CN101782625A - 一种基于Gradation-Boosting算法的电力电子系统故障诊断方法 - Google Patents

一种基于Gradation-Boosting算法的电力电子系统故障诊断方法 Download PDF

Info

Publication number
CN101782625A
CN101782625A CN200910045494A CN200910045494A CN101782625A CN 101782625 A CN101782625 A CN 101782625A CN 200910045494 A CN200910045494 A CN 200910045494A CN 200910045494 A CN200910045494 A CN 200910045494A CN 101782625 A CN101782625 A CN 101782625A
Authority
CN
China
Prior art keywords
fault
gradation
neural network
boosting algorithm
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910045494A
Other languages
English (en)
Other versions
CN101782625B (zh
Inventor
马成才
顾晓东
付伟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN2009100454944A priority Critical patent/CN101782625B/zh
Publication of CN101782625A publication Critical patent/CN101782625A/zh
Application granted granted Critical
Publication of CN101782625B publication Critical patent/CN101782625B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

本发明是一种基于Gradation-Boosting算法的电子电力系统故障诊断方法,首先建立了三相电力逆变电路的仿真模型,根据实际情况对系统的故障情况进行仿真,获得各类故障样本,将所有样本根据实际故障的发生频率划分成不同等级,然后用这些样本作为学习样本对神经网络进行反复训练,最后用Gradation-Boosting算法将训练好的神经网络整合成一个完整的高性能故障诊断系统。本发明可提高电力电子故障诊断系统的故障检测正确率,降低实际应用系统中由于漏检、误检造成的损失。

Description

一种基于Gradation-Boosting算法的电力电子系统故障诊断方法
技术领域
本发明属于电力电子系统故障诊断领域,涉及一种基于Gradation-Boosting算法的故障诊断方法。
背景技术
故障检测是指确定系统是否发生故障的过程,即对一非正常状态的检测过程。通过不断监测系统可测量变量的变化,在标称情况下,认为这些变量在某一不确定性下满足一已知模式,而当系统任一部件故障发生时,这些变量偏离其标称状态。通常根据系统输出或状态变量的估计残差的特性来判断故障。目前研究的目标是检测的及时性、准确性和可靠性及最小误报和漏报率。
电力电子技术是利用电力电子器件对电能进行控制和转换的新兴学科。通过使用电力半导体器件,应用电路和设计理论以及分析开发工具,实现对电能的高效能变换和控制。近年来,功率变流技术得到了迅猛发展,经过变流技术处理的电能在整个国民经济的耗电量中所占比例越来越大。电力电子技术已广泛应用于国防军事、工业、交通、农业、商业、医药制造以至家用电器。电力电子设备一旦发生故障,小则造成电器产品损坏、工矿企业停产,大则会威胁人民生命、财产安全,甚至造成重大灾难事故,影响国民经济的正常运行。所以,对电力电子设备进行故障检测和诊断显得日趋重要。
由于电力电子系统故障种类复杂,发生故障的原因繁多,因此仅仅依靠人工查找或维修人员的经验去定位故障往往很困难。这就要求建立一种能进行故障自动检测和诊断的系统来对电力电子设备故障进行有效的诊断。过去十几年,电力电子电路的故障诊断技术得到了迅速发展,故障自动检测和诊断系统日趋智能化,特别是近几年,人工神经网络在故障诊断的广泛应用,为电力电子电路的故障诊断提出了一种全新的诊断方法。
基于模型的故障诊断方法必须建立准确的数学模型,但往往很多实际系统难以用数学模型来描述。而基于知识的故障诊断方法尽管不须建立系统模型,但由于人们知识或经验所限,未必会使所有故障包含在知识库中,因此不能诊断知识库中未描述的故障现象。基于神经网络的故障诊断方法可以利用神经网络的非线性映射特性和自学能力来反映系统故障输出特征和故障类型之间的映射关系,从而达到对系统进行故障诊断的目的。
BP(Back-Propagation)神经网络由于其在模式识别和模型分类上的优越性能以及精确的数学描述、清晰的处理过程和易于实现的特点,因此在故障诊断中应用的最广泛、最成功。目前在电力系统的故障诊断中广泛采用的人工神经网络模型是BP神经网络模型。
发明内容
本发明的目的是提供一种应用神经网络同Gradation-Boosting算法相结合的方法,本发明能对电力系统电子电路故障进行诊断。
本发明的目的通过下述方法和步骤实现:
本发明首先建立了三相电力电子逆变电路的仿真模型,然后根据实际情况对系统的故障情况进行仿真,获得各类故障发生时所对应的电路参数作为故障样本,将所有样本根据实际故障的发生频率划分成不同的等级,然后用这些样本作为学习样本对神经网络进行反复训练,最后用Gradation-Boosting算法将训练好的神经网络整合成一个完整的高性能的故障诊断系统。
以下对本发明的内容作进一步阐述:
1、建立三相电力电子逆变电路的仿真模型
电路模型如附图所示,我们需要检测的故障为T1-T6这六个功率半导体元件IGBT断路故障。考虑到在实际应用中的情况,我们假设最多有两个功率半导体元件同时故障,所有的故障情况可分类如下:
第一大类:仅有一只功率半导体元件IGBT故障,分六小类:T1故障、T2故障、T3故障、T4故障、T5故障、T6故障
第二大类:同一半桥的两只功率半导体元件IGBT同时故障,分三小类:T1和T2故障、T3和T4故障、T5和T6故障
第三大类:交叉两只功率半导体元件IGBT同时故障,分六小类:T1和T4故障、T1和T6故障、T3和T6故障、T2和T3故障、T4和T5故障、T2和T5故障
第四大类:同一上(或下)桥臂两只功率半导体元件IGBT同时故障,分六小类:T1和T3故障、TI和T5故障、T3和T5故障、T2和T4故障、T2和T6故障、T4和T6故障
2、故障样本的获得以及BP神经网络的Gradation-Boosting过程:
在以上所列的故障中,因为两只功率半导体元件IGBT在某一时刻同时故障的可能性非常小,所以仅有一只功率半导体元件IGBT故障是最频繁的故障,也是我们对电力系统进行故障检测的重中之重。因此,我们将系统发生这些故障的状态以及无故障状态作为重点检测状态,将发生两只功率半导体元件IGBT故障(即:第二、三、四大类)的状态作为系统的非重点检测状态。对于重点检测状态,其训练样本在故障检测系统中将会受到更多的关注,以保证较高的故障检测正确率。
对不同故障情况下的输出电压V进行分析我们可获得电路的故障特征参数。通过傅立叶变换把时域中的V的波形信号变换到频域上来分析,得到各次谐波的幅值和相角。对V的波形信号的各次谐波进行分析可知,信号的前二次谐波(含直流分量)基本上就包含了能进行故障识别的各种信息。因此,选用V的直流分量(D),基波幅值(A1),基次谐波的相位角(P1),二次谐波的相位角(P2)作为故障特征参数,输入到BP神经网络的输入层。
关于训练样本的数目,我们选取输入电压400V不同的负载功率30千瓦、40千瓦、50千瓦时各类故障特征信号以及加入强度为1%的噪声后得到的样本作为训练样本,用于神经网络组的学习。训练样本总数是6600组,表1列出了所得到的部分训练样本。
表1:部分训练样本
Figure G2009100454944D0000041
为了更好地验证训练后的神经网络组的性能,我们在表2所示的情况下获得各类故障特征信号以及加入不同比例的噪声(强度为分别为5%、10%、15%和20)后得到的样本作为测试样本,测试样本总数是11000组。
表2、获取测试样本时的参数设置
Figure G2009100454944D0000042
本发明采用了BP神经网络作为故障诊断系统的基本组成单元。它由三层组成:输入层、隐层和输出层。输入层节点数是4,它是由故障特征参数的个数所决定的;输出层节点数是21,它是由故障的种类决定的,一种故障对应一个输出节点,该故障发生时,相对应的输出节点输出为1,否则输出为0;隐层节点的个数没有固定的理论可循,需要通过一系列的仿真实验来调整,隐层节点数太少,网络的泛化能力差,甚至网络学习根本就不能收敛,隐层节点数太多,训练时间过长,网络结构复杂、庞大。
为了使故障检测系统能更好的对那些发生频率高、危害程度大的故障进行监控,我们在经典Boosting算法的基础上提出了Gradation-Boosting算法,算法的基本思想是:初始化,为每个训练样本分配权重,样本的等级越高,分配的权重越大。接着调用BP神经网络进行T次迭代,每次迭代后,按照训练结果更新训练集上的分布,对于训练失败的样本赋予较大的权重,使得下一次迭代更加关注这些训练样本,从而得到一个预测函数序列h1,h2,…,ht(其中t=1,2,…,T),每个预测函数ht也赋予一个权重,预测效果好的,相应的权重越大。T次迭代之后,在分类问题中最终的预测函数H采用带权重的投票法产生。单个神经网络的学习准确率不是很高,运用Gradation-Boosting算法之后,整个故障诊断系统的检测准确率将得到较大的提高,尤其是对于发生频率高、危害程度大、需要重点检测故障。
本发明所提出的基于Gradation-Boosting的电力电子系统故障诊断方法,应用神经网络同Gradation-Boosting算法相结合的方法对电力系统电子电路故障进行诊断,同时提出了将故障根据其危害程度和发生的频率划分轻重等级的思想,对那些危害程度大、发生频率高的故障重点对待,使得这些故障能够被及时准确无误地检测出来;同时对于其他危害小、发生频率低的故障,神经网络组的检测也可达到较高的检测正确率,这样便在较低的网络规模的基础上大大提高了网络的故障监控能力,可很好地满足实际应用的需要。
附图说明
图1是三相电力电子变频电路模型。
具体实施方式
以下结合具体的实施例,对本发明做进一步的阐述。实施例仅用于对本发明做说明而不是对本发明的限制。
实施例1
本实施例以附图所示的电路模型,进一步阐述本发明。
1、初始化,将由仿真模型所获得电路的故障参数作为第一个BP神经网络的学习样本,并为每组样本分配初始权重:
如发明内容所述,本实施例1或2个半导体元件故障共有21种情况(其中重点检测故障6种,非重点检测故障15种),另外我们也需要考虑电路正常工作样本(即无故障发生时的电路的各项参数组成的样本)。我们的故障诊断系统需要重点对待的样本是6种重点检测故障的样本以及一种正常工作样本。
因此,初始化时,我们为每组重点对待的样本分配权重为2,为其他样本分配权重为1。
2、进入T次迭代,得到预测函数序列:h1、h2、…、ht(其中t=1,2,…,T),同时为每个预测函数ht计算一个置信权重,此权重决定了ht在最终投票时对结果影响程度的大小:
第t次迭代过程如下:用第t-1次迭代调整过的含有不同权重的样本来训练本次的BP神经网络,得到预测函数ht,训练结束后用刚刚训练时所用的样本来逐个测试这个BP神经网络,将测试输出结果与实际故障不符合的样本的权重记录并作累加,此累加结果用所有样本权重的和归一化后作为ht的置信权重。同时,对样本的权重进行调整,对于本次用ht测试结果正确的样本,减小其样本权重;对于本次用ht测试结果错误的样本,增加其权重。然后使用这些刚刚调整过的样本进行第t+1次迭代。
3、由预测函数序列:h1、h2、…、ht进行投票作为故障诊断系统的最终输出:
H ( X ) = sign ( Σ t = 1 T α t h t ( x ) )
4、结果分析
用前面所获得的测试样本(共11000组)对网络故障检测的准确性进行测试,同时与基于故障分等级的神经网络组进行比较。诊断的结果如表3所示。
表3、故障诊断结果比较
Figure G2009100454944D0000071
从以上实施例结果可知,本发明能很好地提高系统故障诊断的能力,即使检测过程中存在较大的噪声,系统仍可以达到较高的故障诊断正确率,充分证明了本发明的在故障诊断方面的可行性和优越性。

Claims (5)

1.一种基于Gradation-Boosting算法的电子电力系统故障诊断方法,其特征在于包括下述步骤:首先建立三相电力电子逆变电路的仿真模型,然后根据实际情况对系统的故障情况进行仿真,获得各类故障发生时所对应的电路参数作为故障样本,将所有样本根据实际故障的发生频率划分成不同的等级,然后用这些样本作为学习样本对神经网络进行反复训练,最后用Gradation-Boosting算法将训练好的神经网络整合成一个完整的高性能的故障诊断系统。
2.根据权利要求1所述的基于Gradation-Boosting算法的电子电力系统故障诊断方法,其特征在于所述的根据实际故障的发生频率划分成不同的等级,是将无故障状态和最频繁发生的故障作为重点检测状态,将故障的可能性小的状态作为系统的非重点检测状态。
3.根据权利要求1所述的基于Gradation-Boosting算法的电子电力系统故障诊断方法,其特征在于对不同故障情况下的输出电压V进行分析,获得电路的故障特征参数,通过傅立叶变换把时域中的V的波形信号变换到频域上分析,得到各次谐波的幅值和相角;选用V的直流分量(D),基波幅值(A1),基次谐波的相位角(P1),二次谐波的相位角(P2)作为故障特征参数,输入到BP神经网络的输入层。
4.根据权利要求1所述的基于Gradation-Boosting算法的电子电力系统故障诊断方法,其特征在于采用BP神经网络作为故障诊断系统的基本组成单元,神经网络由三层组成:输入层、隐层和输出层,输入层节点数由故障特征参数的个数所决定;输出层节点数是由故障的种类决定,一种故障对应一个输出节点,故障发生时,相对应的输出节点输出为1,否则输出为0;隐层节点的个数通过一系列的仿真实验来调整。
5.根据权利要求1所述的基于Gradation-Boosting算法的电子电力系统故障诊断方法,其特征在于在经典Boosting算法的基础上提出了Gradation-Boosting算法,为每个训练样本分配权重,样本的等级越高,分配的权重越大;调用BP神经网络进行T次迭代,每次迭代后,按照训练结果更新训练集上的分布,对于训练失败的样本赋予较大的权重,使得下一次迭代更加关注这些训练样本,从而得到一个预测函数序列h1,h2,…,ht,每个预测函数ht也赋予一个权重,预测效果好的,相应的权重越大;T次迭代之后,在分类问题中最终的预测函数H采用带权重的投票法产生。
CN2009100454944A 2009-01-16 2009-01-16 一种基于Gradation-Boosting算法的电力电子系统故障诊断方法 Expired - Fee Related CN101782625B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009100454944A CN101782625B (zh) 2009-01-16 2009-01-16 一种基于Gradation-Boosting算法的电力电子系统故障诊断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009100454944A CN101782625B (zh) 2009-01-16 2009-01-16 一种基于Gradation-Boosting算法的电力电子系统故障诊断方法

Publications (2)

Publication Number Publication Date
CN101782625A true CN101782625A (zh) 2010-07-21
CN101782625B CN101782625B (zh) 2012-01-04

Family

ID=42522703

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009100454944A Expired - Fee Related CN101782625B (zh) 2009-01-16 2009-01-16 一种基于Gradation-Boosting算法的电力电子系统故障诊断方法

Country Status (1)

Country Link
CN (1) CN101782625B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496030A (zh) * 2011-12-12 2012-06-13 杭州市电力局 电力监测系统中危险目标的识别方法及装置
CN104502795A (zh) * 2014-11-26 2015-04-08 国家电网公司 一种适用于微电网的智能故障诊断方法
CN104833884A (zh) * 2015-05-18 2015-08-12 国家电网公司 电压等级设备的故障检测方法
CN106292631A (zh) * 2016-08-25 2017-01-04 哈尔滨理工大学 一种基于神经网络的pwm整流器故障诊断系统
CN108416103A (zh) * 2018-02-05 2018-08-17 武汉大学 一种串联混合动力电动汽车交直流变换器的故障诊断方法
CN109460588A (zh) * 2018-10-22 2019-03-12 武汉大学 一种基于梯度提升决策树的设备故障预测方法
CN109655712A (zh) * 2019-01-14 2019-04-19 中国电力科学研究院有限公司 一种配电网线路故障原因分析方法与系统
CN112610407A (zh) * 2020-12-17 2021-04-06 华能辽宁清洁能源有限责任公司 一种新型的风力发电机组变桨系统模拟维护方法
CN112734001A (zh) * 2020-12-09 2021-04-30 东南大学 一种基于阶次谱迁移的风电传动链智能故障诊断方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609036B1 (en) * 2000-06-09 2003-08-19 Randall L. Bickford Surveillance system and method having parameter estimation and operating mode partitioning
CN101231672A (zh) * 2008-02-02 2008-07-30 湖南大学 基于改进型bp神经网络的模拟电路软故障诊断方法
CN101231673A (zh) * 2008-02-02 2008-07-30 湖南大学 一种采用免疫蚂蚁算法优化的模拟电路故障诊断方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102496030A (zh) * 2011-12-12 2012-06-13 杭州市电力局 电力监测系统中危险目标的识别方法及装置
CN102496030B (zh) * 2011-12-12 2013-06-26 杭州市电力局 电力监测系统中危险目标的识别方法及装置
CN104502795A (zh) * 2014-11-26 2015-04-08 国家电网公司 一种适用于微电网的智能故障诊断方法
CN104833884A (zh) * 2015-05-18 2015-08-12 国家电网公司 电压等级设备的故障检测方法
CN106292631A (zh) * 2016-08-25 2017-01-04 哈尔滨理工大学 一种基于神经网络的pwm整流器故障诊断系统
CN108416103A (zh) * 2018-02-05 2018-08-17 武汉大学 一种串联混合动力电动汽车交直流变换器的故障诊断方法
CN109460588A (zh) * 2018-10-22 2019-03-12 武汉大学 一种基于梯度提升决策树的设备故障预测方法
CN109460588B (zh) * 2018-10-22 2022-02-15 武汉大学 一种基于梯度提升决策树的设备故障预测方法
CN109655712A (zh) * 2019-01-14 2019-04-19 中国电力科学研究院有限公司 一种配电网线路故障原因分析方法与系统
CN112734001A (zh) * 2020-12-09 2021-04-30 东南大学 一种基于阶次谱迁移的风电传动链智能故障诊断方法
CN112610407A (zh) * 2020-12-17 2021-04-06 华能辽宁清洁能源有限责任公司 一种新型的风力发电机组变桨系统模拟维护方法
CN112610407B (zh) * 2020-12-17 2024-04-02 华能辽宁清洁能源有限责任公司 一种新型的风力发电机组变桨系统模拟维护方法

Also Published As

Publication number Publication date
CN101782625B (zh) 2012-01-04

Similar Documents

Publication Publication Date Title
CN101782625B (zh) 一种基于Gradation-Boosting算法的电力电子系统故障诊断方法
Lin et al. Detection and classification of multiple power-quality disturbances with wavelet multiclass SVM
Huang et al. Power quality disturbances classification based on S-transform and probabilistic neural network
CN109738776A (zh) 基于lstm的风机变流器开路故障识别方法
CN105095566B (zh) 一种基于小波分析和svm的逆变器故障诊断方法
Ke et al. Fault diagnosis with synchrosqueezing transform and optimized deep convolutional neural network: An application in modular multilevel converters
CN110084106A (zh) 基于小波变换和概率神经网络的微网逆变器故障诊断方法
Saini et al. Detection and classification of power quality disturbances in wind‐grid integrated system using fast time‐time transform and small residual‐extreme learning machine
CN104730423A (zh) 光伏并网发电系统的孤岛效应检测方法
Chao et al. Three-level T-type inverter fault diagnosis and tolerant control using single-phase line voltage
Kordestani et al. Data fusion for fault diagnosis in smart grid power systems
CN104638671A (zh) 基于引入粒子群算法及相位扰动的孤岛检测方法
Shafiullah et al. Machine learning tools for active distribution grid fault diagnosis
Liu et al. Dual-channel convolutional network-based fault cause identification for active distribution system using realistic waveform measurements
Sun et al. Data augmentation strategy for power inverter fault diagnosis based on wasserstein distance and auxiliary classification generative adversarial network
CN106093516B (zh) 基于多频带分解的输电线路故障电流行波波形的重现方法
CN105866633B (zh) 基于波权重的输电线路故障电流行波波形的重现方法
Ma et al. Fault diagnosis of power electronic system based on fault gradation and neural network group
Kanwal et al. Artificial Intelligence based Faults Identification, Classification, and Localization Techniques in Transmission Lines-A Review
Bentley et al. Power quality disturbance source identification using self-organising maps
Mahela et al. A protection scheme for distribution utility grid with wind energy penetration
Yau et al. Fractional order Sprott chaos synchronisation‐based real‐time extension power quality detection method
Zarei et al. Broken rotor bars detection via Park's vector approach based on ANFIS
Apisit et al. An application of discrete wavelet transform and support vector machines algorithm for fault locations in underground cable
Kampeerawat et al. The swing-blocking methods for digital distance protection based on wavelet packet transform and support vector machine

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120104

Termination date: 20150116

EXPY Termination of patent right or utility model