CN101803148B - 用于数据中心的电源 - Google Patents

用于数据中心的电源 Download PDF

Info

Publication number
CN101803148B
CN101803148B CN200880106672.3A CN200880106672A CN101803148B CN 101803148 B CN101803148 B CN 101803148B CN 200880106672 A CN200880106672 A CN 200880106672A CN 101803148 B CN101803148 B CN 101803148B
Authority
CN
China
Prior art keywords
electric power
battery
bus
voltage
power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200880106672.3A
Other languages
English (en)
Other versions
CN101803148A (zh
Inventor
塞尔韦特·康赫德兹克
安德鲁·B·卡尔森
威廉·H·维特德
蒙哥马利·西科拉
肯·克里格
威廉·哈姆伯根
唐纳德·L·比提
杰拉尔德·艾格纳
吉米·克里达拉斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Google LLC
Original Assignee
Google LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Google LLC filed Critical Google LLC
Publication of CN101803148A publication Critical patent/CN101803148A/zh
Application granted granted Critical
Publication of CN101803148B publication Critical patent/CN101803148B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/263Arrangements for using multiple switchable power supplies, e.g. battery and AC
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • G06F1/30Means for acting in the event of power-supply failure or interruption, e.g. power-supply fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/001Hot plugging or unplugging of load or power modules to or from power distribution networks
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/14Balancing the load in a network
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/70Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Power Sources (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

装置和相关联的方法以及计算机程序产品涉及支持模块化处理单元的高效不间断配电架构。作为说明性的示例,模块化处理单元包括集成的不间断电力系统,在其中在设施AC线路网和处理电路(例如,微处理器)负载之间发生PFC升压AC到DC转换。在说明性的数据中心设施中,配电架构包括机架可安装的处理单元的模块化阵列,每一个机架可安装的处理单元具有处理网络相关的处理任务的处理电路。与每一个模块化处理单元相关联的是向网络处理电路供应操作电力的集成的不间断电源(UPS)。每一个UPS包括跨DC总线能够选择性地连接的电池以及将AC输入电压转换为DC总线上的单个输出电压的AC到DC整流器。调节的DC总线电压可以接近于电池的全充满电压。

Description

用于数据中心的电源
技术领域
以下公开涉及在数据中心中的配电,例如用于向可扩缩的和/或模块化的数据处理设备高效地输送不间断电力的技术和相关联的装置。
背景技术
电力通常始于其纯净的生命——发电厂发电机以恒定的速度旋转来产生平滑的、恒定频率的正弦交流电信号。该信号如新生婴儿般美好地进入世界,但是其开始迅速变老。闪电的袭击将巨大的尖峰插入平滑的正弦曲线。工业设备中的电动机将噪音反馈回用电系统中,更加干扰来自发电厂的平滑地变化的电压。即使家用电器也可以引起这样的干扰,如同人们可以经常从音响设备听到的那样。
高保真音响爱好者不是担心在其电力线上的噪音、尖峰和其它问题的唯一人群。相反,诸如计算机的其它电子设备的操作者也希望具有“干净的”电力以阻止对其敏感设备的损害。对于诸如计算机数据中心的可能正操作成千上万的计算机服务器的大型商用计算机站的操作者,尤其如此。计算机中心的操作者也想要恒定的电力——没有中断、没有哔哔声以及没有突然的重启。因此,这样的操作者可以安装不间断电源(UPS)来在电力故障期间保持系统操作或者给予系统足够的时间来安全并利落地关机,所述不间断电源可以调整电力(例如,以将电力返回其原始平滑的、正弦的形式)和提供某一层级的电池备用。在大型计算机数据中心中,这样的UPS可以在电力进入数据中心时调整该电力,并且可以调整多兆瓦的电力。
购买和操作适于大型数据中心的大型UPS系统是很昂贵的。这样的系统可能花费数百万美元来购买和安装。同时,其低于100%的效率,因此“从顶值”扣除少许电力——这作为百分率基准可能是微小的,但是对于每年使用数百万美元的电力的设施可以是非常巨大的。
发明内容
如关于本文档中的某些实施方式所描述的,装置和相关联的方法以及计算机程序产品涉及支持模块化处理单元的高效不间断配电架构。作为说明性的示例,模块化处理单元包括集成的不间断电力系统,在该集成的不间断电力系统中在设施AC线路网和处理电路(例如,微处理器)负载之间发生仅一个AC到DC整流。
在说明性的数据中心设施中,配电架构包括机架可安装的处理单元的模块化阵列,每一个机架可安装的处理单元具有处理网络相关的处理任务的处理电路。与每一个模块化处理单元相关联的是向网络处理电路供应操作电力的集成的不间断电源(UPS)。每一个UPS包括跨DC总线能够选择性地连接的电池以及将AC输入电压转换为DC总线上的单个输出电压的AC到DC整流器。调节的DC总线电压可以接近于电池的全充满电压。以这种方式,可以提供不具有大型中央UPS而作为替代具有许多小型分布式UPS的设施,所述小型分布式UPS诸如在安装机架的计算机系统中或在一小组托板中的每一个托板处。
一些实施例可以提供一个或多个优势。例如,单个整流UPS架构可以充分减少复杂度和部件数量,并且可以增加故障之间的预期平均时间。另外,对于这样的系统可以实现制造的灵活性和组件采购和/或量定价益处。
在一些实施例中,模块化分布式架构可以促进用于安装、维护和/或替换数据中心处理单元的减少的物资和/或人工成本。此外,可以根据需要在可扩缩的系统中或在广泛范围的设施中快速部署或重新部署带有集成的不间断电源的低成本、重量轻、高容量模块化处理单元。一些实施例也可以提供热插拔能力。
各种实施方式可以例如通过提供带有不间断电力系统的模块化处理单元来充分提高电力转换效率,在所述不间断电力系统中在设施干线和微处理器之间发生仅单个AC到DC整流。提高的电力转换效率可以产生大量的能量节省,其可以产生更多的益处,诸如减少的导体(例如,铜)需求和减少的热量(例如,空气调整)负载。
在一个实施方式中,公开了用于数据中心的配电系统。该系统包括包含可操作地处理通过网络接收的数据的至少一个数字处理器的DC负载、被配置来将操作电力输送到DC负载的DC总线、从跨DC总线连接的电源接收的电力、以及与DC负载集成的不间断电源(UPS)。UPS可以进而包括:被配置来在故障条件期间跨DC总线操作地连接电池的电池电路,在所述故障条件中AC输入电压信号降至正常操作范围之外,其中AC输入电压信号源自旋转AC发电机处;包括AC到DC转换电路的AC到DC整流级,所述AC到DC转换电路被配置来接收基本上未调整的AC输入电压以及在AC输入电压信号在正常操作范围内时将AC输入电压信号转换为跨DC总线的单个DC输出电压信号,其中AC到DC转换电路被配置来将DC输出电压信号调节至高于并基本上接近于电池的最大标称充电电压的电压水平;以及控制器,所述控制器被配置来响应于指示AC输入电压信号已返回至正常操作范围的信号,选择性地激活AC到DC转换电路以恢复向DC负载供应操作电力。
控制器可以进一步控制开关以跨DC总线选择性地连接电池。同时,电池可以包括以串联或并联的方式电连接的一个或多个单元电池。AC输入电压信号可以源自从由下列组成的组中所选择的一个或多个发电机类型:在电力设施工厂中的发电机;燃气涡轮机;蒸汽轮机;以及燃料驱动的电动发电机。另外,AC输入电压信号可以包括来自三相AC系统的相电压信号和中性线信号。AC输入电压可以具有大约208伏特至大约277伏特的均方根(r.m.s.)值或者在大约85伏特和至少大约480伏特之间的均方根值。AC输入电压也可以基本上包括在大约45Hz和至少大约500Hz之间的频率的正弦曲线波形。AC输入电压也可以被连接到WYE连接的电压源。
在一些方面中,电池中的单元电池包括从由下列组成的组中所选择的电池化学性:铅酸;镍金属氢化物;镍镉;碱性;以及锂离子。系统可以进一步包括被配置来通过跨DC总线连接的路径对电池进行充电的充电器。单个DC总线电压也可以小于大约26伏特、在大约10伏特和大约15伏特之间、以及大约13.65伏特。
在某些方面中,AC到DC转换电路可以将DC输出电压信号调节至高于电池的最大标称充电电压约1伏特。并且,DC总线电压可以向线性调节器提供充足的电压以根据电池规范将电池涓流充电至全充满状态,该线性调节器跨DC总线与电池串联连接。另外,DC总线可以包括以第一电压的第一电路径,并且进一步包括以第二电压的第二电路径。此外,第一和第二电压中的一个可以基本上在地基准电势。另外,系统可以具有仅一个整流电路,该整流电路被配置来将AC波形转换为DC波形。电池的第一端子也可以被配置来直接连接到DC总线的第一轨,以及电池的第二端子被选择性地连接到DC总线的第二轨。
在某些其它方面中,系统进一步包括数据存储器,其中AC到DC转换器在至少一个处理器接收指示去除了在AC电压输入信号中的故障的信号后的一延迟时间后,恢复调节DC输出电压信号,所述延迟时间与数据存储器中的延迟时间参数相对应。至少一个数字处理器可以确定所存储的延迟时间参数,以及所存储的延迟时间参数可以包括伪随机生成的值。在系统中,DC负载、DC总线和AC到DC整流级都可被包括在模块化的基座上,该模块化的基座被配置来支撑在机架安装结构上的多个位置中的一个中,所述基座用于安装在机架或框架中的多个位置中的任何可用的一个中。
在某些方面中,DC负载包括由下列组成的组中的至少一个:中央处理单元;数据存储设备;数学协处理器;以及数字信号处理器。系统可以进一步包括至少一个DC-DC转换器,所述至少一个DC-DC转换器被配置来将在DC总线上供应的电压转换为至少一个另外的DC电压。并且,至少一个另外的DC电压中的一个或多个可以约是由下列组成的组中的一个的电压:-5;1;3;3.3;5;7.5;10;大约18-20;以及大约20-26伏特。另外,至少一个DC-DC转换器中的一个或多个可以被配置来提供改进的输出阻抗,和/或从DC总线上供应的电压过滤噪声。
在又其它的方面中,AC输入电压信号源自从下列组成的组中所选择的一个或多个电能源:至少一个太阳电池板;至少一个风力涡轮机;以及至少一个飞轮。另外,DC负载可以进一步包括一个或多个包含信息的信号,所述信号被传送到在DC负载外部的负载。系统也可以包括与AC输入电压并联连接的DC负载的至少10个实例。
在另一个实施方式中,公开了在数据中心中使用的DC负载。负载包括:主板,其包括可操作地处理通过网络接收的数据的至少一个数字处理器;被配置来将操作电力输送到主板的DC总线,电力从跨DC总线连接的电源接收;以及与DC负载集成的不间断电源(UPS)。UPS包括被配置来在故障条件期间跨DC总线操作地连接电池的电池电路,在所述故障条件中AC输入电压信号降至正常操作范围之外;包括PFC升压AC到DC转换电路的AC到DC整流级,所述PFC升压AC到DC转换电路被配置来在AC输入电压信号在正常操作范围内时将基本上未调整的AC输入电压信号转换为跨DC总线的单个DC输出电压信号,其中AC到DC转换电路被配置来将DC输出电压信号调节至高于并基本上接近于电池的最大标称充电电压的电压水平;以及控制器,所述控制器被配置来响应于指示AC输入电压信号已返回至正常操作范围的信号,选择性地激活AC到DC转换电路以恢复向DC负载供应操作电力。
负载可以进一步包括主板上的至少一个负载点DC-DC转换器,其被配置来从DC总线接收DC电压并且向主板上的操作电路提供调整的DC电压。并且,至少一个负载点DC-DC转换器中的一个或多个可以被配置来提供改进的DC输出阻抗。另外,PFC升压AC到DC转换电路是包括平均电流模式控制(ACMC)的连续导电模式(CCM)类型的,并且可以是临界导电模式(CRM)类型的。在某些方面中,DC负载可以被连接在数据中心中,该数据中心进一步包括与AC输入电压并联连接的50个或更多的DC负载。
在又一个实施方式中,公开了向数据中心中的主板处提供不间断电力的方法,并且该方法包括:将供应单个DC电压的DC总线连接到至少一个DC负载,每一个DC负载包括至少一个数字处理器;在来自电力设施线路网的AC输入电压信号在正常电压范围内时操作PFC升压AC到DC转换器。操作步骤可以包括:将AC输入电压信号转换为DC总线上的DC电压,其中转换步骤包括电力设施线路网生成并输送到DC负载的电力的仅有的AC到DC整流;将转换的DC总线电压调节至设定点电压,该设定点电压基本上接近于用于备用电池的标称电压范围中的电压;响应于检测到AC输入电压信号的故障条件,跨DC总线直接连接电池电路以使电池电路中的备用电池能够向DC负载提供操作电力,使得DC负载在检测到故障后继续操作一段时间。
方法也可以包括连续提供操作电力以在至少10秒钟基本上不间断的情况下操作DC负载。并且,设定点电压可以基本上接近于用于备用电池的标称全充满电压。方法也可以包括基于备用电池的操作条件来动态地选择设定点电压。另外,方法可以包括检测AC输入电压信号的故障条件。
在另一个实施方式中,公开了向在数据中心中操作的主板的实质部分提供不间断电力的方法。方法包括:将基本上未调整的AC供应电压连接到至少50个负载,每一个负载包括PFC升压AC到DC转换器,该转换器将转换的DC总线电压调节至设定点电压,该设定点电压基本上接近于用于备用电池的标称电压范围中的电压;检测AC输入电压信号的故障条件;响应于检测到AC输入电压信号的故障条件,跨DC总线直接连接电池电路以使电池电路中的备用电池能够向DC负载提供操作电力,使得DC负载在检测到故障后继续操作一段时间。在方法中,至少50个负载中的一个或多个可以进一步包括向处理器供应过滤的DC电压的负载点DC-DC转换器。在一些方面中,至少50个负载中的一个或多个可以进一步包括向处理器供应改进的输出阻抗DC电压的负载点DC-DC转换器。并且,PFC升压AC到DC转换器可以是包括平均电流模式控制(ACMC)的连续导电模式(CCM)类型的,和/或临界导电模式(CRM)类型的。
在一些方面中,方法也可以包括将至少50个负载的组合功率因数提供给AC供应电压,该组合功率因数是至少0.95或至少0.98、或者至少0.98超前。
在附图和下面的描述中阐明了一个或多个实施例的细节。从描述和附图中以及从权利要求中,其它特征和优势将显而易见。
附图说明
图1A是示出了具有多个线路网耦接的负载的数据中心的概念图。
图1B-1C是图示了用于数据中心的示例配电架构的示意图,在其中多个模块化的安装在机架上的托板中的每一个包括与计算机主板集成的不间断电源(UPS)。
图2-4是图示了用于输送电力来操作具有处理器的DC负载的示例配电架构的框图。
图5A-5B是示出了在示例配电架构中的电池电路的细节的示意图。
图6A-6B是示出了示例功率因数校正电路的示意图。
图7-8是图示了可以在配电架构的实施例中执行的示例方法的流程图。
在各个附图中的相同的参考标记指示相同的要素。
具体实施方式
图1A是示出了具有多个线路网耦接的负载的数据中心104的概念图。在图示的系统102中,电力从设施线路网106到达数据中心104。这样的电力可以在110KV被接收,并且可由变压器108将电压下降至22KV。也可以接收并提供其它适当的电压。
在某些常规的数据中心系统中,UPS 112然后可以调整该电力,并且可以提供备用。例如,UPS 112将通过去除电压尖峰和电压下降、调整过压或欠压条件、去除线路噪声、使频率变化平滑以及消除切换瞬态和谐波畸变来调整电力。并且,如果电力故障已出现,则UPS 112可以几乎瞬间将数据中心104从线路电力切换到其自身的电力(例如电池)。
然而,如图1A中的交叉影线所示,中央UPS 112未被用来调整电力或向数据中心104提供备用电力。作为替代,在没有任何实质的调整的情况下电力进入数据中心104中的各种负载118。负载可以通过可以包括多个汇流条和其它配电设备的分发线路网116连接到电源。
负载118中的每一个可以包括一小组电子设备,诸如计算机服务器机架中的计算机托板。如在下面更详细地描述的,为了提供分布式的UPS功能性,可以为负载118的每一个提供本地UPS。
图1B是图示了用于数据中心105的示例配电架构100的示意图,在其中多个模块化的安装在机架上的基座(其也可以被称为托板)110的每一个包括操作来向计算机主板120上的组件供电的不间断电源(UPS)115。通过配置UPS 115以执行仅有的AC到DC整流可以实现有效的电力输送(其可遍及数据中心105在每一个计算机或一小组计算机处被重复数千次),所述AC到DC整流在从电力设施线路网接收的AC干线电力(AC mains power)与主板120所消耗的DC电力之间发生。在该示例中,AC干线是指在数据中心105中的使用点处可获得的AC电源。
当在数据中心105中在UPS 115处接收时,AC干线电压是由电力设施生成、传输和分发的基本上为正弦曲线的AC信号(例如50Hz,60Hz)。这样的AC干线电压可以被称为“基本上未调整的”,指示AC干线不具有带有谐波过滤、噪声过滤或者下降保护的传统UPS系统或其它种类的传统信号调整系统。当然,基本上未调整的AC电力可以通过典型地由电力设施提供的各种电路,所述电力设施诸如变压器、保险丝以及诸如许多电力设施提供者或大型发电机系统提供的典型的金属氧化物或硅间隙电涌放电器(arrestor)的浪涌电压保护器。AC干线输入电压被转换为DC总线上的单个DC电压,所述DC总线向主板120输送操作电力。在AC干线上产生故障的情况下,电池电路跨DC总线而被电连接以向主板120供应操作电力。
在所描述的示例中,数据中心105包括包含多个托板110的多个机架125A、125B、125C。可以通过三相AC电力向机架125A-125C供电,所述三相AC电力从电力设施130被输送到数据中心105。输送到机架125A-125C的每一个的AC电力可以例如源自由电力设施操作并由蒸汽或燃气涡轮机驱动的旋转发电机。基本上为正弦曲线的AC电压信号可以被传输到分发点,诸如在设施线路网中的变电站(未示出)。可以从变电站向数据中心105分发电力线电压(例如480伏火线对火线(line-to-line))。
在数据中心105中,各个相电压(例如230或277伏火线对中性线(line-to-neutral))被路由到各个机架125A-125C。根据需要可以使用合适的AC到AC变压器(未示出)来以指定的AC电压输送AC电力。例如,降压变压器可以将适于传输的高电压水平变压到基本上能够被直接应用到UPS 115的低电压水平。例如,在一些三相配置中,这样的变压器可以根据需要在WYE和DELTA连接之间做出适当的变压。
在一些实施方式中,数据中心105所接收的AC电力信号可以是基本上未调整的,包含低功率因数(例如,在有功功率和视在功率之间的比率)和谐波分量。例如,电力设施线路网可以将谐波和噪声引入AC电力信号。在一些实施方式中,UPS 115接收基本上未调整的AC电力信号以向主板120和/或托板110中的其它DC负载供应。
除非另外说明,对AC电压的引用应被理解为是指基本上为正弦曲线的电压,并且电压幅度应被理解为是指均方根(r.m.s.)值。设施130可以输送适于对基本上均衡的三相负载进行供电的基本上对称的三相电压。
在所描述的示例中,将一个相电压和中性线(neutral line)分发到每一个机架125。机架125和托板110可被配置以形成基本上均衡的负载。在其它的实施例中,如果数据中心105包括额外(或更少的)机架125,则可以使用类似的分发。作为示例,在机架125A中的示例托板110(以放大的细节示出)接收相A电压和中性线。机架125A中的托板110的每一个接收相同的AC输入电压信号,即相A对中性线电压。
类似地,机架125B中的托板110的每一个接收相B对中性线作为AC输入电压信号,并且机架125C中的托板110的每一个接收相C对中性线作为AC输入电压信号。在其它的实施方式中,可以将不同的相电压分发到机架125A-125C的一个中的托板110,和/或到托板110的每一个的AC输入电压信号可以是火线对火线电压而非火线对中性线电压。在各种实施例中,可以将任何实际数量的相(例如,1、2、3、4、5、6...12或更多)进行分发以向各个托板110提供操作电力。
在所描述的示例中,托板110的每一个被耦接到网络连接140。网络连接140向网络145提供信息通道,所述网络145可以包括例如局域网、虚拟专用网络、广域网(例如因特网)或这样的网络的组合,所述网络可以是有线的、光纤的和/或无线的。远程计算机150表示许多可能的设备中的一个,所述可能的设备可以使用在主板120上的处理器160和相关联的存储器165与一个或多个托板直接或间接地通信数据,以访问、存储、处理和/或检索信息。在一些实施方式中,额外的处理器(例如服务器)可以促进这样的通信。例如,示例远程计算机设备150可以被包括在服务器、桌面计算机、膝上型计算机和/或基于手持式处理器的设备中。一个或多个服务器可以对与该通信相关联的数据流进行预处理或后处理、监控、路由和/或平衡。
在各种实施例中,主板120可以包括二个、三个、四个或任何其它实际数量的处理器160。在一些实施例中,主板120可以由数据存储设备(例如,硬盘驱动、闪存、RAM或任何这些或其它类型的存储器的组合)的托板替代或扩增。在这样的实施例中,可以将带有电池185的UPS 115与数据存储设备集成并支撑在托板110上。
在各种实施例中,数字处理器可以包括可以是集成的或分离的模拟和/或数字逻辑电路的任何组合,并且可以进一步包括可以执行存储在存储器中的指令的可编程和/或已编程的设备。存储器165可以包括可以由处理器160读取和/或写入的易失性和/或非易失性存储器。主板120可以进一步包括例如中央处理器单元(CPU)、存储器(例如缓存、非易失性、闪存)和/或盘片驱动中的一些或全部,以及各种存储器、芯片组和相关联的支持电路。
在一些实施例中,主板120可以提供一个或多个DC到DC转换器以将DC总线电压转换为适于操作在主板120中的电路的电压。例如,一个或多个DC到DC转换器可以提供调节的输出电压,该输出电压可以包括例如+3.3VDC电力信号、+5VDC电力信号、-5VDC电力信号、+12VDC电力信号以及-12VDC电力信号。
在示例实施方式中,在主板120上的处理器160和存储器165可以形成被配置来处理网络操作的处理系统的至少一部分。作为说明性的示例,主板120可以帮助处理因特网请求。主板可以单独处理信息,或与在其它基于处理器的设备上运行的其它并行处理一起处理信息,其它基于处理器的设备诸如在数据中心105中的一个或多个其它托板110。
将AC输入电压信号输送到托板110的每一个以由UPS 115处理。在一些示例中,AC输入电压信号可以从AC干线接收。UPS 115包括将AC输入电压信号转换为调节的DC电压的AC到DC转换器170。转换器170将所调节的DC电压输出到DC总线175上。在一些实施例中,AC到DC转换器170可以将DC电压调节至静态的设定点。在一些其它的实施例中,设定点可以被动态确定。在一些静态的和动态的实施例中,设定点可以基于电池的特性。将参考图3进一步详细地描述这样的设定点调节的示例。
在一些实施方式中,AC到DC转换器170可以包括功率因数校正(PFC)电路。例如,AC到DC转换器170可以使用PFC电路来抽取在相位上与AC电压匹配得更为接近的AC电流,从而改进负载的功率因数。AC到DC转换器170优选地过滤来自AC信号的噪声、减少噪声电力以及允许DC电路容忍所接收的AC电力中的谐波含量和噪声。
在一些示例中,UPS 115可以接收基本上未调整的AC电力。例如,所接收的电力可以包括噪声和高谐波畸变,并且所接收的AC电力的功率因数可以基本上小于1。例如,在一些实施方式中,AC到DC转换器170将输入电力的功率因数校正到大于0.97滞后(例如0.98超前)。在这样的情况中,多个类似的转换器170的共同影响提供相类似的共同的功率因数改进。
使用PFC电路,AC到DC转换器170可以提高数据中心105的电效率。例如,改进功率因数减少了由AC到DC转换器170接收的电流。通过减少接收的电流,AC到DC转换器170可以减少托板110中产生的电力损失和热量。因此,可以提高数据中心105的电力效率。参考图6A-6B描述了PFC电路的一些示例。
系统115也可以阻止在设备110上产生的谐波进入设施网络。例如,如所述,可以向每一个分布式电源提供功率因数校正控制器以执行活动的功率因数校正。这样的校正也可以控制感应的总谐波畸变(ITHD),并且可以包括复合谐波滤波器。用于执行这样的活动的组件可以包括来自德州仪器(德州的达拉斯市)的UCC3818 BiCMOS功率因数预调节器。这样的特征可以阻止有害的信号或谐波进入在特定设施的内部和外部的配电系统。
当AC输入电压信号在正常范围之内时,AC到DC转换器170可以维持对DC总线175的电压调节。可以以各种方式来指定用于典型的正弦曲线的AC信号的正常范围。例如,对于可以是在大约40Hz和1000Hz之间的线路频率,诸如大约50Hz、60Hz、100Hz、120Hz、180Hz、200Hz、300Hz、400Hz、500Hz、......直至大约1000Hz或更大,可以在大约80伏和500伏之间指定一个或多个阈值。作为说明性的示例,对于120伏标称AC输入电压信号,如果AC峰值输入电压在任意半周期中降至90伏的第一阈值以下,或者如果均方根电压下降至100伏的第二阈值以下达到预定量的时间,则可以识别故障。
故障条件可以包括但不限于全面停电(blackout)、部分停电(brownout)、电压下降、电涌、与开关设备操作相关的不稳定、或与AC干线相关联的其它的电瞬变。在一些实施方式中,故障条件可以造成或潜在地造成DC负载中的处理单元的不当操作,例如,如果AC到DC转换器170无法维持对DC总线175上的电压的充分的调节,和/或无法供应充足的电流以操作由DC总线175所服务的DC负载。
如果AC输入电压信号降至正常范围之外,诸如在故障条件期间,检测电路(未示出)可以发送指示该条件的信号。响应于检测到该故障条件,电池电路180可以被配置来将电池185跨DC总线175连接,使得主板120能够在基本上不中断的情况下继续操作。电池185可以继续向主板115上的电路提供操作电力直到电池185基本上放完电。电池电路180可以包括能够在各种操作模式中跨DC总线175对电池的充电和/或放电进行控制的电路。参考图5A、5B进一步详细描述示例电池电路。
在一些实施方式中,数据中心105可以包括超过100个托板。例如,数据中心105可以包括超过100个处理器内核。在一些示例中,数据中心105可以同时执行超过1000个线程。在某些实施方式中,数据中心105可以包括总计超过1兆兆字节的存储器和1千兆兆字节的数据存储。
在一些示例中,数据中心105从电力设施130抽取大量的电力。例如,数据中心105中的每一个服务器系统可以消耗100W-500W的电力。例如,机架125A-C的每一个可以消耗2kW到30kW的电力。例如,小型数据中心可以提供5000个处理器,每一个具有一个或多个内核。随着处理器技术改进,每一个处理器或内核可以抽取更少的电力,但是每一个处理器的内核的数量可以增加。更大型数据中心可以使用更多的处理器,包括10,000、20,000、50,000或甚至100,000个处理器。这些可以分布在例如每一个机架具有20、30或40个处理器的机架中。
在一些实施方式中,数据中心105的AC到DC转换器170被配置来能够从电力设施130接收基本上未调整的电力,其将由115通过基本上减轻噪声和谐波含量来调整。并且,如上所述,AC到DC转换器可以阻止内部地生成的谐波电流进入设施网络130。
图1C示出了架构100的示例配电方面。如图1C中所示,电力设施130经由传输系统195向数据中心105供应3相AC电力。例如,传输系统195可以包括可被连接到由传输系统195支撑的各种负载的一个或多个节点。例如,传输系统195包括将节点连接至电力设施的传输线。
数据中心105使用来自传输系统195的未调整的电力来操作并且从传输系统195抽取带有基本上减少的噪声和谐波含量的电流并且改进功率因数。例如,由此抽取的电力可以具有基本上接近于1的功率因数。一些设施强加与数据中心功率因数有关的需求量或费用。例如,数据中心可被要求具有高于.9、.95或.97滞后的功率因数以达到某一有利的定价。通过向AC电源提供具有几乎一致的功率因数的多个电路,从而提供在期望的范围内的共同的功率因数,各种实施例可以帮助实现这样的目标。例如,如在此所述,通过并行地操作多个PFC升压AC到DC转换器可以实现这样的共同影响。
在一些示例中,功率因数可以是对输送的电力中的有功功率的测量。具有更高功率因数(例如功率因数更接近于一)的AC电力可以包括可由数据中心105使用的更高部分的有功功率。在一些示例中,传输系统195的各种负载和其它结构可以引入可以降低输送的AC电力的电力质量和功率因数的噪音和谐波含量。例如,传输线中的阻抗和在节点处的非线性/间歇电力负载可以将功率因数偏离1并且产生谐波畸变。
在所描述的示例中,数据中心105从传输系统195接收未调整的3相AC电力。例如,数据中心105中的AC到DC转换器170可以包括PFC电路以在使用未调整的AC电力时提高数据中心105的电力效率。在一些实施方式中,数据中心105可以从传输系统195抽取具有校正的功率因数的电力。
图2-4是图示了用于输送电力来操作具有至少一个处理器的DC负载的示例配电架构的框图。例如,在各种实施例中,主板120可以构成DC负载。在这些示例中,AC到DC转换器170提供发生在AC设施线路网(例如,变电站变压器、传输线、发电机等)和在任一个托板110中的微处理器160之间的仅有的AC到DC整流。
图2示出了在系统200中的示例配电架构,其可以例如实现在具有巨大电力需求的大型设施中。系统200包括设施AC干线发电机205,用于从诸如电力设施130的设施供应AC干线电压。示例系统200还包括两个备用AC发电机,包括柴油燃料驱动的发电机210和协同定位的(例如燃气)发电机215。来自发电机205、210、215的电力可以由AC开关设备220组合和/或选择,然后经由AC总线225被输送到托板110。在来自发电机205的AC干线上发生故障的情况下,发电机210、215可以向AC总线225提供备用AC输入电压信号。
在一些实施方式中,可以使用基本上异步的能量源来产生基本上为正弦曲线的AC电压信号。例如,可以使用飞轮能量存储和恢复系统。风力或太阳产生的能量,诸如由风场或太阳场分别提供的能量,可以用作为能量源以产生在电力设施线路网中基本上为正弦曲线的AC电压。在这样的实施方式中,所产生的基本上为正弦曲线的信号通过设施线路网被传输到AC到DC转换器170的输入而不介入AC到DC整流。
在与由电池185提供的电池备用的协作过程中,发电机205、210、215可以在短的、中等长度的和/或更长的时间期间上提供基本上不间断的电力来操作在托板110上的DC负载230。
在一些实施方式中,AC到DC转换器170被配置来容忍来自来自AC开关设备220的输入电力的线路噪声。例如,托板110可以从设施干线205、柴油发电机210和/或协同定位的发电机215接收未调整的AC电力。在一些实施方式中,托板110和数据中心105可以使用未调整的AC电力来操作。在该示例中,UPS 115使用未调整的AC电力来向DC负载230进行供应。在某些实施方式中,AC到DC转换器170包括增加向DC负载230供应的电力信号的功率因数的PFC电路。如所示,AC到DC转换器170从返回到AC开关设备220的电力信号过滤DC侧噪声。例如,返回的谐波电流(从数据中心105流到电力设施线路网)可以包括显著减少的量的噪声和谐波含量。在一些示例中,通过对托板110进行配置以容忍来自输入AC电力的线路噪声,可以减少用于创建数据中心105的成本。
对发电机210、215的示例使用可以在以下情况中说明:来自发电机205的AC干线电压的故障(例如,部分停电、全面停电)或不可获得(例如,电路维护)。响应于检测到AC输入电压信号上的故障,将电池185连接以跨DC总线175基本上输送电池电压。这样,DC负载的短期(例如,全负载至少10、20、30、40、50、60秒)的操作由从电池185供应的电力维持。可以将柴油发电机210启动以向AC总线225提供电力,优选地在电池185完全放完电之前。对于范围更大的AC电力故障,可以将协同定位的发电机215接上线以提供更有成本效益的操作,或者避免超过对柴油燃料发电的政府规定的限制。
在一些实施方式中,发电机210、215中的一个或两个可以提供峰值负载卸负(shedding)能力。例如,可以在每天预期的需求高峰时段期间使用协同定位的发电机215。在一些情况下,这可以允许从电力设施130处协商取得优惠的电力费率。
图3以进一步的细节示出了示例示意图。在各种实施例中,AC到DC转换器170可以将在DC总线上的单个输出电压调节到设定点。在一些实施例中该设定点可以是静态值,或者其可以在操作期间被动态地确定。例如,该设定点可以至少部分地基于电池的一个或多个电特性。
能够针对其建立设定点的特性可以包括诸如以下的电池特性:电池化学性、电池寿命、充电/放电历史、标称最大充电、温度、充电分布型(profile)(例如,在恒定电流下的电压充电率)、对电池内部阻抗的估计值、或者与电池的电性能有关的其它参数。
除了内部电池特性,设定点可以至少部分地基于电池电路180和DC总线175的电路参数。在一些实施例中,AC到DC转换器170将对DC总线175上的电压调节至的设定点可以是电池充电电路拓扑结构的函数。如果电池充电电路提供电压升压电路(例如,升压转换器、电荷泵、反激(flyback)),则设定点电压可以基本上位于或低于期望的最大充电电压。如果电池充电电路仅提供电压降压(例如,线性调节器、降压转换器)能力,则设定点能够被设定到足够高于最大标称充电电压的值,以在相关温度上实现所需要的充电性能,其中考虑了在电力损失和充电电流以及相应的充电时间中的折衷(tradeoff)。根据这样的折衷,设定点可以仅是满足充电时间的具体要求所需要的高度。例如,设定点可以被设定为在标称期望电池电压之上大约0.050和大约1伏之间。
在各种实施例中,可以基于指定的温度设定设定点电压,诸如0、10、25、30、40、50、......、80摄氏度。在说明性的示例中,设定点可以基于由至少一个温度传感器(未示出)所测量的在电池185内的或电池185周围的温度而被动态地调整。
在所描述的实施例中,UPS 115包括与电池185串联连接的充电/放电控制电路305,并且进一步包括与非易失性存储器(NVM)310操作连接的控制器245。
串联连接的电池185和电路305跨DC总线175连接。响应于指示AC输入电压信号上的故障的信号,电路305能够跨DC总线175操作地连接电池185以允许电池通过低阻抗路径向DC负载230放电。当在AC总线225上的AC输入电压信号没有发生故障时,电路305可以选择性地允许充电电流从DC总线175流出以向电池185充电。如果以电并联的方式连接多个电池或电池串,则可以根据定义的充电算法以不同速率对各个串或串组独立地进行充电。
在所描述的实施例中,NVM 310可以存储用于调节AC到DC转换器170的输出的设定点信息。设定点信息可以在制造期间、首次使用时被存储,和/或在托板110的操作期间被动态更新。控制器245和/或AC到DC转换器170可以读取和/或使用所存储的设定点信息来确定如何控制AC到DC转换器170。除了设定点信息,例如与用于在AC输入和电池操作之间切换的阈值条件有关的信息可以被存储在NVM 310中。
例如在NVM 310和在DC负载230上的一个或多个处理器160之间,可以通过串行或并行接口(其可以具有有线的和/或红外线物理层)提供对存储在NVM 310中的信息的访问。可以使用处理器160来经由到每一个托板110的网络连接140(图1B)访问和/或更新在NVM 310中的信息。
可以在DC负载230上提供额外的数据存储设备。在所描述的示例中,DC负载230包括与存储器165和硬盘驱动(HDD)315操作连接的两个处理器160。
图4图示了在机架125上的示例配电架构400。在架构400中,UPS 115通过DC总线175向处理单元405中的多个DC负载230输送电力。每一个DC负载230跨DC总线175并联连接。输送至DC负载230的电力在设施干线205和DC负载230之间仅进行一次从AC到DC的整流。在一个实施例中,处理单元405包括盘片阵列、互联卡以及与电池一起的不间断电源。
在各种实施方式中,每一个DC负载230可以具有类似的电路或不同的电路。DC负载的各种负载可以主要提供数据存储、数据处理、数据通信或这些或其它功能的组合。在一个实施例中,DC负载230位于在机架125中的多个托板上。在另一个实施例中,整个处理单元405位于托板110中的一个上。在一些实施例中,UPS 115与处理单元110集成在单个托板110上。在其它的实施例中,UPS 115可以位于机架125上的别处。处理单元405可以指一个或多个托板、机架或包含一个或多个DC负载230的其它结构,所述结构可以包括至少一个隔室(bay)、壳体、可移动的或固定的建筑或整个设施,诸如数据中心105。
各种实施方式也可以向各种负载供应多个DC电压,所述DC电压可以相互孤立。电压可以是类似的或者不同的。例如,可以供应12V、5V、3.3V或更少,以及-12V DC电压。这些电压可以由配置来提供多个DC电压的AC到DC转换器170提供。此外,可以由另外的DC到DC转换器向负载供应变化的DC电压,所述DC到DC转换器通常被称为“负载点”转换器,并被放置在AC到DC转换器170和其特定的消耗DC的负载之间。
这样的转换器通常为噪声敏感的DC电路提供进一步的噪声过滤。其也可以为具有高瞬时电流变化的负载提供改进的输出阻抗。例如,处理器可以在2.7V、3.3V或其它电压上运行,并且可以非常迅速地从低电流切换到高电流。这样的快速转变可能波及AC到DC转换器170的一些设计中的输出电压。负载点电压转换器帮助提供不随负载抽取而极大变化的低阻抗电压。例如,负载点转换器可以与描述的DC负载230集成,或者可被放置在主板120上的这样的负载附近。更低输出阻抗负载点转换器典型地比更高阻抗转换器更昂贵,因此根据每一个DC负载的需求对负载点转换器的输出阻抗进行典型地大小调整。例如,当总线控制器或风扇可以与廉价的更高输出阻抗负载点转换器一起被配置时处理器可以要求低输出阻抗负载点转换器。
图5A-5B是示出了在示例配电架构中的电池电路的细节的示意图。
图5A示出了用于参考图3描述的充电/放电控制电路305的部分的示例示意图500。示意图500包括比较器电路505,用来当在DC总线175上的电压降至阈值Voff以下时切换信号Vups。示意图500也包括比较器电路510,用来当在DC总线175上的电压降至阈值Batt_Low以下时切换信号VBatt。参考图7-8进一步详细描述信号Vups和Vbatt。
示意图500进一步包括过流保护元件515,在本示例中该过流保护元件515包括保险丝。保险丝515的一个端子连接到电池的正端子,而另一个端子连接到DC总线175的正轨(postive rail)。在其它的示例中,额外的串联和/或分流设备用于提供过电流、过电压、倒流保护、EMI缓解和/或其它功能。
在所描述的实施例中,一对端子(+电池,-电池)可连接到电池。负的电池端子(-电池)连接到两个并联路径,通过开关的操作可控制并联路径的每一个。并联路径中的一个通过电阻器520和开关525将负的电池端子连接到DC总线175的负轨。该路径允许在开关闭合时充电电流流过。充电电流的幅度实质上由电阻520的值和在DC总线175上的电压与电池(未示出)之间的差异限制。电池的内部电阻典型地比电阻520的值小得多。在一些应用中,可以使用电阻520两端的电压降来测量和/或控制充电电流。
另一个并联路径通过开关530将负的电池端子连接到DC总线175的负轨。当开关530闭合时,电池跨DC总线175可操作连接。在该状态下,电池能够向也被跨DC总线175连接的任何DC负载(未示出)放电和供应操作电力。
开关525、530可被无源地和/或有源地控制。图5B所示出的示例实施例说明了一个实施方式,并且不应将其看作是限制性的。
在图5B中,以例如可以表示内部和/或接触电阻的串联电阻540建立电池185的模型。用于对电池充电的理想的开关525(图5A)被实现为不具有有源控制输入的二极管。在该实施方式中,AC到DC转换器170(未示出)可以将DC总线175调节到足以在感兴趣的温度上正向偏压二极管(开关)525并且足够提供所期望的充电电流的电压。这样,设定点可以是至少为最大充电电压加上二极管压降电压。
在图5B的所描述的示例中,至少部分地通过串联电阻和诸如二极管或其它半导体开关的单向电流机制来确定电池充电电流。在其它的实施例中,电池充电器可以包括串联旁路(series-pass)调节器(例如,低压降差(LDO)线性调节器)或开关模式电力转换器(例如,降压式、升压式、降压-升压式、Cepic式、Cuk式、反激式、充电泵式或谐振式等)中的单个或其组合。可以通过电流镜像技术或使用涉及例如电流感知电阻或电感耦合测量的电流测量反馈技术来控制电池充电电流。
用于将电池放电的理想的开关530(图5A)被实现为背靠背(back-to-back)MOSFET(金属氧化物半导体场效应晶体管)开关,所述背靠背MOSFET开关被配置来在非导通状态中在两个方向上均阻止电流。该开关530响应于可以例如通过控制器245(图3)产生的控制信号535而断开和闭合。在各种实施例中,开关525、530可以包括;肖特基二极管、绝缘栅双极晶体管(IGBT)、或其它半导体或电机械开关(例如继电器)。
图6A-6B示出了在AC到DC转换器170中使用来接收基本上未调整的AC输入电力的PFC升压电路900、950的一些示例。例如,电路900、950可以过滤基本上未调整的AC输入电力中的噪声和谐波含量。在另一个示例中,电路900、950可以将输入AC电力的功率因数校正至接近于一的功率因数。在某些实施方式中,PFC升压电路900、950可以提高数据中心105和传输系统195的稳定性和效率。在一些示例中,AC到DC转换器170可以容忍来自输入AC电力的线路噪声并且从返回电力过滤由DC负载230生成的噪声。
虽然示出了两个PFC升压电路,但是可以使用任何适当的PFC电路。对于更高的电力电路(例如高于200W),选择的传统拓扑结构是以连续导电模式(CCM)且用平均电流模式控制(ACMC)来操作的升压转换器。对于更低的电力应用,典型地使用典型的临界导电模式(CRM)升压拓扑结构。在一些实施方式中,诸如降压、降压-升压或反激转换器电路的其它类型的切换转换器电路可被用来替代升压转换器而执行功率因数校正。在一些实施方式中,无源PFC电路可被用来执行功率因数校正。例如,DC滤波感应器可被用来减少输入AC电力中的谐波分量并且改进功率因数。这些各种电路的构造对本领域的技术人员是众所周知的。
如图6A中所示,PFC升压电路900包括整流级905、开关转换器电路910以及输出级915。如所示,整流级905从AC电源920接收未调整的AC电力。在一个示例中,AC电源可以是AC开关设备220。在一些示例中,整流级905的输出可以是整流的DC电力信号。
切换转换器电路910被耦接到整流级905的输出端。在一些实施方式中,切换转换器电路910用比AC电源920的频率更高的切换频率来操作。在一些示例中,切换转换器电路910可表现为用于整流级905的输出端的理想的电阻性负载。例如,切换转换器905可以消除线路电流谐波。
切换转换器电路910包括PFC控制器925、开关930以及感应器935。PFC控制器925可以是专用集成电路(ASIC)芯片或包括分离和集成的组件两者的电路。在一个实施方式中,PFC控制器925可以接收整流级905的整流的输出和来自输出级915的反馈信号。使用所接收的输入,PFC控制器925可以控制切换转换器电路910来维持输入电流形状并且控制该输入电流与输入AC电压同相。
在一些示例中,PFC控制器925可以包括倍增器电路和脉宽调制(PWM)电路。例如,倍增器电路可以从整流级905的整流的输出端接收电流基准和输入电压基准。使用反馈信号,PFC控制器925可以感知在输出电压和基准DC电压之间的变化。在一些实施方式中,基准DC电压可以由电池185供应。在一个示例中,倍增器电路可以使用感知的变化、输入电流的相位以及输入AC电压来确定控制信号。PWM电路将控制信号与输入电流相比较以生成切换信号来控制开关930。例如,切换信号可以控制流入感应器935的电流幅度并且将恒定输出电压维持在Vout。例如,输出电压可以是280VDC。
如图6B中所示,PFC升压电路950通过将平均输入电流与基准电流相匹配而执行功率因数校正。PFC升压电路950包括平均输入电流模式控制器955。控制器955基于控制信号lcp来调节平均电流。在一个实施方式中,lcp可以由低频DC回路误差放大器生成。例如,可以通过将输出DC电压与基准电压进行比较来生成lcp。
如所示,控制器955包括电流放大器960、振荡器965以及PWM比较器970。在一些实施方式中,电流放大器950可以是电流信号的积分器。在一些示例中,电流放大器950的输出可以是基于通过分流电阻器Rshunt流入的平均电流和lcp信号的低频误差信号。
在所描述的示例中,将误差信号与振荡器965生成的波形进行比较。例如,波形可以是锯齿波形、正弦曲线波形或其它周期性的波形。基于所生成的波形与误差信号之间的差异,PWM比较器970可以生成到开关930的占空信号。例如,PWM比较器970可以使用占空信号来控制输出端处的输出电压和输入电流的形状与输入电压的相位相匹配。
在一些实施方式中,PFC升压电路可以包括两个级联的电力级。例如,PFC升压电路的第一级可以包括升压转换器,用于控制输入电流波形并维持接近一的功率因数。例如,第二级可以包括第二切换转换器,用于将来自第一级的输出电压转换成用于托板110的DC负载230的各种DC电压水平(例如3.3V、5V、12V等)。在一些实施方式中,PFC升压电路的第二级可在主板120上实现。
图7-8是图示了可以在配电架构的实施例中执行的示例方法的流程图。
参考图7,流程图600图示了UPS 115可以执行来处理AC输入电压信号上的故障条件的示例方法。在一些实施例中,UPS 115可以执行该方法来调整到作为临时电源的电池和/或离开该电池的切换。在一些情况下,执行该方法可以充分地减少和/或防止作为AC故障条件的结果的性能失调(例如数据错误)。例如,电池185可以提供足够的操作电力以维持DC负载230的操作直到能够将诸如设施干线205或备用发电机210、215的AC源放上线。在一些实施例中,电池185可以在DC负载230执行指令以完成适度的下电操作时继续提供操作电力。这样的适度的下电操作可以变化很大,但是通常试图减弱可能由故障条件导致的性能失调。这样的失调自身例如可以表现为当处理系统随后被重启时的陈旧数据。
通常,该方法包括可以由控制器(例如控制器245)执行的操作。可以进一步在系统100中的一个或多个处理器160的控制、监控和/或监视下执行操作。也可以由可以是通过耦接到托板110的网络连接140与控制器可操作通信的其它处理和/或控制元件补充或扩增操作。可以由执行有形地实现在信号中的指令的一个或多个处理器来执行一些或所有的操作。可以单独地或与执行指令的一个或多个处理器相协作,使用模拟和/或数字硬件或技术来实现该处理。
该方法在当控制器确定AC输入电压信号上存在故障时在步骤605开始。例如,控制器可以通过例如监视AC总线225、由在托板110上的电压监视/故障检测电路提供的电压状态条件信号、和/或在DC总线175处的输出电压(例如图5A中的VUPS),来识别AC电力故障的出现。
在一些实施例中,UPS 115可以包括将VUPS转换为数字值(例如10位的数字值)的模拟到数字转换器。当控制器检测到关键的电压降落至阈值以下时,控制器可以启动AC电力故障程序。在其它的实施例中,控制器可以从外部的组件接收信号,诸如在AC开关设备220中的电力组合器。这样的信号可以指示AC输入电压信号中的故障。在其它的实施例中,AC到DC转换器170可以向控制器发送消息以指示AC电力故障。
如果控制器确定AC电力未发生故障,则重复步骤605。如果控制器确定AC电力处在故障条件中,则在步骤610中,控制器将UPS 115从AC操作切换至电池操作。例如,控制器可以发送信号以断开开关525并且闭合开关530(图5A),以跨DC总线175将电池185可操作地连接,使得电池185能够支持DC负载230。接着,在步骤615中,控制器将计时器设定为备用持续时间(back duration time)。定时器可以是控制器中的寄存器,其随着时间的前推而被递减或递增。在一些实施例中,备用持续时间可以表示可以使用或依靠电池电力的持续时间。例如,控制器可以使用期望的电池寿命的估计减去DC负载230执行适度的下电操作所需要的时间来计算备用持续时间。在其它的实施例中,控制器可以从NVM 310加载备用持续时间。
在步骤620中,控制器确定AC电力是否被恢复。例如,控制器可以从AC到DC转换器接收关于AC输入电力的当前状态的消息。作为另一个示例,控制器可以轮询AC到DC转换器以确定AC电力是否已恢复。如果控制器确定AC电力已恢复,则控制器可以在步骤625执行操作以切换回至从AC电力操作,并且方法600然后结束。参考图8更详细地描述了用于从电池电力切换至AC电力的示例方法。
如果在步骤620控制器确定AC电力未恢复,则在步骤630中,控制器检查VUPS是否小于电池备用(VOFF)的最小电压。如果控制器确定VUPS小于VOFF,则控制器可以在步骤630将计时器设定为下电时间。例如,下电时间可以是DC负载执行下电操作所需要的时间的估计。在一些示例中,DC负载的下电操作可以防止数据损失和/或避免因DC电力的突然丧失而导致的损害。如果在步骤630中,控制器确定VUPS不小于VOFF,则在步骤640中控制器可以确定电池的输出电压(VBATT)是否低于电池低阈值(BATT_LOW)。在一些实施例中,当VBATT低于BATT_LOW时,这可以指示例如存储在电池中的电力是低的并且可以执行适当的下电操作以防止例如数据损失。如果控制器确定VBATT低于BATT_LOW,则执行步骤635。如果控制器确定VBATT不低于BATT_LOW,则控制器可以检查备用持续时间是否期满。如果控制器确定备用持续时间期满,则执行步骤635。如果控制器确定备用持续时间未期满,则重复步骤620。
在控制器在步骤635中将计时器设定为下电时间之后,控制器可以在步骤650中检查AC电力是否被恢复。如果控制器确定AC电力被恢复,则执行步骤625。如果控制器确定AC电力未恢复,则控制器在步骤655中确定下电时间是否已期满。如果控制器确定下电时间尚未期满,则重复步骤650。如果控制器确定下电时间已期满,则控制器可以在步骤660中将UPS下电(例如,将图5中的开关530断开)并且该方法结束。
图8示出了图示用于从电池备用电力切换至AC输入电力的操作的示例方法700的流程图。例如,在AC电力在AC电力故障之后被恢复(例如,参见图7的步骤625)之后、或者在维护操作(例如电池测试操作)之后,控制器可以从电池操作切换至AC操作。
在一些实施例中,控制器可以延迟从电池电力操作到AC电力操作的转移以减弱例如到数据中心105的高峰值(例如涌入)电流。可以进一步提供小的固定延迟以确保AC输入电压是稳定的。
如参考步骤625(图7)所描述的,当控制器确定AC输入电力已恢复时,方法700可以开始。首先,在步骤710中,控制器可以确定随机延迟参数。例如,随机延迟参数可以存储在NVM 310中,该随机延迟参数表示在切换至AC供电的操作之前延迟(例如1毫秒、0.5毫秒、0.025毫秒等)的时间长度(例如,时间、时钟周期)。
在一些实施例中,可以随机地或伪随机地确定随机延迟参数。例如,控制器可以使用种子(例如,存储在UPS 115上和/或主板120上的存储寄存器中的序列号,当托板首次被启动时的机器时间等)生成伪随机延迟参数。延迟参数接着可以由控制器245使用和/或被存储在NVM 310中。在另一个示例中,延迟参数可以是随机数(例如,从诸如放射性衰变的物理过程记录的),其在UPS 115的制造过程期间被存储在NVM 310中。
在一个实施例中,控制器在步骤715将计时器设定为随机延迟。在其它的实施例中,控制器可以使用计数器、实时时钟、具有阈值比较器的模拟上升或衰减电路、或其它适当的延迟设备来监视该延迟。然后,控制器在步骤720中确定VBATT是否低于BATT_LOW。如果VBATT低于BATT_LOW,指示该电池将耗尽电量,则控制器可以在步骤725中从电池电力切换至AC电力,并且方法700结束。例如,控制器可以通过断开电路500中的开关530(图5A)将电池电力关闭。在示例数据中心105中,所有的电池将在相同的时间达到放电界限不太可能,因而预计在大多数的实施例中该方法不会大大增加在AC输入电压线上的峰值电流。
如果在步骤725中VBATT不低于BATT_LOW,则在步骤730中控制器检查计时器是否期满。如果未达到所指定的延迟,则重复步骤725。如果达到了所指定的延迟,则重复步骤720并且方法700结束。
在各种实施例中,电池电压可以是高于和/或低于DC总线上的所调节的电压。在一些实施例中,AC到DC转换器可以调节至设定点电压,所述设定点电压在电池的标称全充满电压的50、100、200、250、400、500、......、1000毫伏内。在各种实施方式中,调节设定点可被动态地确定,例如基于电池特性,诸如寿命、使用历史、温度、内部电阻、充电时间响应、放电时间响应或其它与电池电路相关的特性。如果电池电压高于设定点电压,则充电器可以包括升压和/或降压-升压类型的转换器电路。
在一些实施例中,托板110可以是模块化的支持结构,其被配置以安装在机架125中的多个位点、槽或位置中的一个中。每一个托板120可以包括诸如印刷电路板(PCB)的基底,UPS 175和主板120和/或其它DC负载230可被集成在该基底上。当被安装在机架125中的一个中时,托板110可以提供用于热量管理系统的特征,包括用于空气流动的端口。
术语“托板”并不意在指特定的布置,而是指耦接在一起以服务于特定目的的计算机相关组件的任何布置,诸如在主板上。托板通常可以与其它托板平行地安装在水平的或垂直的堆叠中,以便允许比具有自由支撑壳体和其它组件的计算机在其它情况下可能达到的更密的群集。术语“刀片”也可以被用来指这样的设备。托板可以在特定的配置中实现,包括作为计算机服务器、交换机(例如电交换机和光交换机)、路由器、驱动器或驱动器组以及其它计算相关设备。
UPS 115的实施例可以被配置来接受各种主或副电池技术。技术可以包括但不限于密封铅酸、镍金属氢化物、镍镉、线绕铅酸、碱性以及锂离子。UPS 115可以包括自动检测电池化学性质的电路,并且根据所确定的电池特性调整充电和放电概要信息。在一些实施例中,AC到DC转换器170将DC总线175调节至的设定点可以是对自动检测到的电池特性的响应。在各种实施例中,电池电压可以在大约8伏特和大约26伏特之间,诸如大约9、10、11、12、13、......、23、24或25伏特。
例如,标称12伏特铅酸电池可以具有例如大约13.65伏特的对DC总线的对应的设定点调节,以提供对电池的充足充电。在从对DC总线的13.65伏特调节切换至电池电压的情况下,在到DC负载的输入上的电压的瞬变梯级(在该情况中是下降)将是相对小的,诸如小于1伏特。输入电压中的这样的小的改变可以充分减弱DC负载中的反向瞬变。
电池185可以是单个单元电池,或者串联和/或并联布置的单元电池的组合。在一些实施例中,UPS中的一个或多个电池在不同于电池备用模式的模式中可以是可热调换(hot swappable)的,在所述不同于电池备用模式的模式中,电池在AC总线225上的故障条件期间正在向负载放电。可以提供可视的或可听的指示器以向保养人员警示电池是否可以被热调换。
当安装到托板110上时,电池可以被定位和支撑用于快速和便捷的更换。各种快速连接/快速断开的铠装线(例如快接型连接器)、弹簧偏置的电接触、卡扣特征、闭锁调整片等可以被用来夹持电池用于稳固连接和快速更换。
AC干线电压,如在此所使用的,可以指典型地具有在大约47Hz和大约500Hz之间的基础频率的AC电压源,但不必然地受此限制。AC电压的源可以出自静止的或移动的源,其示例可以包括在运输车辆、卡车、火车、轮船、飞机等上面的旋转电力发电机。旋转发电机是指基本上从将时变磁场耦接到一个或多个导体以产生基本上为正弦曲线的电压而获得的电力的源。在一些实施方式中,将磁场相对于一个或多个导电绕组旋转。在一些其它的实施方式中,将一个或多个导电绕组相对于静止的磁场旋转。
作为在从AC发电机到DC负载230的电力路径中的仅有的AC到DC整流,AC到DC转换器170可以包括用来减少谐波畸变、减弱传导发射、管理突入电流等的特征。因此,转换器170可以并入硬件、软件或其组合,以提供例如功率因数校正、展布频谱(例如跳频)切换频率、过滤和/或控制电流的启动。
通过使用任何适当的切换转换器和控制策略来提供在确定的设定点的单个输出电压,可以实现转换器170对DC总线电压输出的调节。切换拓扑结构可以包括但不限于正激式、反激式、Cuk式、SEPIC式、降压式、降压-升压式或任何适当的谐振式或准谐振式AC到DC转换器。在一个说明性的实施例中,至少部分地以具有四个可控制的开关的有源切换矩阵的适当操作来实现AC到DC整流和转换,所述四个可控制的开关对施加到为降压式安排的感应元件上的AC输入电压进行调制。
在另一个说明性的实施例中,AC输入电压由不受控制的二极管整流器级所整流,随后被例如使用正激或反激拓扑结构磁耦接到DC到DC转换级。在又一个说明性示例中,在功率因数输入级的后面是一个或多个级联降压的DC到DC转换器级,以产生在确定的设定点上的调节的电压。可以与开关模式电力转换相组合使用线性调节。从本公开中,本领域的普通技术人员将认识到用于AC到DC转换器170的多个实施方式。适当的转换器为本领域所知并且随应用而变化。仅作为示例目的,参考图6A和6B描述了两个转换器设计。
参考例如图4作为说明性的示例,系统400的一些实施例可以以至少四个模式中的任一个来操作。在第一模式中,处理单元405与UPS115一样被关闭。在第二模式中,使用从DC总线175接收的电力对电池185充电。在该第二模式中,电池185可以根据充电算法进行快速充电或涓流充电。在第三模式中,由于电池从DC总线有效地断开并且在AC到DC转换器向DC负载230供应操作电力期间既不充电也不放电,电池是“浮置的”。在第四模式中,电池可操作地连接到DC总线175,并且放电以向DC负载230供应操作电力。该四个条件可以响应于在AC总线225上的故障条件而被启动。
在各种实施方式中,在电压源之间的转换可以涉及某些转换次序。例如,AC开关设备220(图2)可以使用基本上“先接后断”或基本上“先断后接”的转换次序来在任何发电机205、210、215之间转换。当从AC输入操作切换至电池操作时,在一些实施例中,UPS 115可以在电池185跨DC总线175连接之前、基本上在这期间或者之后禁用AC到DC转换器的操作。如果所有的转换器175输出电流通过例如串联二极管,则可以通过简单地在开关模式控制器(未示出)处禁用DC到DC切换的操作来禁用转换器175。在其它的实施例中,可以通过例如半导体开关来主动地断开输出。
已经描述了多个实施例。然而,应当理解,在不背离所描述的精神和范围的情况下可以进行各种修改。例如,如果以不同的次序来执行所公开的技术的步骤,如果将所公开的系统中的组件以不同的方式组合,或者如果以其它组件替换或增补了所述组件,则可以实现有利的结果。因此,其它的实施例也在权利要求的范围之内。

Claims (30)

1.一种用于数据中心的配电系统,所述系统包括:
电源,被配置为提供从电力设施线路网接收的AC电力;
多个机架可安装的处理单元,其中每个机架可安装的处理单元安装在机架的一位置中并且耦接到所述电源以在没有任何中间AC/DC转换或任何其他的对AC电力的调节的情况下接收从所述电源提供的AC电力,每个所述机架可安装的处理单元包括:
DC负载,包括可操作地处理通过网络接收的数据的至少一个数字处理器;
DC总线,被配置来向所述DC负载输送操作电力;以及
不间断电源UPS,所述UPS包括:
电池电路,被配置来在故障条件期间跨所述DC总线操作地连接电池,在所述故障条件中所述AC电力降至正常操作范围之外,其中AC输入电压信号源自旋转AC发电机处;
AC到DC整流级,包括AC到DC转换电路,所述AC到DC转换电路被配置来当所接收的AC电力在所述正常操作范围内时从所接收的AC电力过滤噪声和谐波分量、将所接收的AC电力的功率因数校正为接近于1的功率因数、并且将经过滤和校正的AC电力转换为跨所述DC总线的单个DC输出电压信号,其中所述AC到DC转换电路被配置来将所述DC输出电压信号调节至高于并接近所述电池的最大标称充电电压的电压水平;以及
控制器,被配置来选择性地激活所述电池电路和所述AC到DC转换电路使得在故障条件期间跨所述DC总线选择性地连接所述电池代替所述DC输出电压信号,并且当所述AC电力返回到所述正常操作范围内时恢复跨所述DC总线供应所述DC输出电压信号。
2.如权利要求1所述的系统,其中所述控制器被配置来控制开关以跨所述DC总线选择性地连接所述电池。
3.如权利要求1所述的系统,其中所述电池包括以串联的方式电连接的一个或多个单元电池。
4.如权利要求1所述的系统,其中所述电池包括以并联的方式电连接的一个或多个单元电池。
5.如权利要求1所述的系统,其中从所述电力设施线路网接收的所述AC电力包括来自三相AC系统的相电压信号和中性线信号。
6.如权利要求1所述的系统,其中从所述电力设施线路网接收的所述AC电力具有208伏特至277伏特的均方根值。
7.如权利要求1所述的系统,其中从所述电力设施线路网接收的所述AC电力具有在85伏特和480伏特之间的均方根值。
8.如权利要求1所述的系统,其中从所述电力设施线路网接收的所述AC电力基本上包括在45Hz和500Hz之间的频率的正弦曲线波形。
9.如权利要求1所述的系统,其中在所述电池中的单元电池包括从由下列组成的组中所选择的电池化学性:铅酸;镍金属氢化物;镍镉;碱性;以及锂离子。
10.如权利要求1所述的系统,进一步包括充电器,被配置来通过跨所述DC总线连接的路径对所述电池进行充电。
11.如权利要求1所述的系统,其中所述单个DC输出电压信号小于26伏特。
12.如权利要求1所述的系统,其中所述单个DC输出电压信号在10伏特和15伏特之间。
13.如权利要求1所述的系统,其中所述单个DC输出电压信号是13.65伏特。
14.如权利要求1所述的系统,其中所述AC到DC转换电路将所述DC输出电压信号调节至高于所述电池的所述最大标称充电电压1伏特。
15.如权利要求1所述的系统,其中所述DC输出电压信号向线性调节器提供充足的电压以将所述电池涓流充电至全充满状态,所述线性调节器跨所述DC总线与所述电池串联连接。
16.如权利要求1所述的系统,其中所述DC总线包括以第一电压的第一电路径,并且进一步包括以第二电压的第二电路径。
17.如权利要求16所述的系统,其中所述第一和第二电压中的一个在地基准电势。
18.如权利要求1所述的系统,其中所述电池的第一端子被直接连接到所述DC总线的第一轨,以及所述电池的第二端子被选择性地连接到所述DC总线的第二轨。
19.如权利要求1所述的系统,每个机架可安装的处理单元进一步包括存储延迟时间参数的数据存储,其中所述控制器被配置为选择性地激活所述AC到DC转换电路以在所述控制器接收指示去除了在所述AC输入电压信号中的所述故障的信号后的一延迟时间后,恢复向所述DC负载供应操作电力,所述延迟时间与所述数据存储中的所述延迟时间参数相对应,其中与所述机架可安装的处理单元中的至少一部分相关联的延迟时间彼此不同,使得减弱到所述数据中心的涌入电流。
20.如权利要求19所述的系统,其中所述控制器被配置为确定所存储的延迟时间参数。
21.如权利要求19所述的系统,其中所存储的延迟时间参数包括伪随机生成的值。
22.如权利要求1所述的系统,其中所述DC负载包括由下列组成的组中的至少一个:中央处理单元;数据存储设备;数学协处理器;以及数字信号处理器。
23.如权利要求22所述的系统,进一步包括至少一个DC-DC转换器,被配置来将在所述DC总线上供应的电压转换为至少一个另外的DC电压。
24.如权利要求23所述的系统,其中所述至少一个另外的DC电压中的一个或多个由下列组成的组中的一个的电压:-5、1、3、3.3、5、7.5、10、18-20、以及20-26伏特。
25.如权利要求23所述的系统,其中所述至少一个DC-DC转换器中的所述一个或多个被配置来从所述DC总线上供应的所述电压过滤噪声。
26.如权利要求1所述的系统,其中所述DC负载进一步包括一个或多个包含信息的信号,所述信号被传送到在所述DC负载外部的负载。
27.一种用于数据中心的配电系统,所述系统包括:
多个机架可安装的处理单元,其中每个机架可安装的处理单元安装在机架的一位置中并且耦接到电源,所述电源被配置为从电力设施线路网接收AC电力并且在没有任何中间AC/DC转换或任何其他的对AC电力的调节的情况下向所述机架可安装的处理单元提供所接收的AC电力,每个所述机架可安装的处理单元包括:
主板,包括可操作地处理通过网络接收的数据的至少一个数字处理器;
DC总线,被配置来将操作电力输送到所述主板;以及
不间断电源UPS,所述UPS包括:
电池电路,被配置来在故障条件期间跨所述DC总线操作地连接电池,在所述故障条件中所述AC电力降至正常操作范围之外;
AC到DC整流级,包括AC到DC转换电路,所述AC到DC转换电路被配置来当所接收的AC电力在所述正常操作范围内时从所接收的AC电力过滤噪声和谐波分量、将所接收的AC电力的功率因数校正为接近于1的功率因数、并且将经过滤和校正的AC电力转换为跨所述DC总线的单个DC输出电压信号,其中所述AC到DC转换电路被配置来将所述DC输出电压信号调节至高于并接近所述电池的最大标称充电电压的电压水平;以及
控制器,被配置来选择性地激活所述电池电路和所述AC到DC转换电路使得在故障条件期间跨所述DC总线选择性地连接所述电池代替所述DC输出电压信号,并且当AC输入电压信号返回到所述正常操作范围内时恢复跨所述DC总线供应所述DC输出电压信号。
28.如权利要求27所述的系统,进一步包括所述主板上的至少一个负载点DC-DC转换器,被配置来从所述DC总线接收DC电压并且向所述主板上的操作电路提供调整的DC电压。
29.如权利要求27所述的系统,其中所述AC到DC转换电路是包括平均电流模式控制(ACMC)的连续导电模式(CCM)类型的。
30.如权利要求27所述的系统,其中所述AC到DC转换电路是临界导电模式(CRM)类型的。
CN200880106672.3A 2007-07-18 2008-07-18 用于数据中心的电源 Active CN101803148B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/779,606 2007-07-18
US11/779,606 US8080900B2 (en) 2007-07-18 2007-07-18 Direct-coupled IT load
PCT/US2008/070475 WO2009012451A2 (en) 2007-07-18 2008-07-18 Power supply for a data center

Publications (2)

Publication Number Publication Date
CN101803148A CN101803148A (zh) 2010-08-11
CN101803148B true CN101803148B (zh) 2014-06-11

Family

ID=40019470

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200880106672.3A Active CN101803148B (zh) 2007-07-18 2008-07-18 用于数据中心的电源

Country Status (8)

Country Link
US (2) US8080900B2 (zh)
EP (1) EP2174398B1 (zh)
KR (1) KR101496999B1 (zh)
CN (1) CN101803148B (zh)
DE (1) DE202008018644U1 (zh)
DK (1) DK2174398T3 (zh)
HK (1) HK1147360A1 (zh)
WO (1) WO2009012451A2 (zh)

Families Citing this family (140)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154042A1 (en) * 2007-12-17 2009-06-18 Satec Ltd. Over current protection method and device
US8146374B1 (en) * 2009-02-13 2012-04-03 Source IT Energy, LLC System and method for efficient utilization of energy generated by a utility plant
US8693228B2 (en) 2009-02-19 2014-04-08 Stefan Matan Power transfer management for local power sources of a grid-tied load
US20110067376A1 (en) * 2009-03-16 2011-03-24 Geovada, Llc Plasma-based waste-to-energy techniques
US20100229522A1 (en) * 2009-03-16 2010-09-16 Jim Kingzett Plasma-Assisted E-Waste Conversion Techniques
US8839254B2 (en) * 2009-06-26 2014-09-16 Microsoft Corporation Precomputation for data center load balancing
KR101152604B1 (ko) * 2009-07-03 2012-06-04 주식회사 동아일렉콤 직류 전력 공급 시스템
US8723362B2 (en) * 2009-07-24 2014-05-13 Facebook, Inc. Direct tie-in of a backup power source to motherboards in a server system
DE102009041632A1 (de) * 2009-09-17 2011-03-24 Aeg Power Solutions B.V. Schaltungsanordnung mit einem Umrichterteil umfassend eine zentrale Steuereinheit
EP2315100A1 (de) * 2009-10-02 2011-04-27 Orderman GmbH Netzteil für ein Computersystem, insbesondere für ein Computersystem eines Boniersystems
KR101424099B1 (ko) * 2009-11-17 2014-07-31 에스에스비 윈드 시스템즈 게엠베하 운트 코 카게 풍력 터빈용 제어 캐비닛
JP2011125124A (ja) * 2009-12-09 2011-06-23 Sanyo Electric Co Ltd サーバーとサーバーに収納される無停電電源装置
JP5583394B2 (ja) * 2009-12-09 2014-09-03 Fdk株式会社 サーバーの無停電電源装置
US8588989B1 (en) 2010-04-29 2013-11-19 Google Inc. Power-consuming facilities as a source of reserve power
US9207993B2 (en) 2010-05-13 2015-12-08 Microsoft Technology Licensing, Llc Dynamic application placement based on cost and availability of energy in datacenters
US20110278928A1 (en) * 2010-05-17 2011-11-17 Microsoft Corporation Wind-powered data center
US8782443B2 (en) 2010-05-25 2014-07-15 Microsoft Corporation Resource-based adaptive server loading
US8384244B2 (en) * 2010-06-09 2013-02-26 Microsoft Corporation Rack-based uninterruptible power supply
US8487473B2 (en) 2010-06-24 2013-07-16 Microsoft Corporation Hierarchical power smoothing
US8344546B2 (en) 2010-07-16 2013-01-01 Facebook, Inc. Power supply unit directly connected to backup direct current power source
WO2012024182A1 (en) * 2010-08-14 2012-02-23 Waste2Watts Modular backup power management
US8457179B2 (en) * 2010-09-13 2013-06-04 Honeywell International Inc. Devices, methods, and systems for building monitoring
TW201214093A (en) * 2010-09-17 2012-04-01 Hon Hai Prec Ind Co Ltd Container data center and power supply system thereof
US8952566B2 (en) 2010-10-26 2015-02-10 Microsoft Technology Licensing, Llc Chassis slots accepting battery modules and other module types
US8849469B2 (en) 2010-10-28 2014-09-30 Microsoft Corporation Data center system that accommodates episodic computation
TWM405520U (en) * 2010-10-29 2011-06-11 Digi Triumph Technology Inc Uninterrupted power detection system(I)
US8970176B2 (en) * 2010-11-15 2015-03-03 Bloom Energy Corporation DC micro-grid
TW201222224A (en) * 2010-11-19 2012-06-01 Inventec Corp Industrial computer set, power cabinet and system cabinet
US9063738B2 (en) 2010-11-22 2015-06-23 Microsoft Technology Licensing, Llc Dynamically placing computing jobs
TWI431899B (zh) * 2010-11-30 2014-03-21 Inventec Corp 伺服電腦機組
CN102478947A (zh) * 2010-11-30 2012-05-30 英业达股份有限公司 伺服计算机机组
US8994231B1 (en) * 2010-12-03 2015-03-31 Exaflop Llc Medium voltage power distribution
US9762086B1 (en) * 2010-12-28 2017-09-12 Amazon Technologies, Inc. Switchless power source redundancy
WO2012122315A1 (en) * 2011-03-07 2012-09-13 Green Plug, Inc. Microcontroller of a power adapter
US9419494B2 (en) * 2011-05-11 2016-08-16 Siemens Industry, Inc. Induction machine power connection box including power supply for auxiliary devices including auxiliary cooling fans
US9450838B2 (en) 2011-06-27 2016-09-20 Microsoft Technology Licensing, Llc Resource management for cloud computing platforms
US9595054B2 (en) 2011-06-27 2017-03-14 Microsoft Technology Licensing, Llc Resource management for cloud computing platforms
DE102011107688A1 (de) * 2011-07-13 2013-01-17 Deutsches Zentrum für Luft- und Raumfahrt e.V. Rechenzentrum
EP2555141A1 (en) * 2011-08-03 2013-02-06 Alcatel Lucent A method, a system, a server, a control element, a computer program and a computer program product for operating a power grid having decentralized control elements
US20130054987A1 (en) * 2011-08-29 2013-02-28 Clemens Pfeiffer System and method for forcing data center power consumption to specific levels by dynamically adjusting equipment utilization
US9003216B2 (en) 2011-10-03 2015-04-07 Microsoft Technology Licensing, Llc Power regulation of power grid via datacenter
US8193662B1 (en) * 2011-10-17 2012-06-05 Google Inc. Power supply source blending and smoothing
US8866447B2 (en) * 2011-12-14 2014-10-21 Cyber Power Systems Inc. Uninterruptible power supply having efficient power conversion
TW201328118A (zh) * 2011-12-28 2013-07-01 Hon Hai Prec Ind Co Ltd 不間斷電源系統
US9301420B2 (en) * 2012-02-01 2016-03-29 Dell Products L.P. Rack-level scalable and modular power infrastructure
MY173151A (en) * 2012-02-22 2019-12-31 Naver Business Platform Corp Highly efficient power supply unit and method for supplying power using same
KR101427680B1 (ko) * 2013-01-02 2014-09-18 네이버비즈니스플랫폼 주식회사 고효율 전원 공급 장치 및 이를 이용한 전원 공급 방법
FR2987947B1 (fr) * 2012-03-09 2017-04-28 Intelligent Electronic Systems Dispositif de charge comprenant un convertisseur dc-dc
KR101312263B1 (ko) * 2012-03-23 2013-09-25 삼성에스디아이 주식회사 운송 수단 및 그 제어 방법
US9450452B2 (en) 2012-04-03 2016-09-20 Micorsoft Technology Licensing, LLC Transformer coupled current capping power supply topology
WO2013184718A1 (en) * 2012-06-04 2013-12-12 K2IP Holdings, LLC Integrated power plant and data center
US20130336010A1 (en) * 2012-06-18 2013-12-19 Honeywell International Inc. Systems and methods for operating an ac/dc converter while maintaining harmonic distortion limits
WO2014012120A1 (en) * 2012-07-13 2014-01-16 Inertech Ip Llc Energy efficient electrical systems and methods for modular data centers and modular data pods
US9490663B1 (en) * 2012-07-16 2016-11-08 Google Inc. Apparatus and methodology for battery backup circuit and control in an uninterruptible power supply
US9077052B2 (en) * 2012-09-06 2015-07-07 General Electric Company Methods and systems for charging an energy storage device
TWM450900U (zh) * 2012-09-14 2013-04-11 Compuware Technology Inc 熱插拔式不斷電模組
US9618991B1 (en) 2012-09-27 2017-04-11 Google Inc. Large-scale power back-up for data centers
US9673632B1 (en) 2012-09-27 2017-06-06 Google Inc. Fluid plane in computer data center
US9416904B2 (en) * 2012-10-10 2016-08-16 Microsoft Technology Licensing, Llc Gas supply shock absorber for datacenter power generation
US9032250B1 (en) 2012-11-05 2015-05-12 Google Inc. Online testing of secondary power unit
US9804654B2 (en) 2012-12-05 2017-10-31 Google Inc. Backup power architecture for rack system
CN103178599A (zh) * 2013-03-08 2013-06-26 浙江大学 海底观测网络的岸基供电运行及保障系统
US9373963B2 (en) 2013-05-24 2016-06-21 Raytheon Company Energy transfer and storage apparatus for delivery of pulsed power
US9692231B2 (en) * 2013-09-06 2017-06-27 Amazon Technologies, Inc. Managing power feeds through waveform monitoring
US10587015B2 (en) * 2013-10-02 2020-03-10 Lt350, Llc Energy storage canopy
US11916205B2 (en) 2013-10-02 2024-02-27 Lt 350, Llc Energy storage canopy
CN206086406U (zh) * 2013-10-02 2017-04-12 Lt350有限公司 篷和太阳能篷
US9583974B1 (en) * 2013-11-25 2017-02-28 Asif Ahsanullah Uninterruptible power supply for an electric apparatus
US10033210B2 (en) 2014-01-30 2018-07-24 Micrsoft Technology Licensing, LLC Power supply for use with a slow-response power source
US9823721B1 (en) * 2014-03-19 2017-11-21 Amazon Technologies, Inc. Switchgear controller device
US9965013B1 (en) 2014-03-19 2018-05-08 Amazon Technologies, Inc. Switchgear controller device
US10797490B2 (en) * 2014-03-26 2020-10-06 Intersil Americas LLC Battery charge system with transition control that protects adapter components when transitioning from battery mode to adapter mode
US9723742B2 (en) 2014-04-14 2017-08-01 General Electric Company Integrated power racks and methods of assembling the same
WO2015157999A1 (en) * 2014-04-18 2015-10-22 Schneider Electric It Corporation System and methods for distributed uninterruptable power supplies
WO2015167442A1 (en) * 2014-04-28 2015-11-05 Hewlett-Packard Development Company, L.P. Communication associated with multiple nodes for delivery of power
WO2015167449A1 (en) * 2014-04-29 2015-11-05 Hewlett-Packard Development Company, L.P. Switches coupling volatile memory devices to a power source
CN104010170B (zh) * 2014-06-20 2017-10-20 中国移动通信集团广东有限公司 一种带ups的td‑lte视频通信控制器
JP6296608B2 (ja) * 2014-06-26 2018-03-20 Fdk株式会社 無停電電源装置
US10234835B2 (en) 2014-07-11 2019-03-19 Microsoft Technology Licensing, Llc Management of computing devices using modulated electricity
US9954365B2 (en) * 2014-07-11 2018-04-24 Microsoft Technology Licensing, Llc Electricity management using modulated waveforms
US20160011617A1 (en) * 2014-07-11 2016-01-14 Microsoft Technology Licensing, Llc Power management of server installations
US9933804B2 (en) 2014-07-11 2018-04-03 Microsoft Technology Licensing, Llc Server installation as a grid condition sensor
US10353002B2 (en) * 2014-08-12 2019-07-16 Omicron Electronics Gmbh Test system and method for testing a circuit breaker
US10033220B1 (en) * 2014-08-19 2018-07-24 Amazon Technologies, Inc. High-voltage energy storage system
EP3190682B1 (en) * 2014-09-01 2021-06-02 Vertiv Tech Co., Ltd. Power supply system and method
JP6375798B2 (ja) * 2014-09-04 2018-08-22 富士通株式会社 電源装置、電源システム及びその制御方法
CN104317378B (zh) * 2014-09-30 2017-04-26 英业达科技有限公司 机架式服务器系统
US10164464B1 (en) * 2015-03-12 2018-12-25 Amazon Technologies, Inc. Modular uninterruptible power supply
US20160285267A1 (en) * 2015-03-26 2016-09-29 Methode Electronics, Inc. Power peak shaving system
WO2016175286A1 (ja) * 2015-04-30 2016-11-03 株式会社アイピーコア研究所 給電システム
EP3320598B1 (en) * 2015-07-07 2020-11-25 Ilumi Solutions, Inc. Wireless control device and methods thereof
KR20170006590A (ko) * 2015-07-08 2017-01-18 삼성전기주식회사 전원 공급 장치 및 컨버터 제어 방법
GB2540570B (en) * 2015-07-21 2019-04-03 Dyson Technology Ltd Battery charger
US9996129B2 (en) 2015-08-13 2018-06-12 Abb Schweiz Ag Electrically powered computer system and power supply system for same
US9614429B2 (en) 2015-08-18 2017-04-04 Abb Schweiz Ag System for converting AC electrical power to DC electrical power and methods
CN105182250B (zh) * 2015-08-24 2017-12-12 北京国电通网络技术有限公司 一种非侵入式分布式电源出力监测装置
US9559607B1 (en) 2015-08-25 2017-01-31 Abb Schweiz Ag Power supply and distribution systems and operating strategy
US10230260B2 (en) 2015-09-23 2019-03-12 Abb Schweiz Ag Fast utility disconnect switch for single conversion UPS
US10931190B2 (en) 2015-10-22 2021-02-23 Inertech Ip Llc Systems and methods for mitigating harmonics in electrical systems by using active and passive filtering techniques
EP3160006B1 (en) * 2015-10-23 2019-04-17 Siemens Aktiengesellschaft Uninterruptible power supply
CN105515173A (zh) * 2015-12-07 2016-04-20 北京奇虎科技有限公司 可穿戴设备及其根据电量管理应用程序的方法
CN108702023B (zh) * 2016-03-08 2022-04-05 施耐德电气It公司 机架电力系统和方法
JP6638585B2 (ja) * 2016-07-15 2020-01-29 株式会社村田製作所 電力供給装置
CN106533216B (zh) * 2016-12-26 2023-06-27 中电科航空电子有限公司 基于车载设备电源的机载机场无线通信设备电源
US11574372B2 (en) 2017-02-08 2023-02-07 Upstream Data Inc. Blockchain mine at oil or gas facility
TWI627814B (zh) * 2017-03-16 2018-06-21 華碩電腦股份有限公司 充電電路及其控制方法
US11967826B2 (en) 2017-12-05 2024-04-23 Sean Walsh Optimization and management of power supply from an energy storage device charged by a renewable energy source in a high computational workload environment
US11962157B2 (en) 2018-08-29 2024-04-16 Sean Walsh Solar power distribution and management for high computational workloads
WO2019139633A1 (en) 2018-01-11 2019-07-18 Lancium Llc Method and system for dynamic power delivery to a flexible growcenter using unutilized energy sources
KR102425778B1 (ko) * 2018-03-20 2022-07-27 한국전자기술연구원 배전망 전력관리 시스템 및 그 전력관리 방법
US10840701B2 (en) * 2018-06-01 2020-11-17 Keysight Technologies, Inc. Instrumentation chassis with single output AC to DC power supply and DC to DC switching regulators
BE1026573B1 (fr) * 2018-08-28 2020-03-30 Euro Diesel S A Procédé d’alimentation d’un appareil électrique en courant électrique continu et accumulateur d’énergie électrique
US11929622B2 (en) 2018-08-29 2024-03-12 Sean Walsh Optimization and management of renewable energy source based power supply for execution of high computational workloads
US11031787B2 (en) 2018-09-14 2021-06-08 Lancium Llc System of critical datacenters and behind-the-meter flexible datacenters
US10873211B2 (en) * 2018-09-14 2020-12-22 Lancium Llc Systems and methods for dynamic power routing with behind-the-meter energy storage
US11016553B2 (en) 2018-09-14 2021-05-25 Lancium Llc Methods and systems for distributed power control of flexible datacenters
US11216047B2 (en) * 2018-10-11 2022-01-04 Vertiv It Systems, Inc. System and method for detecting relationship between intelligent power strip and device connected thereto
US10367353B1 (en) 2018-10-30 2019-07-30 Lancium Llc Managing queue distribution between critical datacenter and flexible datacenter
US10452127B1 (en) 2019-01-11 2019-10-22 Lancium Llc Redundant flexible datacenter workload scheduling
EP3912245A4 (en) * 2019-01-14 2022-10-12 Smardt Chiller Group Inc. DC COOLER METHOD AND SYSTEM
US11201540B2 (en) * 2019-02-07 2021-12-14 F'real! Foods, Llc Motor control circuit with power factor correction
CA3139776A1 (en) 2019-05-15 2020-11-19 Upstream Data Inc. Portable blockchain mining system and methods of use
US11397999B2 (en) 2019-08-01 2022-07-26 Lancium Llc Modifying computing system operations based on cost and power conditions
US11868106B2 (en) 2019-08-01 2024-01-09 Lancium Llc Granular power ramping
US11016458B2 (en) 2019-10-28 2021-05-25 Lancium Llc Methods and systems for adjusting power consumption based on dynamic power option agreement
KR102314220B1 (ko) * 2019-12-16 2021-10-18 주식회사 어니언소프트웨어 데이터센터 전력공급시스템 및 데이터센터 전력공급시스템의 전력공급방법
US11042948B1 (en) 2020-02-27 2021-06-22 Lancium Llc Computing component arrangement based on ramping capabilities
CN111308943B (zh) * 2020-03-31 2023-11-28 深圳市英威腾电源有限公司 一种ups的控制方法、装置、设备及介质
TWI701895B (zh) * 2020-04-22 2020-08-11 產晶積體電路股份有限公司 時間參數控制方法
CN113949149A (zh) * 2020-06-30 2022-01-18 超聚变数字技术有限公司 数据中心控制方法与控制系统
US11418033B2 (en) 2020-10-21 2022-08-16 Schneider Electric It Corporation Method to overcome electrical circuit voltage and current limitations
KR20220072036A (ko) * 2020-11-23 2022-06-02 현대모비스 주식회사 변압기의 ac 손실 최소화를 위한 버스바 및 그 설계방법
US11388834B1 (en) * 2020-12-03 2022-07-12 Amazon Technologies, Inc. Power distribution board
CN112737113B (zh) * 2020-12-23 2023-03-21 中煤科工集团重庆研究院有限公司 一种基于网络地址的提高电源负载从设备数量的方法
RU2757573C1 (ru) * 2021-05-28 2021-10-18 Федеральное государственное бюджетное научное учреждение «Федеральный научный агроинженерный центр ВИМ» (ФГБНУ ФНАЦ ВИМ) Система управления зарядом аккумуляторных батарей для электротранспорта от стандартного сетевого напряжения
WO2023105501A1 (en) * 2021-12-11 2023-06-15 Venkatanarayanan Jeyalakshmi Power source for low power appliances
KR20230161630A (ko) 2022-05-19 2023-11-28 삼성중공업 주식회사 해양 그린 데이터센터 시스템
US20240006909A1 (en) * 2022-06-29 2024-01-04 Schneider Electric It Corporation Cloud based li-ion battery life optimization utilization with hybrid mode of operation
KR20240060010A (ko) 2022-10-28 2024-05-08 삼성중공업 주식회사 해양 그린 데이터센터 시스템
KR20240060009A (ko) 2022-10-28 2024-05-08 삼성중공업 주식회사 해양 그린 데이터센터 시스템

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202281A (zh) * 1995-10-11 1998-12-16 英威泰克经营公司 组合式电源
CN1261473A (zh) * 1998-04-27 2000-07-26 三菱电机株式会社 不间断电源装置
EP1355404A1 (en) * 2002-04-16 2003-10-22 Hitachi, Ltd. DC backup power supply system
CN1885673A (zh) * 2005-06-23 2006-12-27 三星电子株式会社 电子设备和电子设备系统
EP1830271A1 (en) * 2006-03-01 2007-09-05 Hitachi, Ltd. Power supply device and power supply method

Family Cites Families (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3757131A (en) 1972-06-02 1973-09-04 Gulf Research Development Co Emergency power switching circuit for counters
JPS62196071A (ja) 1986-02-24 1987-08-29 Fanuc Ltd パワ−デバイス駆動用電源
US4749881A (en) * 1987-05-21 1988-06-07 Honeywell Inc. Method and apparatus for randomly delaying a restart of electrical equipment
US5119014A (en) 1991-03-05 1992-06-02 Kronberg James W Sequential power-up circuit
IT1254937B (it) 1991-05-06 1995-10-11 Aggiornamento dinamico di memoria non volatile in un sistema informatico
JPH06133550A (ja) * 1992-10-12 1994-05-13 Nemitsuku Ramuda Kk 電源装置
US5458991A (en) 1993-05-19 1995-10-17 Sl Waber, Inc. UPS with auto self test
CN1138927A (zh) 1994-01-13 1996-12-25 银行家信托公司 具有密钥由第三方保存特性的密码系统和方法
FR2735296B1 (fr) 1995-06-08 1997-08-22 Sgs Thomson Microelectronics Circuit et procede de commande d'un limiteur d'appel de courant dans un convertisseur de puissance
US5757166A (en) * 1995-11-30 1998-05-26 Motorola, Inc. Power factor correction controlled boost converter with an improved zero current detection circuit for operation under high input voltage conditions
US6076142A (en) * 1996-03-15 2000-06-13 Ampex Corporation User configurable raid system with multiple data bus segments and removable electrical bridges
GB2312517B (en) 1996-04-25 2000-11-22 Nokia Mobile Phones Ltd Battery monitoring
US5694307A (en) 1996-09-30 1997-12-02 Alliedsignal Inc. Integrated AC/DC and DC/DC converter
US5789828A (en) 1996-12-24 1998-08-04 Tremaine; Susan C. Low voltage power supply and distribution center
US5821636A (en) 1997-08-08 1998-10-13 Compaq Computer Corp. Low profile, redundant source power distribution unit
US5994878A (en) * 1997-09-30 1999-11-30 Chartec Laboratories A/S Method and apparatus for charging a rechargeable battery
JP2000014043A (ja) 1998-06-05 2000-01-14 Internatl Business Mach Corp <Ibm> 無停電電源装置
WO2000057304A1 (en) 1999-03-23 2000-09-28 Lexent Inc. System for managing telecommunication sites
US6496366B1 (en) 1999-10-26 2002-12-17 Rackable Systems, Llc High density computer equipment storage system
US6850408B1 (en) 1999-10-26 2005-02-01 Rackable Systems, Inc. High density computer equipment storage systems
US6157168A (en) 1999-10-29 2000-12-05 International Business Machines Corporation Secondary power supply for an uninterruptible power system
US6289684B1 (en) 2000-01-14 2001-09-18 Guidry, Ii John L. Transportable, self-contained, refrigeration system
US6584559B1 (en) 2000-01-28 2003-06-24 Avaya Technology Corp. Firmware download scheme for high-availability systems
US6667891B2 (en) 2000-02-18 2003-12-23 Rackable Systems, Inc. Computer chassis for dual offset opposing main boards
US6768222B1 (en) 2000-07-11 2004-07-27 Advanced Micro Devices, Inc. System and method for delaying power supply power-up
US6333650B1 (en) 2000-12-05 2001-12-25 Juniper Networks, Inc. Voltage sequencing circuit for powering-up sensitive electrical components
US6374627B1 (en) 2001-01-09 2002-04-23 Donald J. Schumacher Data center cooling system
GB0103837D0 (en) 2001-02-16 2001-04-04 Nallatech Ltd Programmable power supply for field programmable gate array modules
US6967283B2 (en) 2001-03-20 2005-11-22 American Power Conversion Corporation Adjustable scalable rack power system and method
US6506111B2 (en) 2001-05-16 2003-01-14 Sanmina-Sci Corporation Cooling airflow distribution device
US6617708B2 (en) 2001-09-18 2003-09-09 C&D Charter Holdings, Inc. Modular power distribution system
US20030133263A1 (en) 2002-01-17 2003-07-17 H.L.L. Investment, Ltd. Uninterruptible power supply (UPS) with built-in USB hub
US20030197428A1 (en) 2002-04-05 2003-10-23 Hatton Thomas E. Power processor
US6668565B1 (en) 2002-04-12 2003-12-30 American Power Conversion Rack-mounted equipment cooling
US6968465B2 (en) 2002-06-24 2005-11-22 Hewlett-Packard Development Company, L.P. Multiple server in-rush current reduction
US7634667B2 (en) * 2002-07-12 2009-12-15 Hewlett-Packard Development Company, L.P. User-configurable power architecture with hot-pluggable power modules
US6824362B2 (en) 2002-07-15 2004-11-30 Adc Dsl Systems, Inc. Fan control system
US6786056B2 (en) 2002-08-02 2004-09-07 Hewlett-Packard Development Company, L.P. Cooling system with evaporators distributed in parallel
US6937947B2 (en) 2002-08-20 2005-08-30 Lsi Logic Corporation Battery charger system and method for providing detailed battery status and charging method information
US6879053B1 (en) 2002-10-22 2005-04-12 Youtility, Inc. Transformerless, load adaptive speed controller
CA2504366A1 (en) 2002-11-01 2004-05-21 Rudy Kraus Apparatus for providing high quality power
US7500911B2 (en) 2002-11-25 2009-03-10 American Power Conversion Corporation Exhaust air removal system
KR20050088107A (ko) 2002-12-06 2005-09-01 일렉트릭 파워 리서치 인스티튜트 무정전 전원 공급기 및 발전기 시스템
JP3776880B2 (ja) * 2002-12-10 2006-05-17 株式会社日立製作所 無停電電源装置
US6859366B2 (en) 2003-03-19 2005-02-22 American Power Conversion Data center cooling system
US7313717B2 (en) * 2003-04-17 2007-12-25 Sun Microsystems, Inc. Error management
US7173821B2 (en) 2003-05-16 2007-02-06 Rackable Systems, Inc. Computer rack with power distribution system
US6935130B2 (en) 2003-06-24 2005-08-30 Aopen Inc. Computer cooling system
US7259477B2 (en) 2003-08-15 2007-08-21 American Power Conversion Corporation Uninterruptible power supply
US6985357B2 (en) * 2003-08-28 2006-01-10 Galactic Computing Corporation Bvi/Bc Computing housing for blade server with network switch
US7406623B2 (en) 2003-09-29 2008-07-29 Hitachi Computer Peripherals Co., Ltd. DC backup power supply system and disk array using same
US20050174678A1 (en) * 2003-12-24 2005-08-11 Matsushita Electric Industrial Co., Ltd Stepping power consumption levels in a hard disk drive to maximize performance while minimizing power consumption
JP2005227988A (ja) 2004-02-12 2005-08-25 Hitachi Ltd ディスクアレイ装置、及びディスクアレイ装置の電源バックアップ方法
US7123477B2 (en) 2004-03-31 2006-10-17 Rackable Systems, Inc. Computer rack cooling system
US20050286191A1 (en) 2004-06-28 2005-12-29 Pieter Vorenkamp Power supply integrated circuit with multiple independent outputs
US7302596B2 (en) 2004-07-21 2007-11-27 Giga-Byte Technology Co., Ltd. Circuit capable of updating power supply specification of microprocessor and method thereof
US20060082263A1 (en) 2004-10-15 2006-04-20 American Power Conversion Corporation Mobile data center
US7274974B2 (en) 2005-02-22 2007-09-25 Square D Company Independent automatic shedding branch circuit breaker
US7102341B1 (en) * 2005-03-30 2006-09-05 Texas Instruments Incorporated Apparatus for controlling a power factor correction converter device
US7307837B2 (en) * 2005-08-23 2007-12-11 International Business Machines Corporation Method and apparatus for enforcing of power control in a blade center chassis
TWI449301B (zh) 2006-06-01 2014-08-11 Exaflop Llc 用於資料中心之配電系統,包含其之模組處理系統、以及其操作方法、架構和電腦程式產品,以及便於資料處理之方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1202281A (zh) * 1995-10-11 1998-12-16 英威泰克经营公司 组合式电源
CN1261473A (zh) * 1998-04-27 2000-07-26 三菱电机株式会社 不间断电源装置
EP1355404A1 (en) * 2002-04-16 2003-10-22 Hitachi, Ltd. DC backup power supply system
CN1885673A (zh) * 2005-06-23 2006-12-27 三星电子株式会社 电子设备和电子设备系统
EP1830271A1 (en) * 2006-03-01 2007-09-05 Hitachi, Ltd. Power supply device and power supply method

Also Published As

Publication number Publication date
KR101496999B1 (ko) 2015-02-27
HK1147360A1 (zh) 2011-08-05
DK2174398T3 (en) 2019-02-25
US20090021078A1 (en) 2009-01-22
US20120056481A1 (en) 2012-03-08
EP2174398A2 (en) 2010-04-14
WO2009012451A2 (en) 2009-01-22
WO2009012451A3 (en) 2009-08-13
DE202008018644U1 (de) 2017-04-04
CN101803148A (zh) 2010-08-11
EP2174398B1 (en) 2018-12-05
US8080900B2 (en) 2011-12-20
KR20100051069A (ko) 2010-05-14

Similar Documents

Publication Publication Date Title
CN101803148B (zh) 用于数据中心的电源
US7560831B2 (en) Data center uninterruptible power distribution architecture
AU2013201985B2 (en) Power module system
US10541535B2 (en) Apparatus and method for aggregating and supplying energy to a load
TW201023476A (en) Power factor correction (PFC) for nonsinusoidal uninterruptible power supply
CN104333052A (zh) 电池模块、电池模块供电管理方法及其装置
Stepanov et al. Concept of modular uninterruptible power supply system with alternative energy storages and sources
WO2014158487A1 (en) Methods and apparatus for a power storage and delivery system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1147360

Country of ref document: HK

ASS Succession or assignment of patent right

Owner name: GOOGLE INC.

Free format text: FORMER OWNER: EXAFLOP LLC

Effective date: 20140513

C14 Grant of patent or utility model
C41 Transfer of patent application or patent right or utility model
GR01 Patent grant
TA01 Transfer of patent application right

Effective date of registration: 20140513

Address after: American California

Applicant after: Google Inc.

Address before: American California

Applicant before: Exaflop LLC

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1147360

Country of ref document: HK

CP01 Change in the name or title of a patent holder

Address after: American California

Patentee after: Google limited liability company

Address before: American California

Patentee before: Google Inc.

CP01 Change in the name or title of a patent holder