CN101792228B - Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof - Google Patents
Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof Download PDFInfo
- Publication number
- CN101792228B CN101792228B CN2009102442424A CN200910244242A CN101792228B CN 101792228 B CN101792228 B CN 101792228B CN 2009102442424 A CN2009102442424 A CN 2009102442424A CN 200910244242 A CN200910244242 A CN 200910244242A CN 101792228 B CN101792228 B CN 101792228B
- Authority
- CN
- China
- Prior art keywords
- wetland
- lower floor
- water
- upper strata
- sewage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 239000010865 sewage Substances 0.000 title claims abstract description 45
- 238000000034 method Methods 0.000 title claims abstract description 12
- 238000005728 strengthening Methods 0.000 title claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 119
- 239000012764 mineral filler Substances 0.000 claims abstract description 19
- 230000000694 effects Effects 0.000 claims abstract description 13
- 244000005700 microbiome Species 0.000 claims abstract description 9
- 229910021536 Zeolite Inorganic materials 0.000 claims description 11
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 claims description 11
- 239000010457 zeolite Substances 0.000 claims description 11
- 239000002245 particle Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 8
- 239000004801 Chlorinated PVC Substances 0.000 claims description 6
- 229920000457 chlorinated polyvinyl chloride Polymers 0.000 claims description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 claims description 6
- 239000004744 fabric Substances 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 4
- 239000007788 liquid Substances 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 230000015556 catabolic process Effects 0.000 claims description 3
- 238000006731 degradation reaction Methods 0.000 claims description 3
- 239000004800 polyvinyl chloride Substances 0.000 claims description 3
- 230000009286 beneficial effect Effects 0.000 claims description 2
- 238000012856 packing Methods 0.000 claims 6
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000006866 deterioration Effects 0.000 claims 1
- 230000002906 microbiologic effect Effects 0.000 claims 1
- 229920000915 polyvinyl chloride Polymers 0.000 claims 1
- 239000000945 filler Substances 0.000 abstract description 28
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 abstract description 21
- 229910052698 phosphorus Inorganic materials 0.000 abstract description 21
- 239000011574 phosphorus Substances 0.000 abstract description 21
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 abstract description 20
- 229910052757 nitrogen Inorganic materials 0.000 abstract description 10
- XKMRRTOUMJRJIA-UHFFFAOYSA-N ammonia nh3 Chemical compound N.N XKMRRTOUMJRJIA-UHFFFAOYSA-N 0.000 abstract description 7
- 239000005416 organic matter Substances 0.000 abstract description 6
- 238000006213 oxygenation reaction Methods 0.000 abstract description 3
- 241000196324 Embryophyta Species 0.000 description 20
- 235000019738 Limestone Nutrition 0.000 description 9
- 239000006028 limestone Substances 0.000 description 9
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 239000001301 oxygen Substances 0.000 description 7
- 239000004743 Polypropylene Substances 0.000 description 6
- -1 polyethylene Polymers 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 239000003344 environmental pollutant Substances 0.000 description 5
- 231100000719 pollutant Toxicity 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002033 PVDF binder Substances 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 229910052799 carbon Inorganic materials 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 238000005265 energy consumption Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 238000005273 aeration Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 230000000813 microbial effect Effects 0.000 description 2
- 235000015097 nutrients Nutrition 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000013589 supplement Substances 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 1
- 244000207740 Lemna minor Species 0.000 description 1
- 235000006439 Lemna minor Nutrition 0.000 description 1
- 241001365789 Oenanthe crocata Species 0.000 description 1
- 244000273256 Phragmites communis Species 0.000 description 1
- 235000014676 Phragmites communis Nutrition 0.000 description 1
- 235000001855 Portulaca oleracea Nutrition 0.000 description 1
- 241000589614 Pseudomonas stutzeri Species 0.000 description 1
- 239000006004 Quartz sand Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 240000001398 Typha domingensis Species 0.000 description 1
- MMDJDBSEMBIJBB-UHFFFAOYSA-N [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] Chemical compound [O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O.[NH6+3] MMDJDBSEMBIJBB-UHFFFAOYSA-N 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000012851 eutrophication Methods 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- 230000008595 infiltration Effects 0.000 description 1
- 238000001764 infiltration Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000008929 regeneration Effects 0.000 description 1
- 238000011069 regeneration method Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 239000010802 sludge Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 230000001502 supplementing effect Effects 0.000 description 1
- 238000003911 water pollution Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/10—Biological treatment of water, waste water, or sewage
Landscapes
- Purification Treatments By Anaerobic Or Anaerobic And Aerobic Bacteria Or Animals (AREA)
- Water Treatment By Sorption (AREA)
Abstract
本发明公开了一种强化污水脱氮除磷的双层人工湿地系统及其操作方法。所述系统包括上层湿地、下层湿地、进水布水系统和出水收集系统,上层湿地填充矿物填料,下层湿地填充利于微生物附着生长的生物填料,进水布水系统分为两支,其中一支布置在上层湿地上方,另一支布置在上层湿地与下层湿地的交界面,出水收集系统布置在下层湿地底部。所述方法为污水通过布水系统的一支进行跌水充氧,落入上层湿地,去除有机物、氨氮和磷等后垂直渗入下层湿地;为补充碳源,通过布水系统的另一支为下层湿地引入小股污水,与上层湿地渗入的污水混合,进行反硝化脱氮;处理后水由出水收集装置排出。本发明占地面积少、不易堵塞、脱氮除磷效果好、投资运行成本低。The invention discloses a double-layer artificial wetland system for strengthening denitrification and dephosphorization of sewage and an operation method thereof. The system includes an upper wetland, a lower wetland, an inlet water distribution system, and an outlet water collection system. The upper wetland is filled with mineral fillers, and the lower wetland is filled with biological fillers that facilitate the growth of microorganisms. The inlet water distribution system is divided into two branches, one of which is Arranged above the upper wetland, the other branch is arranged at the interface between the upper wetland and the lower wetland, and the effluent collection system is arranged at the bottom of the lower wetland. The method described is that the sewage falls into the upper wetland through one branch of the water distribution system for oxygenation, falls into the upper wetland, and then vertically infiltrates into the lower wetland after removing organic matter, ammonia nitrogen and phosphorus; A small stream of sewage is introduced into the lower wetland and mixed with the sewage infiltrated from the upper wetland for denitrification and denitrification; the treated water is discharged from the effluent collection device. The invention occupies less area, is not easy to be blocked, has good nitrogen and phosphorus removal effects, and has low investment and operation costs.
Description
技术领域 technical field
本发明涉及污水处理技术领域,具体涉及一种强化污水脱氮除磷的双层人工湿地系统及其操作方法,主要利用人工湿地处理污水的方法达到强化污水脱氮除磷的目的。The invention relates to the technical field of sewage treatment, in particular to a double-layer constructed wetland system for strengthening nitrogen and phosphorus removal from sewage and an operation method thereof.
背景技术 Background technique
污水土地处理人工湿地技术(Constructed Wetlands,CWs)已成为一种世界关注的水污染控制技术。人工湿地最早公开报道于1904年,但正式作为一种污水处理技术,则兴起于70年代的美国、澳大利亚、荷兰、丹麦、英国等国家,而其迅速发展则为近二十年。近年来,人工湿地应用于处理村镇生活污水、控制农业面源污染和河流湖泊富营养化的研究屡见报道。Sewage Land Treatment Constructed Wetlands (CWs) has become a water pollution control technology that has attracted worldwide attention. Constructed wetlands were first publicly reported in 1904, but officially as a sewage treatment technology, they emerged in the United States, Australia, the Netherlands, Denmark, the United Kingdom and other countries in the 1970s, and their rapid development took place in the past two decades. In recent years, studies on the application of constructed wetlands to treat domestic sewage in villages and towns, control agricultural non-point source pollution, and eutrophication of rivers and lakes have been frequently reported.
然而,传统的人工湿地污染物负荷低、占地面积大、易堵塞、供氧不足、脱氮除磷效果不理想等不足制约了人工湿地的发展速度和应用规模。However, the disadvantages of traditional constructed wetlands, such as low pollutant load, large floor area, easy clogging, insufficient oxygen supply, and unsatisfactory nitrogen and phosphorus removal effects, restrict the development speed and application scale of constructed wetlands.
针对人工湿地污水处理系统供氧不足,目前的研究主要集中在以下几个方面:(1)筛选复氧能力强的植物,但对浓度较高、负荷大的污水处理效果不明显,也不能解决植物复氧季节性的差异;(2)增加人工湿地处理单元流程或降低负荷;(3)增加前处理,如在土地处理前增加硝化段或对污水预曝气以提高进水的溶解氧等;(4)人工湿地污水处理系统中结合人工曝气技术,补充湿地内部溶解氧,该方法可以提高植物没有长成前和冬季植物作用减弱时土地系统的处理效果,但增加了能耗和运行费用;(5)水泵提升或利用地势落差进行跌水充氧。In view of the insufficient oxygen supply of the constructed wetland sewage treatment system, the current research mainly focuses on the following aspects: (1) Screening plants with strong reoxygenation ability, but the treatment effect on sewage with high concentration and heavy load is not obvious, and cannot solve the problem. Seasonal differences in plant reoxygenation; (2) Increase the flow of constructed wetland treatment units or reduce the load; (3) Increase pre-treatment, such as increasing the nitrification section before land treatment or pre-aerating sewage to increase the dissolved oxygen in the influent, etc. (4) Combined with artificial aeration technology in the constructed wetland sewage treatment system, supplementing the dissolved oxygen inside the wetland, this method can improve the treatment effect of the land system before the plants grow and when the plant effect is weakened in winter, but it increases the energy consumption and operation (5) The water pump is lifted or the drop water is oxygenated by using the terrain drop.
针对人工湿地污水处理系统反硝化效果差的特点,目前的研究主要集中在以下几个方面:(1)分段进水,以原水作为碳源;(2)增加回流系统,将部分出水回流;(3)控制条件,在介质内部形成好氧区和缺氧区。In view of the poor denitrification effect of the constructed wetland sewage treatment system, the current research mainly focuses on the following aspects: (1) Segmented water intake, using raw water as a carbon source; (2) Adding a backflow system to return part of the effluent; (3) ) to control the conditions to form an aerobic zone and anoxic zone inside the medium.
针对人工湿地除磷效果不佳,目前的研究主要集中在以下几个方面:(1)采用絮凝沉淀等化学法对污水进行预处理;(2)在人工湿地中增加对磷素吸附能力强的填料;(3)后接土地渗滤等深度处理单元,吸附去除人工湿地出水中的磷素。In view of the poor phosphorus removal effect of constructed wetlands, the current research mainly focuses on the following aspects: (1) pretreatment of sewage by chemical methods such as flocculation and sedimentation; (2) increasing phosphorus adsorption capacity in constructed wetlands Filler; (3) followed by advanced treatment units such as land infiltration to absorb and remove phosphorus in the effluent of the constructed wetland.
以往人工湿地的研究与应用过程中存在以下问题:以土壤或细砂为主的湿地易堵塞且污染物负荷低;单纯依靠植物复氧存在供氧不足的问题,氨氮去除效果差,而采取人工曝气又增加了能耗和运行费用;湿地后段碳源不足导致反硝化脱氮效果不理想;引入如炉渣、钢渣、石英砂等高效除磷填料主要依靠吸附作用除磷,一方面填料本身的理化性质可能对湿地植物的生长带来负面影响,另一方面吸附饱和后填料的置换导致投资成本的增加,吸附饱和后填料的处理处置具有潜在的二次污染等问题。In the past, there were the following problems in the research and application of constructed wetlands: wetlands dominated by soil or fine sand were easy to clog and the pollutant load was low; relying solely on plant reoxygenation had the problem of insufficient oxygen supply, and the removal effect of ammonia nitrogen was poor. Aeration also increases energy consumption and operating costs; insufficient carbon sources in the back section of the wetland lead to unsatisfactory denitrification and denitrification effects; the introduction of high-efficiency phosphorus removal fillers such as slag, steel slag, and quartz sand mainly relies on adsorption to remove phosphorus. On the one hand, the filler itself The physical and chemical properties of the wetland plants may have a negative impact on the growth of wetland plants. On the other hand, the replacement of the filler after adsorption saturation will lead to an increase in investment costs. The treatment and disposal of the filler after adsorption saturation has potential secondary pollution and other issues.
发明内容 Contents of the invention
本发明的目的之一是提供一种占地面积少、不易堵塞、脱氮除磷效果好、投资运行成本低的强化污水脱氮除磷的双层人工湿地系统,采用双层垂直流人工湿地系统,为村镇分散型污水处理提供一条有效的途径。One of the objectives of the present invention is to provide a double-layer constructed wetland system for enhanced nitrogen and phosphorus removal from sewage, which is small in floor area, not easy to block, good in nitrogen and phosphorus removal, and low in investment and operation costs. The system provides an effective way for decentralized sewage treatment in villages and towns.
本发明的另一目的在于提供一种强化污水脱氮除磷的双层人工湿地系统的操作方法。Another object of the present invention is to provide an operation method for a double-layer constructed wetland system that strengthens nitrogen and phosphorus removal from sewage.
为实现上述发明目的,本发明的技术方案为:For realizing above-mentioned purpose of the invention, technical scheme of the present invention is:
一种强化污水脱氮除磷的双层人工湿地系统,包括置于池体内部的上层湿地、下层湿地、为上层湿地和下层湿地提供进水的进水布水系统和出水收集系统,所述的出水收集系统的出水收集管置于下层湿地底部,所述上层湿地中填充以去除悬浮物、有机物、氨氮和磷为主要目的的矿物填料,所述下层湿地中填充以去除总氮为主要目的的利于微生物附着生长的生物填料。A double-layer constructed wetland system that strengthens denitrification and phosphorus removal of sewage, including an upper wetland placed inside the pool body, a lower wetland, an inlet water distribution system and an outlet water collection system that provide water for the upper wetland and the lower wetland, said The effluent collection pipe of the effluent collection system is placed at the bottom of the lower wetland, the upper wetland is filled with mineral fillers whose main purpose is to remove suspended solids, organic matter, ammonia nitrogen and phosphorus, and the lower wetland is filled with the main purpose of removing total nitrogen A biological filler that is conducive to the growth of microorganisms.
所述上层湿地的上方的池体上设有溢流管,上层湿地中栽种有植物。An overflow pipe is provided on the pool body above the upper wetland, and plants are planted in the upper wetland.
所述进水布水系统包括置于上层湿地上方的带有穿孔的上层布水管和置于上层湿地与下层湿地交界面的下层布水系统;所述上层布水管和下层布水系统通过直管相连通,其相交处设有流量控制阀。The water inlet water distribution system includes an upper water distribution pipe with perforations placed above the upper wetland and a lower water distribution system placed at the interface between the upper wetland and the lower wetland; the upper water distribution pipe and the lower water distribution system pass through straight pipes are connected, and a flow control valve is provided at the intersection.
所述上层湿地的矿物填料与下层湿地的生物填料之间填充有粗鹅卵石和细鹅卵石,所述下层布水系统置于所述粗鹅卵石和细鹅卵石之间。Coarse pebbles and fine pebbles are filled between the mineral filler in the upper wetland and the biological filler in the lower wetland, and the lower water distribution system is placed between the coarse pebbles and fine pebbles.
所述下层布水系统包括带有穿孔的下层布水管、锯齿溢流布水槽和置于溢流布水槽上方的布水槽盖,所述下层布水管置于所述溢流布水槽内。The lower water distribution system includes a perforated lower water distribution pipe, a sawtooth overflow distribution water tank and a water distribution tank cover placed above the overflow distribution water tank, and the lower water distribution pipe is placed in the overflow distribution water tank.
所述生物填料下方填充有粗鹅卵石,所述出水收集系统的出水收集管置于粗鹅卵石中间。Coarse pebbles are filled under the biological filler, and the effluent collection pipe of the effluent collection system is placed among the coarse pebbles.
所述出水收集系统包括带有进水孔的出水收集管、出水总管和控制上层湿地液位的U形管,所述出水总管底部设有放空阀。The water outlet collection system includes a water outlet collection pipe with water inlet holes, a water outlet main pipe and a U-shaped pipe for controlling the liquid level of the upper wetland, and a vent valve is provided at the bottom of the water outlet main pipe.
所述的上层湿地中的矿物填料和下层湿地中的生物填料高度比为4∶1~1∶2。The height ratio of the mineral filler in the upper wetland to the biological filler in the lower wetland is 4:1˜1:2.
所述生物填料为直径25~50mm的多面球,其材质为聚乙烯(PE)、聚丙烯(PP)、增强聚丙烯(RPP)、聚氯乙烯(PVC)、氯化聚氯乙烯(CPVC)和聚偏氟乙烯(PVDF)中的一种或几种,所述生物填料呈多面球状。The biological filler is a polyhedral ball with a diameter of 25-50 mm, and its material is polyethylene (PE), polypropylene (PP), reinforced polypropylene (RPP), polyvinyl chloride (PVC), chlorinated polyvinyl chloride (CPVC) and one or more of polyvinylidene fluoride (PVDF), the biological filler is multi-faceted spherical.
所述矿物填料为粒径为4~8mm的沸石,或石灰石,或沸石与石灰石的混合物,所述沸石和石灰石的混合体积比为4∶1~1∶4。The mineral filler is zeolite with a particle diameter of 4-8 mm, or limestone, or a mixture of zeolite and limestone, and the mixing volume ratio of the zeolite and limestone is 4:1-1:4.
一种强化污水脱氮除磷的双层人工湿地系统的操作方法,包括以下步骤:An operation method of a double-layer constructed wetland system for strengthening denitrification and dephosphorization of sewage, comprising the following steps:
步骤a.污水通过进水布水系统进入池体内的上层湿地和下层湿地;Step a. The sewage enters the upper wetland and the lower wetland in the pool body through the water inlet distribution system;
步骤b.进入上层湿地中的污水经上层湿地中的矿物填料吸附、微生物降解以及植物吸收等作用后进入下层湿地,并同进入下层湿地中的污水混和形成混合注水;Step b. The sewage entering the upper wetland enters the lower wetland after being adsorbed by mineral fillers in the upper wetland, degraded by microorganisms, and absorbed by plants, and mixed with the sewage entering the lower wetland to form mixed water injection;
步骤c.混合注水经置于下层湿地中的生物填料上附着生长的微生物的降解作用最终进入下层湿地底部的出水收集管,由出水收集系统排出池体外。Step c. The mixed water injection is degraded by the attached and grown microorganisms on the biological filler placed in the lower wetland, and finally enters the effluent collection pipe at the bottom of the lower wetland, and is discharged out of the pool by the effluent collection system.
所述步骤a中污水进入上层湿地和下层湿地的进水流量比为20∶1~1∶1。。In the step a, the flow ratio of the sewage entering the upper wetland and the lower wetland is 20:1-1:1. .
本发明具有以下有益效果:The present invention has the following beneficial effects:
a.湿地上层矿物填料采用粒径为4~8mm的沸石,或石灰石,或沸石和石灰石混合物,粒径恰当,相对于传统的人工湿地方法增加了污染物负荷近50%,同时不易堵塞,由于采用上下两层垂直流人工湿地,其占地面积减少约50%;a. The mineral filler in the upper layer of the wetland adopts zeolite with a particle size of 4-8mm, or limestone, or a mixture of zeolite and limestone. The particle size is appropriate, and the pollutant load is increased by nearly 50% compared with the traditional artificial wetland method. At the same time, it is not easy to block, because The upper and lower layers of vertical flow artificial wetland are adopted, and the area occupied is reduced by about 50%;
b.沸石和石灰石等矿物填料吸附的氮磷营养元素可通过微生物降解和植物吸收得到生物再生,不会因置换填料造成二次污染;b. Nitrogen and phosphorus nutrients adsorbed by mineral fillers such as zeolite and limestone can be biologically regenerated through microbial degradation and plant absorption, and will not cause secondary pollution due to replacement fillers;
c.下层湿地填充的生物载体填料易于微生物附着生长,强化了反硝化作用,提高了湿地的脱氮效果;c. The biological carrier filler filled in the lower wetland is easy to attach and grow microorganisms, which strengthens the denitrification effect and improves the denitrification effect of the wetland;
d.上层布水管利用地势落差进行跌水充氧,协同植物复氧,共同为上层湿地硝化作用提供充足的溶解氧,从而无能耗,节省了运行费用;d. The upper water distribution pipes use the terrain drop to oxygenate the falling water, cooperate with the reoxygenation of plants, and jointly provide sufficient dissolved oxygen for the nitrification of the upper wetland, so that there is no energy consumption and operating costs are saved;
e.下层布水系统为下层湿地引入小股进水,为下层湿地内进行的反硝化脱氮补充碳源;e. The lower water distribution system introduces small streams of water into the lower wetlands to supplement carbon sources for denitrification and denitrification in the lower wetlands;
f.整个系统还具有不产生剩余污泥、工艺流程简单、操作维护容易、植物具有观赏价值与经济价值等优点。f. The whole system also has the advantages of no excess sludge, simple process flow, easy operation and maintenance, and plants with ornamental and economic value.
附图说明 Description of drawings
下面结合附图和具体实施方式对本发明作进一步描述:The present invention will be further described below in conjunction with accompanying drawing and specific embodiment:
图1为本发明的强化污水脱氮除磷的双层人工湿地系统示意图。Fig. 1 is a schematic diagram of a double-layer constructed wetland system for enhancing denitrification and dephosphorization of sewage according to the present invention.
图2为图1系统的侧剖面图。Figure 2 is a side sectional view of the system of Figure 1 .
图中:In the picture:
I.上层湿地 II.下层湿地I. Upper wetland II. Lower wetland
1.池体 2.进水总管 3.流量控制阀1.
4.上层布水管 5.下层布水管 6.锯齿溢流布水槽4. Upper
7.出水收集管 8.出水总管 9.放空阀7. Water
10.U形管 11.溢流管 12.细鹅卵石10.
12′粗鹅卵石 13.生物填料 14.矿物填料12′
15.植物 16.直管 17.布水槽盖。15.
具体实施方式 Detailed ways
参照图1和图2Refer to Figure 1 and Figure 2
本发明提供了一种强化污水脱氮除磷的双层人工湿地系统,其结构如图1所示,包括置于池体1内部的上层湿地I、下层湿地II、为上层湿地I和下层湿地II提供进水的进水布水系统和出水收集系统,所述的出水收集系统的出水收集管7置于下层湿地II底部,上层湿地I中填充以去除悬浮物、有机物、氨氮和磷为主要目的矿物填料14,下层湿地II中填充以去除总氮为主要目的的利于微生物附着生长的生物填料13。其中上层湿地中的矿物填料14为石灰石和沸石的混合物,其粒径为4~8mm,混合体积比为4∶1~1∶4,装填高度为350~800mm;下层湿地II中的生物填料13呈多面球状,其直径为25~50mm,比表面积在460~236m2/m3之间,空隙率为90%左右,堆重为96~76kg/m3,抗压强度≥6.0N/mm,填装高度为250~500mm,上层矿物填料14和下层生物填料13的填装高度比为4∶1~1∶2。生物填料13材质可以采用聚乙烯(PE),聚丙烯(PP),增强聚丙烯(RPP),聚氯乙烯(PVC),氯化聚氯乙烯(CPVC)及聚偏氟乙烯(PVDF)等,填充生物填料13的目的是增加湿地下层反硝化菌的数量和活性,强化反硝化脱氮。The present invention provides a double-layer constructed wetland system for strengthening sewage denitrification and phosphorus removal. Its structure is shown in FIG. II provides an inlet water distribution system and an outlet water collection system. The outlet
上层湿地I和下层湿地II中的布水装置都采用穿孔布水管进行布水,其中上层湿地I也可采用其它跌水充氧装置布水,布水装置的顶部均有间隔一定距离的孔径为5~10mm的小孔,上层布水管4布置在上层湿地I的上方,距上层湿地I液面0.2~1.5m;上层湿地I和下层湿地II的交界面上填充有细鹅卵石12和粗鹅卵石12′,下层布水系统位于细鹅卵石12和粗鹅卵石12′中间,其中下层布水系统的上部覆盖有粒径为6~25mm的细鹅卵石12,细鹅卵石12的装填高度为80~200mm,其下部被粒径为10~35mm的粗鹅卵石12′承托,其装填高度为80~200mm。下层布水系统包括带有穿孔的下层布水管5、锯齿溢流布水槽6和布水槽盖17,其中下层布水管5置于锯齿溢流布水槽6内,可防止下层布水管5上的小孔被外围颗粒物堵塞。上层布水管4和下层布水管5之间通过直管16相连通,其相交处安装有流量控制阀3,通过流量控制阀3来控制上层湿地和下层湿地的进水流量比为20∶1~1∶1。The water distribution devices in the upper wetland I and the lower wetland II both use perforated water distribution pipes for water distribution, and the upper wetland I can also use other falling water and oxygenation devices to distribute water. The top of the water distribution device has holes at a certain distance. Small holes of 5-10mm, the upper
下层湿地II底部填充有承托生物填料的粗鹅卵石12′,粗鹅卵石12′粒径为10~35mm,装填高度为70~150mm。出水收集系统包括带有进水孔的出水收集管7、出水总管8和控制上层湿地液位的U形管10,出水收集管7为穿孔管,其两侧有交错的孔径为10~20mm的小孔,置于粗鹅卵石12′的中间,出水总管8的底部设有放空阀9,经湿地处理后的水最终由底部出水收集管7收集,汇入出水总管8,并通过出水U形管10排放。如遇特殊情况,系统内的污水可直接通过放空阀9全部排空。其中,湿地内部水位可在填料表面以上或以下,遵循“春浅、夏深、秋落干”的原则,具体水位可通过调节出水U形管10的高度来控制。The bottom of the lower wetland II is filled with coarse pebbles 12' supporting biological fillers, the particle size of the coarse pebbles 12' is 10-35 mm, and the filling height is 70-150 mm. The water outlet collection system includes an outlet
上层湿地I距池顶一定距离处的池体1池壁上设置溢流管11,如系统运行不正常而导致堵塞,污水可通过溢流管11溢出,以免污水从系统上边缘溢出污染周围环境。An
上层湿地I以去除悬浮物、有机物、氨氮和磷为主要目的,在上层湿地I中还栽种有植物15。其中的矿物填料石灰石可吸附磷素、沸石吸附氨氮,充分利用了两者不同的吸附特性,吸附到填料上的氮、磷营养元素可通过微生物降解和植物吸收作用从湿地中去除,从而实现填料的生物再生,避免了更换填料的投资费用和可能带来的二次污染问题。栽种的植物15可以是芦苇、香蒲等挺水植物,或浮萍等浮游植物,或观赏花卉等,具体需可根据当地气候和环境选择合适的植物种类。The main purpose of the upper wetland I is to remove suspended matter, organic matter, ammonia nitrogen and phosphorus, and
本发明提供一种强化污水脱氮除磷的双层人工湿地系统及其操作方法,主要包括以下步骤:The present invention provides a double-layer constructed wetland system and its operating method for strengthening sewage denitrification and dephosphorization, which mainly includes the following steps:
步骤a.污水通过进水布水系统进入池体1内的上层湿地I和下层湿地II,其中污水进入上层湿地I和下层湿地II的进水流量比为20∶1~1∶1,上层进水经上层布水管4进行跌水充氧后进入上层湿地I,协同植物复氧,共同为上层湿地I有机物的去除和硝化作用提供充足的溶解氧,下层进水主要为下层湿地II反硝化脱氮补充碳源;Step a. Sewage enters the upper wetland I and the lower wetland II in the
步骤b.进入上层湿地I中的污水经上层湿地I中的矿物填料14吸附、微生物降解以及植物吸收等作用后进入下层湿地II,并同进入下层湿地II中的污水混和形成混合注水;Step b. The sewage entering the upper wetland I enters the lower wetland II after being adsorbed by the
步骤c.混合注水经下层湿地II中的生物填料13上附着生长的微生物的降解作用处理后,最终进入下层湿地II底部的出水收集管7,由出水收集系统排出。Step c. After the mixed water injection is degraded by the attached and grown microorganisms on the
将本发明应用于某村庄生活污水的处理,设计进水流量为10m3/d,污水水质为:SS:20~40mg/L,COD:100~200mg/L,BOD5:50~100mg/L,NH3-N:15~40mg/L,TN:25~50mg/L,TP:2.0~5.0mg/L。Apply the present invention to the treatment of domestic sewage in a certain village, the designed influent flow rate is 10m 3 /d, the sewage water quality is: SS: 20-40mg/L, COD: 100-200mg/L, BOD 5 : 50-100mg/L , NH 3 -N: 15-40 mg/L, TN: 25-50 mg/L, TP: 2.0-5.0 mg/L.
污水首先流入湿地系统进水总管2,再通过流量控制阀3,按3∶1的比例被分配到上层布水管4和下层布水管5。上层进水通过上层布水管4上顶部间隔均匀的小孔均匀跌落至上层湿地I上层,经过跌水充氧的污水垂直渗入上层石灰石与沸石填充区,停留时间为2d,通过填料吸附、微生物降解以及植物吸收等作用,有效去除悬浮物、有机物、氨氮、磷等污染物。下层进水经直管16由下层布水管5经下层锯齿溢流布水槽6溢出,在中层鹅卵石填充区与上层出水混合后,均匀流入下层生物填料13区,在下层湿地II停留时间为1d,主要去除硝态氮。最终处理后水经下层湿地II底部出水收集管7收集并汇入出水总管8,经出水U形管10后排出。The sewage first flows into the wetland system inlet
运行过程中湿地内部水位春季在填料表面以上0~100mm,夏季在填料表面以上100~200mm,冬季在填料表面以下50~100mm,其水位通过调整出水U形管10高度来调节;整个处理过程中装置运行正常,无堵塞现象,没有发生需要排空的情况。During operation, the internal water level of the wetland is 0-100mm above the surface of the filler in spring, 100-200mm above the surface of the filler in summer, and 50-100mm below the surface of the filler in winter. The water level is adjusted by adjusting the height of the outlet
处理结果表明:在稳定运行期间,出水水质如下:SS:5~10mg/L,COD:25~60mg/L,BOD5:5~20mg/L,NH3-N:5~15mg/L,TN:8~20mg/L,TP:0.5~1.0mg/L,pH:6~9,浊度稳定在5NUT以下,出水水质达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级B标准。The treatment results show that during stable operation, the effluent quality is as follows: SS: 5-10mg/L, COD: 25-60mg/L, BOD5: 5-20mg/L, NH 3 -N: 5-15mg/L, TN: 8~20mg/L, TP: 0.5~1.0mg/L, pH: 6~9, the turbidity is stable below 5NUT, and the effluent water quality meets the first-class B standard of "Pollutant Discharge Standards for Urban Sewage Treatment Plants" (GB18918-2002) .
以上所述仅为本发明的一个实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only an embodiment of the present invention, and is not intended to limit the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included in the protection scope of the present invention within.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102442424A CN101792228B (en) | 2009-12-30 | 2009-12-30 | Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN2009102442424A CN101792228B (en) | 2009-12-30 | 2009-12-30 | Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101792228A CN101792228A (en) | 2010-08-04 |
CN101792228B true CN101792228B (en) | 2012-01-18 |
Family
ID=42585184
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2009102442424A Expired - Fee Related CN101792228B (en) | 2009-12-30 | 2009-12-30 | Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101792228B (en) |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103058381B (en) * | 2011-10-24 | 2014-04-02 | 中国科学院生态环境研究中心 | Constructed wetland hydraulic process driving system and method |
CN102531187B (en) * | 2012-01-18 | 2013-09-04 | 暨南大学 | Method for treating domestic wastewater with combined laminated vertical flow-horizontal subsurface flow wetland |
CN102603118A (en) * | 2012-03-12 | 2012-07-25 | 浙江省环境保护科学设计研究院 | Sewage treatment method based on blasting laminated artificial wetland |
CN102603074A (en) * | 2012-03-26 | 2012-07-25 | 哈尔滨工业大学宜兴环保研究院 | Double-layer subsurface-flow constructed wetland system used for sewage treatment in medium and small towns of cold areas and operation method thereof |
CN102923857A (en) * | 2012-11-09 | 2013-02-13 | 山东大学 | Anoxic-aerobic vertical flow artificial wetland system |
CN106145317A (en) * | 2016-08-24 | 2016-11-23 | 中国科学院、水利部成都山地灾害与环境研究所 | A kind of Multifunction oxidation pond for rural domestic sewage treatment |
CN107473388B (en) * | 2017-08-29 | 2020-10-16 | 南昌工程学院 | Enhanced denitrification and phosphorus removal integrated constructed wetland system and method for treating sewage |
CN108046412B (en) * | 2018-01-05 | 2019-11-26 | 桂林理工大学 | A kind of week conduction bacterium algae one microbiological fuel cell ecological water body purification method |
CN108059249B (en) * | 2018-01-05 | 2020-02-18 | 桂林理工大学 | A method for purifying sewage in artificial wetlands with externally generated electricity and internal converging water flow |
CN108217941B (en) * | 2018-01-05 | 2020-02-18 | 桂林理工大学 | A sewage purification system for artificial wetlands with external power generation and internal confluence type water flow |
CN108163982B (en) * | 2018-01-05 | 2019-11-26 | 桂林理工大学 | A kind of inner guide type bacterium algae one microbiological fuel cell ecological water body purification system |
CN108046411B (en) * | 2018-01-05 | 2020-02-18 | 桂林理工大学 | A sewage purification system for artificial wetlands with internal power generation and eversion type water flow |
CN108059248B (en) * | 2018-01-05 | 2019-11-26 | 桂林理工大学 | A kind of inner guide type bacterium algae one microbiological fuel cell ecological water body purification method |
CN108147537B (en) * | 2018-01-05 | 2020-02-18 | 桂林理工大学 | A method for purifying sewage in artificial wetland with internal power generation and eversion type water flow |
CN108191063B (en) * | 2018-01-05 | 2019-11-26 | 桂林理工大学 | A kind of week conduction bacterium algae one microbiological fuel cell ecological water body purification system |
CN108341495B (en) * | 2018-03-12 | 2020-06-05 | 山东大学 | Three-phase overflow efficient oxygen supplementing wetland system |
CN108558130A (en) * | 2018-03-20 | 2018-09-21 | 沈阳环境科学研究院 | A kind of drowned flow artificial wet land of intensified denitrification and dephosphorization |
CN111825283A (en) * | 2020-08-07 | 2020-10-27 | 中国电建集团华东勘测设计研究院有限公司 | Ecological weir and river water ecological restoration method |
CN114314850A (en) * | 2021-12-29 | 2022-04-12 | 上海市政工程设计研究总院(集团)有限公司 | Constructed wetland deep purification device and method for high-salt refractory organic wastewater |
-
2009
- 2009-12-30 CN CN2009102442424A patent/CN101792228B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN101792228A (en) | 2010-08-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101792228B (en) | Double-layer artificial wetland system for strengthening sewage denitrification and dephosphorization and operation method thereof | |
CN103739081B (en) | A kind of current wetland device for low-pollution water strengthened denitrification | |
CN101973637B (en) | River channel purification system for processing rural domestic sewage | |
CN100482601C (en) | Ventilating and baffling artificial wetland simulator | |
CN110294531A (en) | A kind of water treatment system and method based on ecological core wetland | |
CN201372233Y (en) | Unpowered Integrated Constructed Wetland Sewage Treatment System | |
CN102251459A (en) | System for carrying out collection, purification and utilization on rainwater on road surfaces | |
CN107540094A (en) | Artificial marsh sewage treatment system | |
CN203768124U (en) | Ecological filter for micro-polluted water treatment | |
CN103265144A (en) | Town wastewater treatment process and device with intensified nitrogen and phosphorus removing function | |
CN101781060A (en) | Composite artificial wetland sewage treatment system | |
KR20060028233A (en) | River water and lake water purification device | |
CN101774732A (en) | Integral air-lift circumfluent suspended filler dispersed sewage biological treatment device | |
CN106830545A (en) | A kind of combination type wetland drop water aeration sewage disposal system and method | |
CN104556378B (en) | The integrated processing system of a kind of domestic sewage in rural areas and technique thereof | |
CN105461075A (en) | Urban runoff non-point source pollution advanced treatment and reuse technology | |
CN103951064A (en) | Ecological filter used for micro-polluted water treatment | |
CN113371926B (en) | Sustainable rural decentralized domestic sewage bio-ecological coupling device | |
CN103435220A (en) | A2O Suspension Packing Process Coupling Filter Cloth Filtration Integrated Nitrogen and Phosphorus Removal Device and Method | |
CN101704613A (en) | Rural sewage ecological purification recycling device | |
CN206692417U (en) | A kind of three-dimensional composite constructed wetland system | |
CN110642481B (en) | Domestic sewage integrated treatment system suitable for villages and its treatment method | |
CN101585647A (en) | Capillary tube compound sewage treatment device | |
CN105174469B (en) | A kind of integral type composite stereo artificial wet land system and sewage water treatment method | |
CN102502966A (en) | Manual hydroponic wetland device with nitrogen-phosphorus nutritive salt enrichment function |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20120118 Termination date: 20161230 |