CN101809249A - 提高水力压裂井的支撑剂传导性的方法 - Google Patents

提高水力压裂井的支撑剂传导性的方法 Download PDF

Info

Publication number
CN101809249A
CN101809249A CN200880108476A CN200880108476A CN101809249A CN 101809249 A CN101809249 A CN 101809249A CN 200880108476 A CN200880108476 A CN 200880108476A CN 200880108476 A CN200880108476 A CN 200880108476A CN 101809249 A CN101809249 A CN 101809249A
Authority
CN
China
Prior art keywords
proppant
additive
carrier fluid
density
low density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880108476A
Other languages
English (en)
Other versions
CN101809249B (zh
Inventor
杰弗里·T·沃特斯
马哈德夫·阿马查思拉姆
拉里·T·沃特斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CSI Technology Inc
Original Assignee
CSI Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CSI Technology Inc filed Critical CSI Technology Inc
Publication of CN101809249A publication Critical patent/CN101809249A/zh
Application granted granted Critical
Publication of CN101809249B publication Critical patent/CN101809249B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/60Compositions for stimulating production by acting on the underground formation
    • C09K8/80Compositions for reinforcing fractures, e.g. compositions of proppants used to keep the fractures open
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S507/00Earth boring, well treating, and oil field chemistry
    • Y10S507/922Fracture fluid
    • Y10S507/924Fracture fluid with specified propping feature

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Colloid Chemistry (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

一种延缓水力压裂中支撑剂沉降的方法,以便更好地悬浮支撑剂和确保更均匀的填充,通过向压裂浆液中与标准的高密度支撑剂一起混入预定体积百分比的低密度添加剂,例如玻璃珠或其它合适材料,例如聚乳酸颗粒,在裂缝中可产生预期的密度梯度。由于低密度添加剂的密度小于载液的密度,添加剂的向上运动阻碍了高密度支撑剂的向下运动,反之亦然。限定在狭窄裂缝中的这两种支撑剂的互相干涉极大地阻碍了高密度支撑剂的沉降/分离。低密度材料的比重大约是0.3,颗粒尺寸分布与标准支撑剂的分布类似,并且具有承受裂缝闭合应力的足够机械强度。

Description

提高水力压裂井的支撑剂传导性的方法
相关申请的交叉引用
在美国,这是美国专利申请序列号11/782151的部分延续申请,申请日是2007年7月24日,通过参考合并于此,并且因此要求优先权。
在此要求美国专利申请序列号11/782151的优先权,其申请日是2007年7月24日,通过参考合并于此。
关于联邦政府赞助科研或发展的声明
不适用
参考“缩微胶片附录”
不适用
技术领域
本发明的方法涉及通过向包含压裂液和支撑剂的压裂浆液中添加低密度材料来阻碍在垂直裂缝中支撑剂的沉降的方法。
背景技术
水力压裂包括在储层中产生裂缝以增加烃的产量。高粘流体混合支撑剂或砂子注入裂缝。当裂缝闭合时,支撑剂留在裂缝中产生较大的流动面积和高传导通道以使烃流进井眼。支撑剂或砂子用来保持张开的裂缝。粘性流体用来传输、悬浮并最终允许支撑剂填进裂缝中。在水力压裂处理中,这些流体一般遵循距离或剪切变化率(range or shear rates)的幂律特性。
在支撑剂压裂处理中一般流体用量的范围从几千加仑到几百万加仑。支撑剂用量大约几千立方英尺。目标是获得均匀的支撑剂分布;且因此获得沿着井眼高度和裂缝半长的均匀传导裂缝。然而,非牛顿流体中支撑剂沉降的复杂性经常造成较高浓度的支撑剂在裂缝的下半部分沉下来。这经常导致裂缝和井眼的上半部分缺乏充足的支撑剂覆盖。支撑剂的聚集,包覆,桥接和嵌入是降低支撑剂填充的潜在传导性的几种现象。
产生裂缝时,水力裂缝内支撑剂的运移包括两个分量。水平分量由流体速度和相关流线决定,有助于携带支撑剂到裂缝的顶部。垂直分量由颗粒的最终颗粒沉降速度决定,是支撑剂直径和密度、流体速度和密度的函数。最终沉降速度因前述不同现象而更显复杂。
在裂缝产生过程中的某些时刻,支撑剂覆盖达到一平衡几何构型,平衡几何构型上面的所有注入的支撑剂可被携带更远进入裂缝。这潜在地限制了有效支撑裂缝的高度也大大增加了处理期间的桥堵风险。
当泵送停止时,裂缝最终关闭了支撑剂的填充。流体中包含降粘剂,其可以降低流体的表观粘度,有助于因更快的漏失而加速裂缝闭合。静态流体的流体粘度的降低导致更高的沉降速度,造成更多支撑剂沉降到裂缝底部。潜在的孔洞和不均匀的填充造成了低效的支撑面积并因此在出现闭合时大大减小了有效井眼半径。
其它的旨在阻止垂直裂缝中支撑剂沉降的发明着力于设计密度与载液密度相等的支撑剂。因此液体中的支撑剂将中性地浮在裂缝中并保持在垂直进入闭合裂缝的位置。设计中性浮力支撑剂的方法包括多孔陶瓷颗粒的表面密封以在颗粒内部的孔洞进行空气填充,设计强复合材料和中空的陶瓷球,和设计具有足够的壁强度能承受闭合应力的中空球。
从支撑剂耐久性和制造成本角度来看,这些方法都具有内在缺陷。
发明内容
本发明在此公开了一种减轻上述影响的方法,以更好地悬浮支撑剂并保证更均匀的填充。通过加入比流体介质密度低的添加剂,预期可引起裂缝内部的密度梯度。添加剂可以是相对于沉下去而言在流体团中浮起的任何材料。低密度添加剂的向上运动干涉高密度支撑剂的向下运动,反之亦然。这种限定在狭窄裂缝中的支撑剂和添加剂间的相互干涉极大地阻碍了高密度支撑剂的沉降/隔离。低密度材料具有小于载液介质的比重,颗粒尺寸分布类似于标准支撑剂的分布,并且可具有或不具有足够承受裂缝闭合应力的机械强度。所以,除了具有浮力外,这种材料也可作为支撑剂。
建议通过混合一定百分比的具有类似于支撑剂机械性能的低密度添加剂至压裂浆液中,能够实现更有效的支撑剂覆盖和压裂半长。
地面、管子和射孔孔眼(perforations)上的高剪切变化率将确保压裂浆液中的支撑剂和低密度添加剂的相对均匀混合。随着浆液混合物进入裂缝,剪切变化率的迅速下降使支撑剂和低密度添加剂在流体中运移。一旦泵送停止,支撑剂和添加剂之间的密度梯度导致支撑剂向裂缝底部运移,而与此同时低密度添加剂向裂缝顶部运移。这引起支撑剂的双向受阻沉降,因此极大降低了支撑剂的沉降速率。当裂缝关闭填充时,更多的支撑剂材料保留在了上部裂缝中。
压裂液中低密度添加剂的比例被认为是裂缝闭合时间的函数。对于低渗地层,压裂后裂缝闭合需要几个小时,因此需要加入更多数量的低密度添加剂。
这种工艺确保支撑剂沿着裂缝高度充填得更均匀,因此也有助于提高处理的总体效率。由于低密度添加剂具有相似的尺寸分布和闭合应力特征,充填的传导性不会受到影响。实际上,由于低密度添加剂具有更好的球度和圆度,预计压裂的整体传导性将比仅仅包含支撑剂的一般压裂浆液的整体传导性要更高。
附图说明
具体实施方式
压裂浆液中加入低密度添加剂将涉及添加剂的精确计量。大多数用于计量压裂液中的固态破乳剂(solid breakers)的现场使用的设备(field scaleequipment)可被升级以用于低密度添加剂的加入。为了确保裂缝内的最小嵌入和压碎,低密度颗粒可以满足、或不满足、或超过强度需求。
如上述提及的,裂缝闭合时间决定了处理期间使用的添加剂的重量百分比。低渗透率岩石的典型的较长的闭合时间将需要更高的体积含量(volumefractions)。另外,较高强度的支撑剂具有较高的沉降速率。这也将需要更大的低密度添加剂的含量以引起对沉降的更大阻碍。图表作为设计的辅助用于各种地层、压裂液和支撑剂性质。
下面的实验数据证实了本发明中方法的实用性和新颖性。
实验1:交联凝胶支撑剂沉降试验
静态的支撑剂沉降试验在1英寸直径、5英尺长的玻璃管中进行。管子被垂直支撑并在底端封堵。在整个管子的长度上以1英寸的增量做了参考标记。试验采用了25lb/Mgal(0.00299grams/mL)交联压裂液。该压裂液是基于硼酸盐交联剂的瓜尔胶。基线液中流体(PPA)20/40目支撑剂的浓度为每加仑4磅(0.4793grams/mL)。在混合后它被导进管子里和计时开始。该试验在室内温度下保持静态。当支撑剂沉降时,监测支撑剂/凝胶界面从顶部降到底部。另外两个试验在上述提及条件下进行。低密度(SG=0.9)、球形添加剂以一定浓度混合进入交联凝胶/支撑剂浆液中或者以支撑剂重量的1%和2%被混合进交联凝胶/支撑剂浆液中。另外,随着时间监测支撑剂界面。三个试验的所有结果都总结在下面的表3中。
表3:实验1数据总结
试验序号 %(BWOP)低密度添加剂   18英寸或45.7cm的沉降时间(hr:min)   23英寸或58.4cm的沉降时间(hr:min)   25.5英寸或64.8cm的沉降时间(hr:min)
  1   0   2:30   4:00   5:50
  2   1   3:30   6:50   8+
  3   2   22:00   22:00+   22:00+
上面的试验结果表明低密度添加剂成功地阻碍了支撑剂的沉降,结果产生了更长的支撑剂沉降时间。
实验2:大型、线性凝胶(linear gel)支撑剂沉降试验
支撑剂沉降试验在8英尺高、2英尺宽(243.8cm高、61cm宽)有机玻璃窗口内进行,有机玻璃板之间具有1/2英寸(1.27cm)的间隙。窗口具有钢强化木框架,框架具有四个7/16英寸(1.11cm)的入口孔眼和出口孔眼,装设有球阀。金属支撑件用1英尺(30.48cm)的间距增量固定在窗口上并用作试验参考。共进行了4个试验。
试验1和2用15lb/Mgal瓜尔胶基线性凝胶进行。凝胶的表观粘度在511S-1下是8cP。用于试验的线性凝胶包含2PPA支撑剂浓度,30/50目。试验1没有采用低密度添加剂和试验2采用了5%重量百分比的低密度添加剂。添加剂用30/50目筛选且具有0.8的比重。制备线性凝胶并加入支撑剂,以实现2PPA的最终浓度。试验2中加入了低密度添加剂,浆液被混合至均匀。然后通过1英寸隔膜泵的试验设备来泵送浆液直至充满。关闭泵,所有阀都关闭。随时间观察和监测支撑剂界面以确定沉降速率。试验数据总结在下面表4中。
表4:实验2,试验1和2数据总结
 沉降时间  0%低密度添加剂  5%低密度添加剂  增加的沉降时间%
 1ft(30.5cm)  8sec  11sec  38
 2ft(61cm)  22sec  42sec  91
 3ft(91.4cm)  47sec  61sec  30
 4ft(122.9cm)  56sec  77sec  38
上述试验结果表明低密度添加剂成功地阻碍了支撑剂沉降,结果产生了更长的支撑剂沉降时间。
试验3和4用25lb/Mgal(0.00299gram/mL)瓜尔胶基线性凝胶进行。凝胶的表观粘度在511S-1下是16CP。用于试验的线性凝胶包含2PPA支撑剂浓度,30/50目。试验3没有采用低密度添加剂,试验4采用了5%重量百分比的低密度添加剂。添加剂用30/50目筛选且具有0.8的比重。制备线性凝胶并加入支撑剂。以实现2PPA的最终浓度。试验4中加入了低密度添加剂,浆液被混合至均匀。然后通过1英寸隔膜泵的试验设备来泵送浆液直至充满。关闭泵,所有阀都关闭。随时间观察和监测支撑剂界面以确定沉降速率。试验数据总结在下面表5中。
表5:实验2,试验3和4数据总结
  沉降时间  0%低密度添加剂  5%低密度添加剂   增加的沉降时间%
  1ft(30.5cm)  15sec  24sec   60
  2ft(61cm)  28sec  44sec   57
  3ft(91.4cm)  48sec  67sec   40
  4ft(122.9cm)  65sec  79sec   22
上述试验结果表明低密度添加剂成功地阻碍了支撑剂沉降,结果产生了更长的支撑剂沉降时间。
美国临时专利申请序列号60/832994,申请日2006年7月25日,通过参考合并于此。
这里公开的所有测量都是标准温度和压力,在地球的海平面上,除非另有指明。
前面的实施例仅通过示例描述;本发明的范围仅由下面的权利要求来限制。

Claims (8)

1.一种延迟在水力压裂中支撑剂沉降的方法,该方法包括下述步骤:
a.提供支撑剂载液浆液;
b.提供比重大于载液的比重的支撑剂;
c.基于相对支撑剂载液浆液的支撑剂量,加入小百分比的低密度颗粒材料,颗粒添加剂的比重小于载液的比重;
d.由于低密度颗粒、载液和支撑剂间的比重梯度,使得在支撑剂颗粒在载液中下降时添加剂颗粒在载液中上升;和
e.通过向上运动的添加剂颗粒和向下运动的支撑剂颗粒间的碰撞的干涉,减慢了支撑剂沉降速率,导致在闭合时裂缝中支撑剂的更加均匀的垂直分布。
2.如权利要求1所述的方法,其中颗粒材料添加剂不需要有足够的强度以用作支撑剂。
3.如权利要求1所述的方法,其中添加剂可以在裂缝闭合时破碎。
4.如权利要求1所述的方法,其中添加剂设计为随着时间溶解,由此消除了支撑剂填充损害。
5.如权利要求1所述的方法,其中颗粒材料包括聚酯,例如聚乳酸颗粒,所述聚酯将水解并随着时间从支撑剂层中清除。
6.如权利要求1所述的方法,其中通过加入低比重固体颗粒添加剂至支撑剂载液浆液中,该方法减缓水力压裂中支撑剂的沉降,产生均匀分布的支撑剂填充。
7.如权利要求1所述的方法,其中低密度颗粒材料包括聚乳酸颗粒。
8.如权利要求1所述的方法,其中低密度颗粒材料包括玻璃珠。
CN200880108476.XA 2007-07-24 2008-04-30 提高水力压裂井的支撑剂传导性的方法 Expired - Fee Related CN101809249B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/782,151 US7708069B2 (en) 2006-07-25 2007-07-24 Method to enhance proppant conductivity from hydraulically fractured wells
US11/782,151 2007-07-24
PCT/US2008/061989 WO2009014786A1 (en) 2007-07-24 2008-04-30 A method to enhance proppant conductivity from hydraulically fractured wells

Publications (2)

Publication Number Publication Date
CN101809249A true CN101809249A (zh) 2010-08-18
CN101809249B CN101809249B (zh) 2014-02-12

Family

ID=39705661

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880108476.XA Expired - Fee Related CN101809249B (zh) 2007-07-24 2008-04-30 提高水力压裂井的支撑剂传导性的方法

Country Status (7)

Country Link
US (1) US7708069B2 (zh)
EP (1) EP2179132A4 (zh)
CN (1) CN101809249B (zh)
BR (1) BRPI0814316A2 (zh)
CA (1) CA2694099C (zh)
RU (1) RU2481469C2 (zh)
WO (1) WO2009014786A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104653165A (zh) * 2013-11-25 2015-05-27 普拉德研究及开发股份有限公司 受控的不均匀支撑剂团聚体形成
CN104727801A (zh) * 2015-03-17 2015-06-24 中国石油化工股份有限公司胜利油田分公司石油工程技术研究院 一种应用支撑剂密度差异实现大通道的压裂工艺
CN106837286A (zh) * 2017-03-23 2017-06-13 中国石油集团川庆钻探工程有限公司工程技术研究院 一种针对厚砂体充分压裂改造的顶部油气层压裂工艺

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7896075B2 (en) * 2008-02-04 2011-03-01 Halliburton Energy Services, Inc. Subterranean treatment fluids with enhanced particulate transport or suspension capabilities and associated methods
US10125601B2 (en) 2010-03-04 2018-11-13 University Of Utah Research Foundation Colloidal-crystal quantum dots as tracers in underground formations
US9840896B2 (en) 2012-09-21 2017-12-12 Thru Tubing Solutions, Inc. Acid soluble abrasive material and method of use
WO2017065779A1 (en) * 2015-10-15 2017-04-20 Halliburton Energy Services, Inc. Micro-proppant fracturing fluid and slurry concentrate compositions
US10655444B2 (en) 2015-10-22 2020-05-19 Halliburton Energy Services, Inc. Enhancing propped complex fracture networks in subterranean formations
US10421897B2 (en) 2015-11-30 2019-09-24 Schlumberger Technology Corporation Method of treating a well with the formation of proppant structures (variants)
US10479929B2 (en) * 2016-06-06 2019-11-19 Baker Hughes, A Ge Company, Llc Spherical high temperature high closure tolerant cashew nut shell liquid based proppant, methods of manufacture, and uses thereof
US20190040305A1 (en) * 2017-08-01 2019-02-07 Weatherford Technology Holdings, Llc Fracturing method using a low-viscosity fluid with low proppant settling rate
US11313214B2 (en) 2018-08-10 2022-04-26 Halliburton Energy Services, Inc. Creating high conductivity layers in propped formations
US10647910B1 (en) 2018-10-19 2020-05-12 Halliburton Energy Services, Inc. Methods for enhancing effective propped fracture conductivity
CN111305806B (zh) * 2018-11-27 2022-06-03 中国石油天然气股份有限公司 自支撑裂缝导流能力的分析方法及装置
US11566504B2 (en) 2019-07-17 2023-01-31 Weatherford Technology Holdings, Llc Application of elastic fluids in hydraulic fracturing implementing a physics-based analytical tool
CN113513295B (zh) * 2020-04-10 2023-06-13 中国石油化工股份有限公司 一种提高段内多簇裂缝均匀延伸和支撑的方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3159217A (en) * 1959-04-10 1964-12-01 Dow Chemical Co Plastically deformable solids in treating subterranean formations
US3155162A (en) * 1961-11-20 1964-11-03 Pan American Petroleum Corp Propping fractures with glass balls
US3625892A (en) * 1966-03-25 1971-12-07 Union Oil Co Hydraulic fracturing of tilted subterranean formations
US3399727A (en) 1966-09-16 1968-09-03 Exxon Production Research Co Method for propping a fracture
US3750886A (en) 1971-06-30 1973-08-07 G Salm Apparatus for maintaining the potability of cistern water
US4078609A (en) * 1977-03-28 1978-03-14 The Dow Chemical Company Method of fracturing a subterranean formation
EP0046568B1 (en) * 1980-08-26 1985-01-16 SOCIETA' DI FATTO ASCO di VANDELLI DINO & C. A rotary cultivator hoeing tool fitted with one or more non-compaction teeth
US4421167A (en) 1980-11-05 1983-12-20 Exxon Production Research Co. Method of controlling displacement of propping agent in fracturing treatments
US4547468A (en) * 1981-08-10 1985-10-15 Terra Tek, Inc. Hollow proppants and a process for their manufacture
US4462466A (en) 1982-03-29 1984-07-31 Kachnik Joseph E Method of propping fractures in subterranean formations
US4509598A (en) * 1983-03-25 1985-04-09 The Dow Chemical Company Fracturing fluids containing bouyant inorganic diverting agent and method of use in hydraulic fracturing of subterranean formations
US4493875A (en) 1983-12-09 1985-01-15 Minnesota Mining And Manufacturing Company Proppant for well fractures and method of making same
US4627495A (en) 1985-04-04 1986-12-09 Halliburton Company Method for stimulation of wells with carbon dioxide or nitrogen based fluids containing high proppant concentrations
US4654266A (en) 1985-12-24 1987-03-31 Kachnik Joseph L Durable, high-strength proppant and method for forming same
US5103905A (en) 1990-05-03 1992-04-14 Dowell Schlumberger Incorporated Method of optimizing the conductivity of a propped fractured formation
US5582250A (en) 1995-11-09 1996-12-10 Dowell, A Division Of Schlumberger Technology Corporation Overbalanced perforating and fracturing process using low-density, neutrally buoyant proppant
US6330916B1 (en) 1996-11-27 2001-12-18 Bj Services Company Formation treatment method using deformable particles
CA2226928C (en) * 1997-01-14 2006-11-28 Gillman A. Hill Multiple zone well completion method and apparatus
US6258859B1 (en) * 1997-06-10 2001-07-10 Rhodia, Inc. Viscoelastic surfactant fluids and related methods of use
US6582819B2 (en) * 1998-07-22 2003-06-24 Borden Chemical, Inc. Low density composite proppant, filtration media, gravel packing media, and sports field media, and methods for making and using same
RU2180397C1 (ru) * 2000-11-17 2002-03-10 Открытое акционерное общество "Боровичский комбинат огнеупоров" Проппант
AU2002327694A1 (en) * 2001-09-26 2003-04-07 Claude E. Cooke Jr. Method and materials for hydraulic fracturing of wells
US6640898B2 (en) 2002-03-26 2003-11-04 Halliburton Energy Services, Inc. High temperature seawater-based cross-linked fracturing fluids and methods
US7153575B2 (en) * 2002-06-03 2006-12-26 Borden Chemical, Inc. Particulate material having multiple curable coatings and methods for making and using same
US6923264B2 (en) 2003-03-05 2005-08-02 Halliburton Energy Services, Inc. Methods of fracturing subterranean zones, fracturing fluids and breaker activators therefor
CA2644213C (en) 2003-03-18 2013-10-15 Bj Services Company Method of treating subterranean formations using mixed density proppants or sequential proppant stages
US6986392B2 (en) 2003-03-25 2006-01-17 Halliburton Energy Services, Inc. Recyclable foamed fracturing fluids and methods of using the same
US7125825B2 (en) 2003-04-25 2006-10-24 Tomah Products, Inc. Amidoamine salt-based viscosifying agents and methods of use
US6945329B2 (en) 2003-05-15 2005-09-20 Halliburton Energy Services, Inc. Methods and compositions for placing particulate materials in subterranean zones
US7207386B2 (en) * 2003-06-20 2007-04-24 Bj Services Company Method of hydraulic fracturing to reduce unwanted water production
US7044224B2 (en) 2003-06-27 2006-05-16 Halliburton Energy Services, Inc. Permeable cement and methods of fracturing utilizing permeable cement in subterranean well bores
US6966379B2 (en) 2003-10-10 2005-11-22 Halliburton Energy Services, Inc. Methods of fracturing a subterranean formation using a pH dependent foamed fracturing fluid
US7726399B2 (en) 2004-09-30 2010-06-01 Bj Services Company Method of enhancing hydraulic fracturing using ultra lightweight proppants
US20060073980A1 (en) 2004-09-30 2006-04-06 Bj Services Company Well treating composition containing relatively lightweight proppant and acid
US7325608B2 (en) 2004-12-01 2008-02-05 Halliburton Energy Services, Inc. Methods of hydraulic fracturing and of propping fractures in subterranean formations
US20060175059A1 (en) * 2005-01-21 2006-08-10 Sinclair A R Soluble deverting agents
BRPI0606548A2 (pt) 2005-02-04 2009-06-30 Oxane Materials Inc propante, método para produzir um propante, formulação de propante, método para preencher e suportar frações abertas de formações subterráneas e método para tratar uma zona subterránea produtora

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104653165A (zh) * 2013-11-25 2015-05-27 普拉德研究及开发股份有限公司 受控的不均匀支撑剂团聚体形成
CN104727801A (zh) * 2015-03-17 2015-06-24 中国石油化工股份有限公司胜利油田分公司石油工程技术研究院 一种应用支撑剂密度差异实现大通道的压裂工艺
CN104727801B (zh) * 2015-03-17 2017-12-26 中国石油化工股份有限公司胜利油田分公司石油工程技术研究院 一种应用支撑剂密度差异实现大通道的压裂工艺
CN106837286A (zh) * 2017-03-23 2017-06-13 中国石油集团川庆钻探工程有限公司工程技术研究院 一种针对厚砂体充分压裂改造的顶部油气层压裂工艺
CN106837286B (zh) * 2017-03-23 2020-08-25 中国石油集团川庆钻探工程有限公司工程技术研究院 一种针对厚砂体充分压裂改造的顶部油气层压裂工艺

Also Published As

Publication number Publication date
EP2179132A1 (en) 2010-04-28
BRPI0814316A2 (pt) 2015-01-06
RU2481469C2 (ru) 2013-05-10
CA2694099A1 (en) 2009-01-29
RU2010106077A (ru) 2011-08-27
US20080196895A1 (en) 2008-08-21
CN101809249B (zh) 2014-02-12
CA2694099C (en) 2015-10-06
WO2009014786A1 (en) 2009-01-29
US7708069B2 (en) 2010-05-04
EP2179132A4 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
CN101809249B (zh) 提高水力压裂井的支撑剂传导性的方法
Liang et al. A comprehensive review on proppant technologies
US7494711B2 (en) Coated plastic beads and methods of using same to treat a wellbore or subterranean formation
EP2876119B1 (en) Gel, plugging method using the same, and plugging and well-killing method using the same
US4109721A (en) Method of proppant placement in hydraulic fracturing treatment
US3127937A (en) Method and a composition for treating subsurface fractures
CN109072065A (zh) 通过压裂后通道形成来增强导流能力的方法
US8327940B2 (en) Method for hydraulic fracturing of a low permeability subterranean formation
US9458710B2 (en) Hydraulic fracturing system
CN114651053B (zh) 包含延迟释放剂的带涂层复合材料及其使用方法
US20070209795A1 (en) Method of using lightweight polyamides in hydraulic fracturing and sand control operations
EA009172B1 (ru) Способ вскрытия слабо затвердевших формаций
Liao et al. Lightweight proppants in unconventional oil and natural gas development: A review
US20140020893A1 (en) Use of Expandable Self-Removing Filler Material in Fracturing Operations
RU2690979C2 (ru) Сформованные прессованные гранулы для медленного выпуска в скважину скважинных обрабатывающих агентов и способы их применения
CA2681646A1 (en) A method of hydraulic fracturing
Nguyen et al. Evaluation of low-quality sand for proppant-free channel fracturing method
RU2678250C2 (ru) Композиции и способы повышения проницаемости трещин
US20140048262A1 (en) Methods for Pillar Placement in Fracturing
CN112680201A (zh) 一种煤层气井洗井液及其制备方法和应用
US10538697B2 (en) Proppant aggregates for use in subterranean formation operations
US10519364B2 (en) Proppant aggregate particulates for use in subterranean formation operations
US20210172308A1 (en) Creating high conductivity layers in propped formations
Fu et al. Experimental study of self-aggregating proppants: new approaches to proppant flowback control
CN112302579B (zh) 一种水平井分段防砂堵水系统及方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20140212

Termination date: 20190430