经溅射沉积第二SS不锈钢微薄膜层(3-2-1)厚度达到3~6nm后,关闭SS不锈钢靶(5-4),再启动Si靶(5-6)和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室(5-1)内压达到4.2×10-1Pa,溅射沉积SiO2微薄膜层(3-2-2)厚度达到3~6nm后,关闭中频电源,且排除镀膜室(5-1)内污气;如此通过反复交替溅射沉积SS不锈钢和SiO2,构成由若干层SS不锈钢微薄膜层(3-2-1)和若干层SiO2微薄膜层(3-2-2)相间复合构成的SS-SiO2膜层(3-2);
所述在SS-SiO2膜层(3-2)表面,溅射沉积SiO2保护膜层(4)步骤e,是在溅射沉积SS-SiO2膜层(3-2)步骤d之后,启动Si靶(5-6)和中频电源,且充入氧气,氧气流量为100~105sccm,至镀膜室(5-1)内压达到4.2×10-1Pa,溅射沉积SiO2保护膜层(4),直至SiO2保护膜层(4)达到设定厚度,即制得集热管的高增透膜内管。
7.根据权利要求4所述的适用于槽式太阳能热发电集热管的内管的镀膜方法,其特征在于:所述SS不锈钢靶(5-4)为316L型不锈钢,Cu靶(5-5)的纯度为99.95%,Si靶(5-6)的纯度为99.999多晶硅,Al靶(5-7)的纯度为99.99%;所述Cu靶(5-5)和SS不锈钢靶(5-4)均为圆柱型靶,Al靶(5-7)和Si靶(5-6)均为平面靶。
CN201010142316A 2010-03-25 2010-03-25 适用于槽式太阳能热发电的集热管的内管及其镀膜方法 Active CN101839575B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201010142316A CN101839575B (zh) 2010-03-25 2010-03-25 适用于槽式太阳能热发电的集热管的内管及其镀膜方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201010142316A CN101839575B (zh) 2010-03-25 2010-03-25 适用于槽式太阳能热发电的集热管的内管及其镀膜方法

Publications (2)

Publication Number Publication Date
CN101839575A true CN101839575A (zh) 2010-09-22
CN101839575B CN101839575B (zh) 2012-10-10

Family

ID=42743112

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010142316A Active CN101839575B (zh) 2010-03-25 2010-03-25 适用于槽式太阳能热发电的集热管的内管及其镀膜方法

Country Status (1)

Country Link
CN (1) CN101839575B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613288A (zh) * 2013-11-16 2014-03-05 中山市创科科研技术服务有限公司 平板太阳能热水器吸热元件用的选择性吸收膜制备方法
CN104089423A (zh) * 2014-07-26 2014-10-08 山东中信能源联合装备股份有限公司 全玻璃高温真空集热管及其镀膜方法
CN107574406A (zh) * 2017-08-31 2018-01-12 山东奇威特太阳能科技有限公司 一种太阳能槽式集热管的钢管表面处理工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124851A (en) * 1980-03-05 1981-09-30 Yazaki Corp Selectively absorbing surface of heat collector utilizing solar heat
CN1414133A (zh) * 2001-10-25 2003-04-30 北京华瑞能科技发展有限责任公司 金属陶瓷薄膜
CN101093115A (zh) * 2007-07-06 2007-12-26 深圳市拓日新能源科技股份有限公司 太阳能光热转换镍铬集热膜及其制造方法
CN101451773A (zh) * 2007-12-07 2009-06-10 财团法人工业技术研究院 太阳能选择性吸收膜及其制造方法
CN101520247A (zh) * 2009-03-19 2009-09-02 常州博士新能源科技有限公司 槽式太阳能热发电用集热管的内管及其制备方法
CN101660117A (zh) * 2009-09-22 2010-03-03 皇明太阳能集团有限公司 一种太阳能选择性吸收涂层及其制备方法
CN101660132A (zh) * 2009-09-28 2010-03-03 西安交通大学 一种磁控溅射制备氢化硅碳薄膜的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56124851A (en) * 1980-03-05 1981-09-30 Yazaki Corp Selectively absorbing surface of heat collector utilizing solar heat
CN1414133A (zh) * 2001-10-25 2003-04-30 北京华瑞能科技发展有限责任公司 金属陶瓷薄膜
CN101093115A (zh) * 2007-07-06 2007-12-26 深圳市拓日新能源科技股份有限公司 太阳能光热转换镍铬集热膜及其制造方法
CN101451773A (zh) * 2007-12-07 2009-06-10 财团法人工业技术研究院 太阳能选择性吸收膜及其制造方法
CN101520247A (zh) * 2009-03-19 2009-09-02 常州博士新能源科技有限公司 槽式太阳能热发电用集热管的内管及其制备方法
CN101660117A (zh) * 2009-09-22 2010-03-03 皇明太阳能集团有限公司 一种太阳能选择性吸收涂层及其制备方法
CN101660132A (zh) * 2009-09-28 2010-03-03 西安交通大学 一种磁控溅射制备氢化硅碳薄膜的方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103613288A (zh) * 2013-11-16 2014-03-05 中山市创科科研技术服务有限公司 平板太阳能热水器吸热元件用的选择性吸收膜制备方法
CN104089423A (zh) * 2014-07-26 2014-10-08 山东中信能源联合装备股份有限公司 全玻璃高温真空集热管及其镀膜方法
CN107574406A (zh) * 2017-08-31 2018-01-12 山东奇威特太阳能科技有限公司 一种太阳能槽式集热管的钢管表面处理工艺

Also Published As

Publication number Publication date
CN101839575B (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
US8318329B2 (en) Radiation-selective absorber coating, absorber tube and process for production thereof
US8555871B2 (en) Radiation-selective absorber coating and absorber tube with said radiation-selective absorber coating
CN201218622Y (zh) 一种太阳能选择性吸收涂层
CN102102918B (zh) 一种Cr系高温太阳能选择性吸收涂层及其制备方法
CN101793437B (zh) 多用途太阳光谱选择性吸收涂层及其制备方法
CN100543499C (zh) 一种新型太阳选择性吸收涂层
CN101818328B (zh) 多层复合太阳能选择性吸收镀层的制备方法
US20100294263A1 (en) Radiation-selective absorber coating and absorber tube with radiation-selective absorber coating
CN101344334B (zh) 一种太阳光谱选择性吸收膜及其制备方法
CN102278833A (zh) 一种耐高温的选择性吸收涂层及制造方法
CN101886848B (zh) 一种太阳光谱选择性吸收膜及其制备方法
CN101839575B (zh) 适用于槽式太阳能热发电的集热管的内管及其镀膜方法
CN102095265A (zh) 中高温太阳能选择性吸收涂层及其制备方法
CN100532997C (zh) 一种太阳能选择性吸收涂层及其制备方法
CN104534703B (zh) 一种太阳能选择性吸收涂层及其制备方法
CN103029374A (zh) 一种中高温太阳能光热选择性吸收涂层
CN100343413C (zh) 一种太阳能选择性吸收涂层及其制备方法
CN202782003U (zh) 太阳选择性吸收涂层
CN201652952U (zh) 太阳能集热管的内管
CN104089423A (zh) 全玻璃高温真空集热管及其镀膜方法
CN201463375U (zh) 一种太阳能集热管
CN201250184Y (zh) 一种可钢化低辐射镀膜玻璃
CN103029365A (zh) 一种中高温太阳能选择性吸收涂层
CN102954611B (zh) 中高温光谱选择性吸收涂层
CN108611610A (zh) 一种双介质层太阳光谱选择性吸收薄膜及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP03 Change of name, title or address

Address after: 213100 Changzhou Province, Wujin District, the town of cattle, the town of rainbow road, No. 26

Patentee after: ROYAL TECH CSP LIMITED

Address before: 213163 Rainbow Road, Niu Tong Town, Wujin District, Jiangsu, Changzhou

Patentee before: Changzhou Longteng Solar Energy Heating Equipment Co., Ltd.