CN101793174A - 降低气化系统中冷却水和动力消耗的系统及其组装方法 - Google Patents

降低气化系统中冷却水和动力消耗的系统及其组装方法 Download PDF

Info

Publication number
CN101793174A
CN101793174A CN201010003819A CN201010003819A CN101793174A CN 101793174 A CN101793174 A CN 101793174A CN 201010003819 A CN201010003819 A CN 201010003819A CN 201010003819 A CN201010003819 A CN 201010003819A CN 101793174 A CN101793174 A CN 101793174A
Authority
CN
China
Prior art keywords
condensation product
air
air compressor
cooling water
product heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201010003819A
Other languages
English (en)
Other versions
CN101793174B (zh
Inventor
P·S·华莱士
J·M·斯托里
A·J·阿瓦利亚诺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Products and Chemicals Inc
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101793174A publication Critical patent/CN101793174A/zh
Application granted granted Critical
Publication of CN101793174B publication Critical patent/CN101793174B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas- turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/067Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification
    • F01K23/068Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle the combustion heat coming from a gasification or pyrolysis process, e.g. coal gasification in combination with an oxygen producing plant, e.g. an air separation plant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C3/00Gas-turbine plants characterised by the use of combustion products as the working fluid
    • F02C3/20Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products
    • F02C3/26Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension
    • F02C3/28Gas-turbine plants characterised by the use of combustion products as the working fluid using a special fuel, oxidant, or dilution fluid to generate the combustion products the fuel or oxidant being solid or pulverulent, e.g. in slurry or suspension using a separate gas producer for gasifying the fuel before combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04012Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling
    • F25J3/04018Providing pressurised feed air or process streams within or from the air fractionation unit by compression of warm gaseous streams; details of intake or interstage cooling of main feed air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04121Steam turbine as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04006Providing pressurised feed air or process streams within or from the air fractionation unit
    • F25J3/04109Arrangements of compressors and /or their drivers
    • F25J3/04115Arrangements of compressors and /or their drivers characterised by the type of prime driver, e.g. hot gas expander
    • F25J3/04133Electrical motor as the prime mechanical driver
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04527Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general
    • F25J3/04539Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels
    • F25J3/04545Integration with an oxygen consuming unit, e.g. glass facility, waste incineration or oxygen based processes in general for the H2/CO synthesis by partial oxidation or oxygen consuming reforming processes of fuels for the gasification of solid or heavy liquid fuels, e.g. integrated gasification combined cycle [IGCC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04563Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating
    • F25J3/04575Integration with a nitrogen consuming unit, e.g. for purging, inerting, cooling or heating for a gas expansion plant, e.g. dilution of the combustion gas in a gas turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04593The air gas consuming unit is also fed by an air stream
    • F25J3/04606Partially integrated air feed compression, i.e. independent MAC for the air fractionation unit plus additional air feed from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • F25J3/04Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream for air
    • F25J3/04521Coupling of the air fractionation unit to an air gas-consuming unit, so-called integrated processes
    • F25J3/04612Heat exchange integration with process streams, e.g. from the air gas consuming unit
    • F25J3/04618Heat exchange integration with process streams, e.g. from the air gas consuming unit for cooling an air stream fed to the air fractionation unit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/30Application in turbines
    • F05D2220/31Application in turbines in steam turbines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2230/00Processes or apparatus involving steps for increasing the pressure of gaseous process streams
    • F25J2230/06Adiabatic compressor, i.e. without interstage cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2240/00Processes or apparatus involving steps for expanding of process streams
    • F25J2240/70Steam turbine, e.g. used in a Rankine cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • Y02E20/18Integrated gasification combined cycle [IGCC], e.g. combined with carbon capture and storage [CCS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/53Means to assemble or disassemble

Abstract

本发明涉及降低气化系统中冷却水和动力消耗的系统及其组装方法。具体而言,提供的是一种一体化气化联合循环系统(10,100)。该一体化气化联合循环系统(10,100)包括:空气压缩机(12),其与空气分离单元(30)联接成流动连通;冷凝物加热器(74),其与该空气压缩机联接成流动连通;以及冷凝器(66),其与该冷凝物加热器联接成流动连通,该冷凝物加热器和该空气压缩机联接成使得由空气压缩机所生成的压缩空气的一部分引导至冷凝物加热器。

Description

降低气化系统中冷却水和动力消耗的系统及其组装方法
技术领域
本发明主要涉及一体化气化联合循环(IGCC)动力生成系统,并且更具体而言,涉及用于降低气化系统中的冷却水消耗和动力消耗的方法和系统。
背景技术
至少一些已知的IGCC系统包括至少一个产生动力的燃气轮机系统和/或蒸汽轮机系统,其与气化系统例如但不限于碳液化(carbon-to-liquids)气化系统形成一体。此类已知的碳液化气化系统可包括煤液化(CTL)气化系统。至少一些已知的CTL气化系统包括空气分离单元、气化器和费托(F-T)合成反应系统。
已知的空气分离单元可包括一体化空气压缩机,例如但不限于包括多个级的多级空气压缩机。已知的多级空气压缩机通常包括设置在相邻级之间的一系列的冷却水交换器,用以向压缩空气提供中间冷却和去除空气在被压缩时所生成的热。为将压缩空气的总体温度降至所需的温度(例如,接近环境温度),可能需要超出通常所能获得的冷却水用量(duty)。因此,一些已知的气化系统可能并不是用水受到约束的场所的最佳选择。
已知的气化器和F-T合成反应系统通常产生大量的副产蒸汽,该副产蒸汽由系统内发生的反应生成而来。尽管大部分产生的蒸汽是低压蒸汽,但是可将该蒸汽引导穿过包括冷凝器的蒸汽冷凝循环,以将水蒸汽转变成冷凝液,该冷凝液可用作例如锅炉的给水。然而,为去除大量的热,已知的冷凝器可能需要超出所能获得的冷却水用量。因此,至少一些已知的气化系统可能并不是用水受到约束的场所的最佳选择。
发明内容
本发明提供一种组装一体化气化联合循环系统的方法。该方法包括:联接空气压缩机与空气分离单元成流动连通;联接冷凝物加热器与空气压缩机成流动连通;以及联接冷凝器与冷凝物加热器成流动连通。冷凝物加热器与空气压缩机联接成使得由空气压缩机所生成的压缩空气的一部分引导至冷凝物加热器。
本发明提供一种一体化气化联合循环系统。该一体化气化联合循环系统包括:空气压缩机,其与空气分离单元联接成流动连通;冷凝物加热器,其与空气压缩机联接成流动连通;以及冷凝器,其与冷凝物加热器联接成流动连通。冷凝物加热器与空气压缩机联接成使得由空气压缩机所生成的压缩空气的一部分引导至冷凝物加热器。
本发明提供一种碳液化系统。该碳液化系统包括:空气压缩机,其与空气分离单元联接成流动连通;冷凝物加热器,其与空气压缩机联接成流动连通;以及冷凝器,其与冷凝物加热器联接成流动连通。冷凝物加热器与空气压缩机联接成使得由空气压缩机所生成的压缩空气的一部分引导至冷凝物加热器。
附图说明
图1是示例性的已知的一体化气化联合循环(IGCC)动力生成系统的示意图;以及
图2是示例性的IGCC系统的示意图。零件清单
10    一体化气化联合循环(IGCC)动力生成系统
11    动力源
12    主空气压缩机
14    级
16    级
18    级
20    冷却水交换器
22    水交换器
24    冷却水交换器
26    干燥器
28    主热交换器
30    空气分离单元
32    压缩机
34    压缩机
36    燃料源
38    气化器
40    净化(clean-up)装置
42    F-T合成反应系统
50    燃气涡轮发动机
52    燃气涡轮压缩机
54    燃烧器
56    燃气涡轮机
58    发电机
60    热回收蒸汽发生器(HRSG)锅炉
62    蒸汽轮机
64    发电机
66    冷凝器
68    除气器
70    冷却塔
72    风扇(airfan)冷凝器
74    加热器
76    除气器
100   IGCC系统
具体实施方式
图1是示例性的已知的一体化气化联合循环(IGCC)动力生成系统10的示意图。IGCC系统10通常包括动力源11、主空气压缩机12、空气分离单元30、气化器38、燃气涡轮发动机50、费托(F-T)合成反应系统42、燃气涡轮发动机50、热回收蒸汽发生器(HRSG)锅炉60、蒸汽轮机62、冷凝器66,以及除气器68。下文将更加详细地描述IGCC系统10的这些构件。
在工作期间,动力源11为主空气压缩机12提供动力,主空气压缩机12与动力源11联接成流动连通。在该示例性实施例中,主空气压缩机12是包括多个级14、16和18的多级压缩机。相邻的级14、16与18之间设有冷却水交换器20和22,且在级18之后设有冷却水交换器24。在工作期间,级14、16和18对环境空气进行压缩,意图从环境空气中去除冷凝水。空气经加热且随后引导至冷却水交换器20、22和24,该冷却水交换器20、22和24有助于从各个相应的级14、16和18中排出中间冷却的压缩空气。具体来说,需要一定的冷却水用量,用以将一定量的冷却水流供送经过冷却水交换器20、22和24。然而,为去除大量的热,IGCC系统10所需要的冷却水用量可能超出一些用水受到约束的场所所能获得的冷却水量。
在工作期间,压缩空气可引导至与主空气压缩机12联接成流动连通的干燥器26。干燥器26意图从压缩空气中去除水蒸汽和CO2,该水蒸汽和CO2可能会冷冻不需要的沉积物和/或致使其形成在联接于干燥器26下游的已知的空气分离单元(随后更加详细地描述)中。然后,可将干燥的不含CO2的压缩空气引导至主热交换器28。
在示例性实施例中,相比于干燥器26中的压缩空气温度,主热交换器28意图将压缩空气冷却至相当低的温度(例如,约-300℉或-185℃)。更具体来说,冷却可通过将空气分离过程(随后更加详细地描述)所形成的气体产物和/或废气流引导经过主热交换器28来产生。由于气体产物和废气流的温度通常低于流过主热交换器28的压缩空气的温度,故可在将空气引导至空气分离单元30之前降低压缩空气的工作温度。在一些实施例中,除了从主空气压缩机12引导压缩空气流以外或作为替代方案,从燃气涡轮发动机的压缩机(随后将更加详细地描述)通向空气分离单元30,压缩空气可直接引导至和/或间接引导至主热交换器28。
在示例性实施例中,空气分离单元30(也称为冷箱或蒸馏柱)与主热交换器28联接成流动连通。空气分离单元30使用压缩空气来生成氧气,用于后续生产合成气。更具体来说,在空气分离单元30中,压缩空气经受相比于主热交换器28更低的温度,且压缩空气分离成氧气流和副产物气体(有时称为“工艺气体”)流。由空气分离单元30所生成的工艺气体包括氮气,且在本文中称之为“工艺氮气”(NPG)。例如,在一些实施例中,NPG包含处在大约95%至大约100%之间的氮气。至少一些NPG气流会排到大气中。
在IGCC系统10中,如果拟将NPG进给至下游的燃气涡轮发动机,则可将NPG引导至压缩机32,并且/或者取决于气化器38的工作压力,可将NPG引导至压缩机34。在各种情况下,冷却水都引导经过与相应压缩机32和34相关联的冷却水交换器(未显示),以促使去除由该压缩过程所形成的大量热。因此,可能对IGCC系统10所需的冷却水用量提出了额外的需求,从而总体需求水平超出一些用水受到约束的场所所能获得的水平。
在该示例性实施例中,气化器38联接至空气分离单元30。在工作期间,除了用作气化剂的氧气流以外,气化器38还接收由燃料源36供应的燃料,例如但不限于非石油资源(例如煤和/或其它碳基原料),以产生供燃气涡轮发动机50使用的部分燃烧的合成气体(本文称之为“合成气”),这在下文将更加详细地描述。应了解的是,在一些已知的IGCC系统中,气化器38可使用任何燃料,例如,石油焦、渣油、乳化油、焦油砂和/或其它类似燃料。在IGCC系统10中,用于生产合成气的气化反应还可产生二氧化碳(CO2),该二氧化碳可排到大气、隔离储存起来,且/或处理成用作工业用气体。此外,在一些实施例中,来自气化反应的蒸汽可用来发电,且/或可引导至动力源11来生成用于主空气压缩机12的动力。应了解的是,动力源11可包括蒸汽发生器、电动机和/或动力生成系统。
在该示例性实施例中,由气化器38所生成的合成气在净化装置40中进行净化,且在净化期间可从合成气中分离出CO2。在一些已知的IGCC系统中,CO2排到大气中,隔离储存起来,且/或处理成用作工业用气体。然后,可将净化后的合成气引导至其它系统以便进一步处理,其它的系统例如为但不限于与净化装置40联接成流动连通以促使净化后的合成气转变为液体碳氢化合物的F-T合成反应系统42。在一些实施例中,由F-T合成反应所生成的蒸汽可用来发电,且/或可引导至动力源11以生成用于主空气压缩机12的动力。
转变成的液体碳氢化合物作为燃料供应至与F-T合成反应系统42联接成流动连通的燃气涡轮发动机50。更具体来说,燃气涡轮发动机50包括燃气涡轮压缩机52、燃烧器54,以及燃气涡轮机56。压缩机52将压缩空气引导至燃烧器54,该压缩空气与液体碳氢燃料相混合并在F-T合成反应系统42中燃烧。所获得的燃烧气体引导至燃气涡轮机56,以驱动将电力供应至电网(未显示)的发电机58。来自燃气涡轮机56的排气引导至HRSG锅炉60,HRSG锅炉60产生蒸汽用于驱动与HRSG锅炉60联接成流动连通的蒸汽轮机62。
在IGCC系统10中,蒸汽轮机62所生成的动力可驱动将电力提供至电网的发电机64。在一些实施例中,除了发电机64以外或作为发电机64的替代,蒸汽轮机62可与水冷冷凝器66和/或除气器68联接成流动连通,以向HRSG锅炉60供水。更具体来说,冷凝器66使用来自蒸汽轮机62的蒸汽,以将水蒸汽变为冷凝液。所获得的冷凝物引导至除气器68,该除气器68从冷凝液中去除溶解气体,使得冷凝液变为非腐蚀性的水,该非腐蚀性的水作为给水供给至HRSG锅炉60用于产生蒸汽。由于可能需要来自冷却水源(例如,冷却塔70)的冷却水来冷凝冷凝器62中的蒸汽,故IGCC系统10所需要的冷却水用量可增大到超过一些用水受到约束的场所所能获得的总体需求水平。
图2是一种示例性的一体化气化联合循环(IGCC)动力生成系统100的示意图。具体来说,图2中所示的IGCC系统大致类似于图1中所示的IGCC系统,且与图1所示构件相同的图2中构件在图2中使用相同于图1中使用的参考编号来标示。更具体来说,在图2中所示的实施例中,IGCC系统100包括风扇冷凝器72和主空气压缩机12,风扇冷凝器72和主空气压缩机12联接至加热器74,以相比于已知的IGCC系统促使降低冷却水的消耗。
在该示例性实施例中,IGCC系统100包括多级主空气压缩机12,且空气由级14、16和18进行压缩。随着空气在压缩机12内受到压缩,空气的温度升高。例如,在一个实施例中,空气可加热到在大约750℉至800℉的温度。然后,如下文更加详细地描述,被加热的压缩空气分成两股压缩空气流。
在工作期间,一部分压缩空气在第一压缩空气流中引导到冷却水交换器24,冷却水交换器24促进对在压缩机12内加热的压缩空气进行冷却。随后,压缩空气经由干燥器26和主热交换器28从交换器24引导至空气分离单元30。从空气中分离出的氮气引导至燃烧器54,以及从空气中分离出的氧气引导至气化器38,以与燃料反应而产生合成气。合成气可在净化装置40中进行净化,然后将其引导至F-T合成反应系统42以进一步处理,并且将净化后的合成气转变成液体碳氢化合物以便在燃气涡轮发动机50中使用。来自燃气涡轮机56的排气供应至HRSG锅炉60,以产生蒸汽来驱动蒸汽轮机62。
在该示例性实施例中,来自涡轮机62的蒸汽用于在工作期间为主空气压缩机12供以动力。更具体来说,IGCC系统100包括将蒸汽冷凝成冷凝液的风扇冷凝器72。在冷凝过程期间,风扇冷凝器72使用冷却空气,促使从蒸汽中去除潜热。然后,在加热器74中对冷凝液预加热,并将其引导至除气器76,以从冷凝液中去除溶解气体,使得冷凝液变为非腐蚀性的水,该非腐蚀性的水作为给水供给至HRSG锅炉60来产生蒸汽。由于对冷凝液进行预加热,在加热器74内可生成蒸汽。在该示例性实施例中,来自加热器74的蒸汽可用于发电,且/或可引导至动力源11以产生用于主空气压缩机12的动力。
在工作期间,一部分压缩空气在第二压缩空气流中从主空气压缩机级18引导至加热器74。热的压缩空气会升高从风扇冷凝器72引导至加热器74的冷凝液的工作温度。此后,热的压缩空气经由冷却水交换器24引导进入分离单元30,使得压缩空气的总体工作温度降至接近环境温度。应了解的是,除了冷却水交换器24以外,IGCC系统100还可包括单独的冷却水交换器。在这样的实施例中,附加的冷却水交换器联接在加热器74的下游,以促使将加压空气冷却至接近环境温度。作为备选,加热的NPG从压缩机32和/或34引导至加热器74,以产生低压(LP)蒸汽并在注入燃气轮机50之前对NPG进行冷却。在这样的实施例中,根据应用情况,可有助于减少或消除对NPG流的冷却水的需求。
在该示例性实施例,IGCC系统100包括引导自主空气压缩机12的两股压缩空气流。一部分压缩空气先引导至冷却水交换器24,而其余的压缩空气先引导至加热器74。由于从主空气压缩机级18所排出的一部分压缩空气转向至加热器74,故从主空气压缩机级18引导至冷却水交换器24的初始压缩空气量小于在已知IGCC系统中(例如图1所示的IGCC 10)从主空气压缩机级18引导至冷却水交换器27的总压缩空气量。此外,由于一部分压缩空气转向至加热器74,故加热器74内的传热会致使引导至冷却水交换器24的压缩空气达到在不使用加热器74的情况下将会实现的较低工作温度。因此,相比于已知的IGCC系统,IGCC系统100可利用较少的冷却水交换器和/或较少的冷却水进行工作来去除在主空气压缩机12内生成的热。例如,相比于已知IGCC系统的冷却水需求,IGCC系统100的冷却水需求可减少多达20%。
如上所述,加热器74使用引导自主空气压缩机级18的一部分压缩热空气加热由风扇冷凝器72所生成的冷凝液。由于IGCC系统100消耗蒸汽并且使用一部分压缩热来预加热冷凝液,故IGCC系统100有助于降低冷凝物的整体需求。此外,因加热冷凝液而生成的蒸汽可用于发电和/或对主空气压缩机12提供动力。另外,因加热冷凝液而生成的蒸汽有助于降低IGCC系统100的动力消耗和/或有助于降低IGCC的动力生成需求。
上文描述了组装IGCC系统100的示例性方法。更具体来说,这些方法包括:联接主空气压缩机12与空气分离单元30成流动连通;联接冷凝物加热器74与主空气压缩机12成流动连通;以及联接风扇冷凝器72与冷凝物加热器74成流动连通。冷凝物加热器74与主空气压缩机12联接成使得由主空气压缩机12所生成的一部分压缩空气引导至冷凝物加热器74。
上述示例性的IGCC系统和组装该种系统的方法有助于降低冷却水的消耗。此外,上述IGCC系统通过使一部分压缩空气从压缩机转向至加热器来促使降低用于冷却压缩空气的冷却水消耗。进一步而言,上述IGCC系统通过提供风扇冷凝器来促使降低用于冷凝蒸汽的冷却水消耗。因此,相比于已知IGCC系统的冷却水需求,IGCC系统100的冷却水需求可减少多达20%。此外,由于可以使用由流过加热器的加热的冷凝液而生成的蒸汽来发电和/或对系统构件提供动力,故上述IGCC系统还有助于降低动力消耗和/或有助于减少动力生成。
上文详细地描述了用于在气化系统中降低冷却水消耗和动力消耗的方法和系统的示例性实施例。这些方法和系统并不限于与本文所述的具体IGCC系统一同使用,相反的是这些系统和方法可与本文所述的其它系统构件独立地和单独地使用。此外,本发明并不限于上文详述的方法和系统的实施例。相反,在权利要求的精神和范围内可使用这些方法和系统的其它变型。
尽管本发明已就各种特定的实施例进行了描述,但本领域普通技术人员将意识到的是,本发明可采用在权利要求精神和范围内的变体而予以实施。

Claims (10)

1.一种一体化气化联合循环系统(10,100),包括:
空气压缩机(12),其与空气分离单元(30)联接成流动连通;
冷凝物加热器(74),其与所述空气压缩机联接成流动连通;以及
冷凝器(66),其与所述冷凝物加热器联接成流动连通,所述冷凝物加热器和所述空气压缩机联接成使得由所述空气压缩机所生成的压缩空气的一部分引导至所述冷凝物加热器。
2.根据权利要求1所述的一体化气化联合循环系统(10,100),其特征在于,所述一体化气化联合循环系统(10,100)还包括除气器(68,76),所述除气器(68,76)与所述冷凝物加热器(74)联接成使得所述除气器有助于从排出自所述冷凝物加热器的加热的冷凝物中去除溶解气体。
3.根据权利要求1所述的一体化气化联合循环系统(10,100),其特征在于,所述一体化气化联合循环系统(10,100)还包括冷却水交换器(20,24),所述冷却水交换器(20,24)与所述冷凝物加热器(74)联接成使得所述冷却水交换器有助于对从所述冷凝物加热器排出的压缩空气部分进行冷却。
4.根据权利要求1所述的一体化气化联合循环系统(10,100),其特征在于,所述冷凝物加热器(74)构造成用以接收由所述冷凝器生成的冷凝物,以及压缩空气部分,使得来自所述压缩空气部分的热在所述冷凝物加热器内对所述冷凝物进行加热和生成蒸汽。
5.根据权利要求4所述的一体化气化联合循环系统(10,100),其特征在于,所述冷凝器是风扇冷凝器(72)。
6.根据权利要求5所述的一体化气化联合循环系统(10,100),其特征在于,所述一体化气化联合循环系统(10,100)还包括动力源(11),所述动力源(11)与所述冷凝物加热器(74)和所述空气压缩机(12)联接成流动连通,使得所述动力源有助于由所述蒸汽生成动力,用以驱动所述空气压缩机。
7.根据权利要求1所述的一体化气化联合循环系统(10,100),其特征在于,所述空气压缩机(12)和所述空气分离单元(30)联接成使得压缩空气部分引导至所述空气分离单元。
8.一种碳液化系统,包括:
空气压缩机(12),其与空气分离单元(30)联接成流动连通;
冷凝物加热器(74),其与所述空气压缩机联接成流动连通;以及
冷凝器(66),其与所述冷凝物加热器联接成流动连通,所述冷凝物加热器与所述空气压缩机联接成使得由所述空气压缩机所生成的压缩空气的一部分引导至所述冷凝物加热器。
9.根据权利要求8所述的碳液化系统,其特征在于,所述碳液化系统还包括除气器(68,76),所述除气器(68,76)与所述冷凝物加热器(74)联接成使得所述除气器有助于从排出自所述冷凝物加热器的加热的冷凝物中去除溶解气体。
10.根据权利要求8所述的碳液化系统,其特征在于,所述碳液化系统还包括冷却水交换器(20,24),所述冷却水交换器(20,24)与所述冷凝物加热器(74)联接成使得所述冷却水交换器有助于对从所述冷凝物加热器排出的压缩空气部分进行冷却。
CN201010003819.5A 2009-01-06 2010-01-06 降低气化系统中冷却水和动力消耗的系统及其组装方法 Active CN101793174B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US12/349,366 US8186177B2 (en) 2009-01-06 2009-01-06 Systems for reducing cooling water and power consumption in gasification systems and methods of assembling such systems
US12/349,366 2009-01-06
US12/349366 2009-01-06

Publications (2)

Publication Number Publication Date
CN101793174A true CN101793174A (zh) 2010-08-04
CN101793174B CN101793174B (zh) 2014-09-10

Family

ID=42310823

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010003819.5A Active CN101793174B (zh) 2009-01-06 2010-01-06 降低气化系统中冷却水和动力消耗的系统及其组装方法

Country Status (5)

Country Link
US (1) US8186177B2 (zh)
CN (1) CN101793174B (zh)
AU (1) AU2009251177A1 (zh)
CA (1) CA2689192A1 (zh)
PL (1) PL389909A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2957408B1 (fr) * 2010-03-09 2015-07-17 Air Liquide Procede et appareil de chauffage d'un gaz de l'air provenant d'un appareil de separation d'air
EP2620732A1 (de) * 2012-01-26 2013-07-31 Linde Aktiengesellschaft Verfahren und Vorrichtung zur Luftzerlegung und Dampferzeugung in einem kombinierten System
US20140130509A1 (en) * 2012-11-13 2014-05-15 Raymond Francis Drnevich Combined gasification and power generation
CN112475855B (zh) * 2020-10-27 2021-09-17 浙江基力思汽车空调有限公司 一种冷凝器集液管隔片堵头自动嵌入装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155619A (zh) * 1995-11-07 1997-07-30 气体产品与化学公司 以部分负荷操作联合气化循环动力产生系统
US6824575B1 (en) * 1998-08-28 2004-11-30 Kabushiki Kaisha Toshiba Integrated coal gasification combined cycle power generator
WO2008014481A1 (en) * 2006-07-28 2008-01-31 Rollins William S Iii High efficiency integrated gasification combined cycle power plant
US20080087022A1 (en) * 2006-10-13 2008-04-17 Siemens Power Generation, Inc. IGCC design and operation for maximum plant output and minimum heat rate
CN101270689A (zh) * 2008-04-30 2008-09-24 杭州杭氧透平机械有限公司 煤气化增压联合循环发电系统的能量转化和回收方法

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4212160A (en) * 1977-12-22 1980-07-15 Combustion Engineering, Inc. Combined cycle power plant using low Btu gas
US4571935A (en) * 1978-10-26 1986-02-25 Rice Ivan G Process for steam cooling a power turbine
US5081845A (en) * 1990-07-02 1992-01-21 Air Products And Chemicals, Inc. Integrated air separation plant - integrated gasification combined cycle power generator
US5160096A (en) * 1991-10-11 1992-11-03 United Technologies Corporation Gas turbine cycle
KR960700400A (ko) 1992-12-30 1996-01-20 아더 이. 퍼니어 2세 융화된 가스화 복합 싸이클 시스템(Control system for integrated gasification combined cycle system)
FI941141A (fi) * 1993-03-15 1994-09-16 Mitsubishi Heavy Ind Ltd Kivihiilen kaasuunnukseen perustuva energiankehitin
US5388395A (en) * 1993-04-27 1995-02-14 Air Products And Chemicals, Inc. Use of nitrogen from an air separation unit as gas turbine air compressor feed refrigerant to improve power output
US5345756A (en) 1993-10-20 1994-09-13 Texaco Inc. Partial oxidation process with production of power
SE507116C2 (sv) * 1995-12-11 1998-03-30 Abb Carbon Ab Förgasningsanordning och kraftanläggning
JPH1162622A (ja) * 1997-08-22 1999-03-05 Toshiba Corp 石炭ガス化複合発電設備およびその運転方法
US6263659B1 (en) 1999-06-04 2001-07-24 Air Products And Chemicals, Inc. Air separation process integrated with gas turbine combustion engine driver
US7776208B2 (en) 2004-01-12 2010-08-17 L'air Liquide - Societe Anonyme A Directoire Et Conseil De Surveillance Pour L'etude Et L'exploitation Des Procedes Georges Claude Integration of gasification, hydrocarbon synthesis unit, and refining processes
US20060106119A1 (en) 2004-01-12 2006-05-18 Chang-Jie Guo Novel integration for CO and H2 recovery in gas to liquid processes
JP2006118391A (ja) * 2004-10-20 2006-05-11 Mitsubishi Heavy Ind Ltd ガス化複合発電プラントにおける抽気空気昇圧設備の制御装置
US7464555B2 (en) * 2005-05-05 2008-12-16 Siemens Energy, Inc. Catalytic combustor for integrated gasification combined cycle power plant
US7584598B2 (en) * 2005-08-10 2009-09-08 Alstom Technology Ltd. Method for operating a gas turbine and a gas turbine for implementing the method
US7584599B2 (en) * 2005-08-10 2009-09-08 Alstom Technology Ltd. Method for operating a gas turbine as well as a gas turbine for implementing the method
US8529646B2 (en) 2006-05-01 2013-09-10 Lpp Combustion Llc Integrated system and method for production and vaporization of liquid hydrocarbon fuels for combustion
US7451591B2 (en) * 2006-05-08 2008-11-18 Econo-Power International Corporation Production enhancements on integrated gasification combined cycle power plants

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1155619A (zh) * 1995-11-07 1997-07-30 气体产品与化学公司 以部分负荷操作联合气化循环动力产生系统
US6824575B1 (en) * 1998-08-28 2004-11-30 Kabushiki Kaisha Toshiba Integrated coal gasification combined cycle power generator
WO2008014481A1 (en) * 2006-07-28 2008-01-31 Rollins William S Iii High efficiency integrated gasification combined cycle power plant
US20080087022A1 (en) * 2006-10-13 2008-04-17 Siemens Power Generation, Inc. IGCC design and operation for maximum plant output and minimum heat rate
CN101270689A (zh) * 2008-04-30 2008-09-24 杭州杭氧透平机械有限公司 煤气化增压联合循环发电系统的能量转化和回收方法

Also Published As

Publication number Publication date
US8186177B2 (en) 2012-05-29
AU2009251177A1 (en) 2010-07-22
PL389909A1 (pl) 2010-07-19
US20100170285A1 (en) 2010-07-08
CA2689192A1 (en) 2010-07-06
CN101793174B (zh) 2014-09-10

Similar Documents

Publication Publication Date Title
EP1982053B1 (en) Method for increasing the efficiency of an integrated gasification combined cycle
JP6189500B2 (ja) 窒素ガス作動流体を使用する高効率発電(power generation)のためのシステムおよび方法
US7665291B2 (en) Method and system for heat recovery from dirty gaseous fuel in gasification power plants
US8371099B2 (en) Power generation system incorporating multiple Rankine cycles
CN101287893B (zh) 提高带有一体化燃料气化器的燃气和蒸汽联合发电厂效率的方法
US9320985B2 (en) Configurations and methods of generating low-pressure steam
CN102952585A (zh) 从气化系统中回收热
EP2196650A1 (en) Turbine facility and power generating apparatus
JP2008545945A (ja) 蒸気発生設備および蒸気発生設備の運転方法とその追加装備方法
CN103380198A (zh) 用于利用生物质制油工厂中产生的气体的热能的方法
CN102628381A (zh) 在底蒸汽循环中使用燃气轮机中间冷却器热的系统和方法
AU2010201875A1 (en) Method and system for use with an integrated gasification combined cycle plant
CN102191957A (zh) 联合循环热电联产设备及工艺
CN101793174B (zh) 降低气化系统中冷却水和动力消耗的系统及其组装方法
CN102186956A (zh) 用于整体锅炉给水加热的方法和系统
CN202039910U (zh) 联合循环热电联产设备
JP5933944B2 (ja) 統合型ターボ機械酸素プラント
US7565806B2 (en) Method and system for supplying an air separation unit by means of a gas turbine
CN104040274A (zh) 空气分离、功率生成的集成
JP3652743B2 (ja) ガス化複合発電プラント
EP4187061A1 (en) Method and apparatus for co-generating electricity in a process plant integrated with a thermal power generator
WO2023089540A1 (en) Co2 power cycle with adiabatic compression
RU2233986C1 (ru) Способ распределения расхода пара на паровые турбины, работающие с противодавлением, при производстве аммиака
CN102559271A (zh) 从合成气体中移除气态副产物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200106

Address after: Pennsylvania, USA

Patentee after: Gas Products and Chemical Company

Address before: New York State, USA

Patentee before: General Electric Company