CN101779140A - 在任意传感器网络上使用空间平滑来测量相干源的到达角的方法 - Google Patents

在任意传感器网络上使用空间平滑来测量相干源的到达角的方法 Download PDF

Info

Publication number
CN101779140A
CN101779140A CN200880102445A CN200880102445A CN101779140A CN 101779140 A CN101779140 A CN 101779140A CN 200880102445 A CN200880102445 A CN 200880102445A CN 200880102445 A CN200880102445 A CN 200880102445A CN 101779140 A CN101779140 A CN 101779140A
Authority
CN
China
Prior art keywords
mrow
msub
theta
mtr
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200880102445A
Other languages
English (en)
Other versions
CN101779140B (zh
Inventor
A·费雷奥尔
J·布吕吉耶
P·莫尔冈
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales SA
Original Assignee
Thales SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thales SA filed Critical Thales SA
Publication of CN101779140A publication Critical patent/CN101779140A/zh
Application granted granted Critical
Publication of CN101779140B publication Critical patent/CN101779140B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/02Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using radio waves
    • G01S3/74Multi-channel systems specially adapted for direction-finding, i.e. having a single antenna system capable of giving simultaneous indications of the directions of different signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Complex Calculations (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)
  • Air Conditioning Control Device (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Measurement Of Mechanical Vibrations Or Ultrasonic Waves (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种用于内插传感器网络的导向矢量a(θ)的方法,所述传感器网络接收源所发送的信号,所述方法特征在于,对于所述导向矢量a(θ)的内插,利用一个或多个全向模态函数z(θ)k,其中z(θ)=exp(jθ),θ对应于角域,在所述角域上进行所述导向矢量的内插。

Description

在任意传感器网络上使用空间平滑来测量相干源的到达角的方法
本发明特别涉及可以通过使用全向模态函数来内插任意传感器的网络的导向矢量的方法。
本发明还涉及可以特别通过非均匀传感器网络上的平滑技术来估计相干源的到达角的方法和系统。
本发明例如用在传播信道受到诸如建筑物这样的大量障碍物干扰的城市环境下的所有定位系统中。
通常,本发明可用于在艰难的传播环境、城市、半城市(机场)、建筑物内部等中定位发射器。
本发明还可用在用于定位肿瘤或癫痫病灶的医学成像方法中。
本发明应用在地震领域的矿业和石油研究的探测系统中。这些应用需要估计在地壳的复杂传播介质中的多条路径的到达角。
本技术领域是天线处理的领域,所述天线根据多传感器接收系统处理数个发射源的信号。在电磁环境下,传感器是天线,并且多个无线电的源根据一个极化被传播。在声学环境下,传感器是麦克风,而源是声源。图1示出由接收具有不同到达角θmp的源的传感器网络组成的天线处理系统。该领域例如是角度测定的领域,角度测定在于估计源的到达角。
网络的基本传感器接收具有相位和振幅的源,振幅特别取决于这些源的入射角和传感器的位置。入射角在一维中由方位角θm进行参数表示,而在二维中由方位角θm和仰角Δm进行参数表示。根据图2,假定源的波在传感器网络的平面中传播,则一维角度测定由只估计方位角的技术定义。当角度测定技术联合地估计源的方位角和仰角时,是二维角度测定问题。
天线处理技术的目的是利用空间分集,空间分集在于使用网络的天线位置来更好地利用多个源的入射角和距离中的差异。
图3示出在存在多条路径的情况下对角度测定的应用。第m个源在入射角为θmp的P条路径上传播(1≤p≤P),它们由无线电环境中的P-1个障碍物引起。在根据本发明的方法中处理的问题特别地为相干路径的情形,其中,直接路径和次级路径之间的传播时间差比信号频带的倒数小得多。
要解决的技术问题也是以减少的计算成本进行相干路径的角度测定和具有非均匀几何结构的传感器网络的问题。
已知具有减少的计算成本的角度测定技术适合于均匀隔开的线性传感器的网络,而根据本发明的方法的目的之一是在非均匀传感器网络上使用这些技术。
可以处理相干源的情况的算法例如是最大似然算法[2][3],其可应用于具有非均匀几何结构的传感器网络。然而,这些算法需要多参数估计,这导致应用具有高计算成本。
通过IQML或MODE[7][8]方法,最大似然技术可适用于均匀隔开的线性传感器网络的情况。另一可选方案是空间平滑技术[4][5],其具有以低计算成本处理相干源的优点。适合于线性网络的具有低计算成本的角度测定技术是ESPRIT方法[9][10]或归结为寻找多项式的根的根类型技术[11][12]。
可以将具有非均匀几何结构的网络转换成线性网络的技术例如在文献[6][5][11]中有描述。这些方法在于在角域上内插传感器网络对源的响应:校准表。
B.Friedlander和A.J.Weiss的标题为“Direction Finding using spatialsmoothing with interpolated arrays”的文献(IEEE Transactions on Aerospaceand Electronic Systems,Vol.28,No.2,pp.574-587,1992)公开了一种方法,其在于:
●使用在方位角上非全向的内插函数,通过线性网络将传感器网络内插入一个确定的角域中,
●通过空间平滑技术使路径去相关。
尽管功能强大,但是该技术具有以下缺点:
●处理的是多个相关源存在于同一角域中情况,因此处理的是单个角域;
●使用在方位角上非全向的函数进行内插。
本发明涉及用于在包括数个非均匀传感器的系统中确定相干源的到达角的方法,信号沿着源和网络的接收传感器之间的相干或基本相干的路径传播。其特征在于利用在方位角上全向的至少一个模态内插函数z(θ)k,其中z(θ)=exp(jθ),θ对应于角域,在该角域上进行传感器网络的导向矢量a(θ)的内插以便处理由源发射并在传感器网络上接收的信号,并且应用空间平滑技术以便使相干源去相关,内插函数We(θ)以下列方式表示:
a(θ)≈We(θ)其中,
Figure GPA00001021050700031
0≤θ<360°
对于验证0≤θ<360°的方位角,通过在最小平方的意义上最小化偏差||a(θ)-We(θ)||2来获得N×(2L+1)维矩阵W,内插长度2L+1取决于网络的孔径。
根据本发明的方法显著地提供下列优点:
●它使用在方位角上全向的函数来内插传感器网络。
●它处理相干源在不同角域上的情况。
●它使用方位角从0到360°的算法,
●它应用空间平滑技术来使相干源去相关。
在阅读了作为举例说明而非任何限制给出的示例性实施例的以下描述和附图后,本发明的其它特征和优点将显得更加清楚,附图表示:
●图1示出了由发射器发射并传播到传感器网络的信号的示例,
●图2呈现了源在传感器平面上的入射角,
●图3示出了多路径信号的传播,
●图4示出了传感器网络中的位置(xn,yn)的示例,
●图5示出了由平移不变的两个子网络组成的传感器网络,
●图6示出了根据网络的比率R/λ、使用模态函数进行内插的长度,
●图7示出了对于R/λ=0.5的振幅误差,其中δθ=50°,
●图8示出了根据本发明在两个角域上的内插,
●图9示出了在两个域上的内插区,
●图10示出了用于计算矩阵Wjk的完全空间网格。
在详述根据本发明的方法的示例性实施例之前,给出关于传感器网络的输出信号的建模的一些注意。
对来自传感器网络的输出信号建模
在存在M个源(对第m个源有Pm条路径)的情况下,在网络的所有传感器上进行接收之后,输出信号为:
x ( t ) = x 1 ( t ) . . . x N ( t ) = Σ m = 1 M Σ p = 1 P m ρ mp a ( θ mp ) s m ( t - τ mp ) + n ( t ) = As ( t ) + n ( t ) - - - ( 1 )
其中xn(t)是第n个传感器的输出信号,A=[A1...AM],Am=[a(θm1)...a(θmPm)],s(t)=[s1(t)T...sM(t)T]T,sm(t)=[sm(t-τm1)...sm(t-τmPm)]T,n(t)是额外的噪声,a(θ)是传感器网络对方向为θ的源的响应,且ρmp、θmp、τmp分别是第m个源的第p条路径的衰减、方向和延迟。也称为导向矢量的矢量a(θ)取决于传感器的位置(xn,yn)(见图4),并被写为:
a ( θ ) = a 1 ( θ ) . . . a N ( θ ) 其中 a n ( θ ) = exp ( j 2 π λ ( x n cos ( θ ) + y n sin ( θ ) ) ) - - - ( 2 )
其中λ是波长,而R是网络的半径。在均匀隔开的线性网络的情况下,矢量a(θ)被写为:
a ( θ ) = 1 Z Lin ( θ ) . . . Z Lin ( θ ) N - 1 其中 Z Lin ( θ ) = exp ( j 2 π d λ sin ( θ ) ) - - - ( 3 )
其中d是传感器之间的距离。
在存在相干路径的情况下,延迟验证有τm1=...=τmPm。在这些条件下,等式(1)的信号模型变成:
x ( t ) = Σ m = 1 M a ( θ m , ρ m ) s m ( t ) + n ( t ) 其中 a ( θ m , ρ m ) = Σ p = 1 P m ρ mp a ( θ mp ) - - - ( 4 )
其中a(θm,ρm)是传感器网络对第m个源的响应,其中
Figure GPA00001021050700048
Figure GPA00001021050700049
源的导向矢量不再是a(θm1),而是不同的并取决于多个更重要的参数的合成导向矢量a(θm,ρm)。
现有技术的算法在存在相干源的情况下的问题
算法MUSIC[1]是高分辨率方法,其基于到多传感器信号x(t)的协方差矩阵Rx=E[x(t)x(t)H]特有的元素的分解(E[.]是数学期望值)。根据等式(1)的模型,协方差矩阵Rx的表达式如下:
Rx=ARsAH2IN其中Rs=E[s(t)s(t)H]并且E[n(t)n(t)H]=σ2 IN
(5)
其中A=[A1...AM]并且Am=[a(θm1)...a(θmPm)]
用于相干源的MUSIC的可替代方案是最大似然算法[2][3],其要求根据每条路径的到达方向θmp来优化多维标准。对于(1≤m≤M)和(1≤p≤Pm),
Figure GPA00001021050700051
维标准的靠后的估计θmp需要高计算成本。
空间平滑技术
空间平滑技术的目的尤其是将预处理应用于多传感器信号的协方差矩阵Rx,这会增加源的协方差矩阵Rx的秩,以便在存在相干源的情况下能够应用MUSIC类型的算法或具有等效功能的任何其它算法,而不需要应用最大似然类型的算法。
当传感器网络包括如图5中的平移不变的子网络时,则可设想空间平滑技术[4][5]。在这种情况下,在第i个子网络上接收到的信号被写为:
x i ( t ) = Σ m = 1 M Σ p = 1 P m ρ mp a i ( θ mp ) s m ( t - τ mp ) + n ( t ) = A i s ( t ) + n ( t ) - - - ( 6 )
其中ai(θ)是该子网络的导向矢量,其具有验证下式的特定特征:
ai(θ)=αi(θ)a1(θ),其中
Figure GPA00001021050700053
然后,等式(6)的混合矩阵Ai被写为:
Ai=A1Φi其中 Φ i = diag { α i ( θ 11 ) . . . α i ( θ 1 P 1 ) . . . α i ( θ M 1 ) . . . α i ( θ M P M ) } - - - ( 8 )
已知Ai=[A1 i...AM i]和Am i=[aim1)...aimPm)]。在等式(3)的线性网络的情况下,得到:
x i ( t ) = x i ( t ) . . . x i + N ′ ( t ) 其中 a 1 ( θ ) = 1 z Lin ( θ ) . . . z Lin ( θ ) N ′ - 1 且αi(θ)=z(θ)i    (9)
平滑技术基于协方差矩阵Rx i=E[x(t)ix(t)iH]的结构,所述协方差矩阵根据(6)(8)被如下写为:
Rk i=A1ΦiRsΦi *A1H2IN    (10)
空间平滑技术因此使得可以在下列协方差矩阵上应用如MUSIC算法这样的角度测定算法:
R x SM = Σ i = 1 1 R x i - - - ( 11 )
其中I是子网络的数量。特别地,该技术使得可以对最多I条相干路径去相关,这是因为
Rx SM=A1Rs SMA1H2IN′其中
并因此 rank { R s } ≤ rank { R s SM } ≤ min ( I × rank { R s } , Σ m = 1 M P m ) .
前向-后向空间平滑技术[4]需要具有对称中心的传感器网络。在这些条件下,导向矢量验证:
a ~ ( θ ) = Za ( θ ) * = β ( θ ) a ( θ ) 其中
Figure GPA00001021050700065
等式(3)的线性网络使用β(θ)=zLin(θ)-N验证这个条件。
前向-后向平滑技术在于在下列协方差矩阵上应用诸如MUSIC这样的角度测定算法:
Rx FB=Rx+ZRx *ZT (14)
该技术使得可以对多达2条相干路径去相关,这是因为
Rx FB=ARs FBAH2IN其中Rs FB=RsFBRsΦFB *(15)
因此 rank { R s } ≤ rank { R s SM } ≤ min ( 2 × rank { R s } , Σ m = 1 M P m ) , 其中
Φ FB = diag { β ( θ 11 ) . . . β ( θ 1 P 1 ) . . . β ( θ M 1 ) . . . β ( θ M P M ) } - - - ( 16 )
空间和前向-后向平滑技术可以组合来在多条路径中增加去相关能力。这些平滑技术使得可以以接近于MUSIC方法的计算成本处理相干源。然而,这些技术需要传感器网络的非常特定的几何结构。应注意,在存在传感器之间的互耦或者存在与传感器网络的承载结构的耦合的情况下,在实际中不可能设计这些特定的网络几何结构。
传感器网络的内插技术
如上面已解释的,在特定网络上存在具有低计算成本的相干源角度测定技术。本发明的目的尤其涉及将这些技术应用于具有非均匀几何结构的网络。为此,必须实现导向矢量a(θ)的转换,以获得等式(7)和/或(13)的显著属性。这些转换通过根据本发明包括下面描述的步骤的内插过程来实现,这些步骤是说明性的而非任何限制。例如,转换通过将内插矩阵应用于传感器信号(网络的传感器接收的信号)来执行,并使得可以获得验证等式(7)和/或(13)的显著属性的等效导向矢量e(θ)。
本发明还涉及使得可以内插导向矢量的方法,这些矢量取决于网络的接收信号的传感器的位置。
使用模态函数进行内插
为了使用在θ上全向的函数来实现内插,其中θ对应于发射源的方向,本方法例如使用模态函数z(θ)k,其中z(θ)=exp(jθ)。导向矢量的内插函数可用下列形式表示:
a(θ)≈We(θ)其中,
Figure GPA00001021050700071
0≤θ<360°(17)
对于验证0≤θ<360°的方位角,通过在最小差平方的意义上最小化||a(θ)-We(θ)||2来获得不一定是方阵的N×(2L+1)维矩阵W。内插长度2L+1取决于网络的孔径。参数L例如根据下列振幅误差标准来确定:
A _ dB ( a ( θ ) , We ( θ ) ) = max θ , n { 20 lo g 10 ( | a n ( θ ) a ^ n ( θ ) | ) } 其中 We ( θ ) = a ^ 1 ( θ ) . . . a ^ N ( θ ) - - - ( 18 )
其中L是验证A_dB小于0.1dB(分贝)的最小值。特别地,当内插理想时并因此当a(θ)=We(θ)时,A_dB为零。该值与0.7°的相位误差相关联,该相位误差与校准相位期间导向矢量a(θ)的测量的不确定性相对应。在具有N=5个传感器的半径为R的圆形网络的特定情况下,其中
a ( θ ) = a 1 ( θ ) . . . a N ( θ ) 其中 a n ( θ ) = exp ( j 2 π R λ cos ( θ - 2 π ( n - 1 N ) ) ) - - - ( 19 )
内插参数L和比率R/λ之间的相关性在图7中示出。图7表明:对于360°上的内插,具有半径R的网络需要2L+1=21/λ个系数。
在存在M个源(第m个源有Pm条路径)的情况下,等式(1)的信号被如下写为:
x ( t ) = Σ m = 1 M Σ p = 1 P m ρ mp a ~ ( θ mp ) s m ( t - τ mp ) + n ( t ) = A ~ s ( t ) + n ( t )
其中
Figure GPA00001021050700082
并且
Figure GPA00001021050700083
其中E=[E1...EM]并且Em=[e(θm1)...e(θmPm)]。后面的表达式被写为:
x(t)=Wy(t)+n(t)其中y(t)=Es(t)(21)
其中x(t)和y(t)之间的关系是线性的。
空间平滑适用于通过模态函数内插的网络
MUSIC[1]或ESPRIT类型的方法基于等式(1)(20)的模型。在通过模态函数进行网络的内插的问题中,设想两种情况:
●N≥2L+1:信号y(t)可通过进行y(t)=*(WHW)-1WHx(t)从信号x(t)直接获得。适于线性网络的所有算法都可应用于信号y(t):因此可以应用空间平滑技术,来例如如上所述那样对多条路径去相关。
●N<2L+1:信号y(t)不能从信号x(t)直接获得。可应用于线性网络的算法不再是可直接应用的;根据本发明的方法提出了可以弥补这个问题的方法。
处理N<2L+1的情况
因为矩阵W包含的行少于列,因此在本方法中设想使用方阵内插矩阵Wk通过宽度为δθ=180/K的K个域内插网络,其中
a(θ)=Wke(θ)其中,
Figure GPA00001021050700084
|θ-θk|<δθ(22)
其中K个矩阵Wk是N=2L0+1的方阵,并且Wke(θ)是域上的内插函数。注意,对于|θ-θk|≥δθ,a(θ)≠Wke(θ)。对于|θ-θk|<δθ,通过在最小差平方的意义上最小化偏差||a(θ)-Wke(θ)||2来获得矩阵Wk。内插圆锥的宽度δθ根据下列振幅误差标准来确定:
A _ dB ( a ( θ ) , W k e ( θ ) ) = max θ k - δθ ≤ θ ≤ θ k - δθ , n { 20 lo g 10 ( | a n ( θ ) a ^ n ( θ ) | ) }
其中 W k e ( θ ) = a ^ 1 ( θ ) . . . a ^ N ( θ ) - - - ( 23 )
其中δθ是验证A_dB小于0.1dB的最小值,这是因为当a(θ)=Wke(θ)时,A_dB为零。返回到等式(19)的圆形网络,内插宽度δθ以下列方式取决于比率R/λ和域的数量K=180/δθ(表1给出取决于R/λ的内插圆锥的宽度,其中A_dB=0.1)
Figure GPA00001021050700093
表1
图7表示对于R/λ=0.5,振幅误差
Figure GPA00001021050700094
并示出对于|θ-180°|<33°,A_dB(θ)明显小于0.1dB。
根据该方法的不同实施例,空间平滑技术被应用于通过域内插的网络。因此下列矢量:
e ^ ( θ ) = W k - 1 a ( θ ) = e ^ 1 ( θ ) . . . e ^ N ( θ ) ≈ exp ( - j N 2 θ ) . . . exp ( j N 2 θ ) - - - ( 24 )
必须针对等式(1)的相干源的所有入射角θmp验证等式(7)(13)的属性。因此,通过提出
e ^ k ( θ ) = e ^ k ( θ ) . . . e ^ i + N ′ ( θ ) ≈ exp ( jkθ ) exp ( - j N 2 θ ) . . . exp ( j ( - N 2 + 1 + N ′ ) θ ) - - - ( 25 )
相干源的入射角必须验证
Figure GPA00001021050700103
其中αk(θ)=exp(jkθ)(26)
和/或验证
Figure GPA00001021050700104
其中β(θ)=1(27)
仅当通过验证|θmpk|<δθ而验证相干源的入射角θmp在同一内插域中时,等式(26)(27)的条件才有效。因此,该方法处理下列两种情况:
●相干源在同一内插域中,
●相干源在不同的内插域中。
为了处理相干源存在于不同域中的情况,通过使用根据本发明的方法,所设想的是,在数个域上联合地内插导向矢量a(θ)。
在P=2个域上的联合内插
使用方阵内插矩阵Wij来进行在宽度为δθ的P=2个域上的联合内插,其中
a(θ)=Wij e(θ)其中,
e ( θ ) = exp ( - j L 0 θ ) . . . exp ( j L 0 θ ) |θ-θi|<δθ且|θ-θj|<δθ(28)
其中矩阵Wij维数为NxN,N=2L0+1,且间隔|θ-θi|<δθ和|θ-θj|<δθ不相交(见图8和图9)。Wije(θ)是在两个域上的导向矢量a(θ)的内插函数,因为当|θ-θi|≥δθ或|θ-θj|≥δθ时,a(θ)≠Wije(θ)。对于|θ-θi|<δθ且|θ-θj|<δθ,通过在最小平方方向上最小化偏差||a(θ)-Wije(θ)||2来获得矩阵Wij。内插圆锥的宽度δθ根据下式确定:
A _ dB ( a ( &theta; ) , W ij e ( &theta; ) ) = max | &theta; - &theta; i | < &delta;&theta; , | &theta; - &theta; j , | < &delta;&theta; , n { 20 lo g 10 ( | a n ( &theta; ) a ^ n ( &theta; ) | ) }
其中 W ij e ( &theta; ) = a ^ 1 ( &theta; ) . . . a ^ N ( &theta; ) - - - ( 29 )
其中δθ是振幅误差A_dB小于1dB的最小值。已知Wij=Wji,所需的矩阵Wij的数量是(K×(K+1))/2,K=90/δθ(见图10)。返回到等式(19)的圆形网络,根据表2,内插宽度δθ和域的数量ij((K×(K+1))/2)取决于比率R/λ,表2包括根据R/λ的P=2个不相交内插域的宽度,其中A_dB=1。
Figure GPA00001021050700113
表2
内插圆锥的宽度δθ也可通过考虑需要等式(24)(25)(26)的关系的空间平滑技术来建立。取N′=N-1,圆锥的宽度δθ根据下式确定:
A _ dB ( e ^ 1 ( &theta; ) , e ^ 2 ( &theta; ) ) = max | &theta; - &theta; i | < &delta;&theta; , | &theta; - &theta; j , | < &delta;&theta; , n { 20 lo g 10 ( | e ^ n ( &theta; ) e ^ n + 1 ( &theta; ) | ) }
其中 W k - 1 a ( &theta; ) = e ^ 1 ( &theta; ) . . . e ^ N ( &theta; ) - - - ( 30 )
其中δθ是振幅误差A_dB小于1dB的最小值。
表3-根据R/λ的用于空间平滑的P=2个不相交内插域的宽度,其中A_dB=1
因此,在存在最多P=2个相干源的情况下,在每个域|θ-2i×δθ|<δθ且|θ-2j×δθ|<δθ中进行对等式(1)的信号的下列转换:
yij(t)=Wij -1x(t)(31)
其也可写为:
y ij ( t ) = &Sigma; m = 1 M &Sigma; p = 1 P m &rho; mp e ^ ( &theta; mp ) s m ( t - &tau; mp ) + n ( t ) = Es ( t ) + n ( t )
其中当|θ-2i×δθ|<δθ且|θ-2j×δθ|<δθ时,
其中E=[E1...EM]并且
Figure GPA00001021050700131
适于线性网络的所有算法都可应用于信号yij(t):空间平滑技术可用于使间隔|θ-2i×δθ|<δθ且|θ-2j×δθ|<δθ中相干的多条路径去相关,并接着应用诸如ESPRIT这样的角度测定算法。然而,只有验证
Figure GPA00001021050700133
的估计
Figure GPA00001021050700134
是解。为了获得所有估计,必须在具有索引(i,j)的所有域中应用空间平滑和角度测定,0≤i≤j≤180/δθ。
在P个域上的联合内插
使用内插矩阵Wi1...iP方阵来进行宽度为δθ的P个域上的联合内插,其中
a(θ)=Wi1...iP e(θ)其中,
e ( &theta; ) = exp ( - j L 0 &theta; ) . . . exp ( j L 0 &theta; ) | &theta; - &theta; i p | < &delta;&theta; 且1≤p≤P    (33)
其中Wi1...iPe(θ)对应于内插函数(当对于1≤p≤P,
Figure GPA00001021050700137
未被验证时,a(θ)≠Wi1...iPe(θ)),其中矩阵Wi1...iP是N=2L0+1的方阵,且间隔
Figure GPA00001021050700138
和1≤p≤P是不相交的。对于
Figure GPA00001021050700139
和1≤p≤P,通过在最小差平方的意义上最小化偏差
Figure GPA000010210507001310
来获得内插矩阵Wi1...iP。内插圆锥的宽度δθ根据下式确定:
其中
W i 1 . . . i p - 1 a ( &theta; ) = e ^ 1 ( &theta; ) . . . e ^ N ( &theta; ) - - - ( 34 )
其中δθ是振幅误差A_dB小于值A_dB_ref的最小值。一般A_dB_ref是1dB。用于估计内插矩阵Wi1...iP和每个域的内插宽度δθ的步骤如下。
步骤No.A.1:对于1≤p≤P,δθ=180°/P且
Figure GPA000010210507001313
步骤No.A.2:对于
Figure GPA000010210507001314
和1≤p≤P,通过在均方意义上最小化
Figure GPA000010210507001315
来计算矩阵
Figure GPA000010210507001316
步骤No.A.3:计算等式(34)的标准
Figure GPA00001021050700141
步骤No.A.4:如果则δθ=δθ/2,并返回到步骤A.2。
步骤No.A.5:计算K=180/(Pδθ)。
步骤No.A.6:对于验证0≤i1≤...≤iP<K的所有P-元组(i1...iP):
步骤No.A.6.1:对于1≤p≤P,计算
Figure GPA00001021050700143
步骤No.A.6.2:对于
Figure GPA00001021050700144
且1≤p≤P,通过在均方的意义上最小化
Figure GPA00001021050700145
来计算矩阵Wi1...iP
步骤No.A.6.3:如果没有对验证0≤i1≤...≤iP≤K的所有P-元组(i1...iP)进行测试,则返回到步骤A.6.1。
利用P个域上的内插进行角度测定的步骤使用在步骤A期间计算的内插矩阵。于是角度测定的步骤如下:
步骤No.B.0:初始化在的集合Θ。
步骤No.B:对于验证0≤i1≤...≤iP<K的所有P-元组(i1...iP):
步骤No.B.1:计算
Figure GPA00001021050700147
步骤No.B.2:对于1≤p≤P,计算
步骤No.B.3:将空间和/或前向-后向平滑技术应用于观测值
Figure GPA00001021050700149
接着应用ESPRIT类型的角度测定,以便对于获得入射角
Figure GPA000010210507001411
步骤No.B.4:选择估计的入射角
Figure GPA000010210507001412
其中根据下面的MUSIC[1]标准,对于1≤p≤P和
Figure GPA000010210507001413
Figure GPA000010210507001414
其中
J MUSIC ( &theta; ) = a ( &theta; ) H &Pi; b a ( &theta; ) a ( &theta; ) H a ( &theta; ) - - - ( 35 )
其中∏b是从协方差矩阵Rx提取的噪声投影器(等式(7)形成已被删除的橙色(orange)通道的部分)。因此建议;根据MUSIC类型的角度测定方法的已知等式(一般在0.1选择阈值η)。
步骤No.B.5:针对与算法所处理的P-元组(i1...iP)相关联的所有域验证步骤B.4的入射角构成集合
Figure GPA000010210507001416
步骤No.B.6:只要没有对验证0≤i1≤...≤iP<K的所有P-元组(i1...iP)进行测试,返回到No.B.1。
Bibliography
[1]RO.SCHMIDT,Multiple emitter location and signal parameter estimation,in Procof the RADC Spectrum Estimation Workshop,Griffiths Air Force Base,New York,1979,pp.243-258.
[2](MV)P.Larzabal Application du Maximum de vraisemblance au traitementd’antenne:radio-goniométrie et poursuite de cibles.PhD Thesis,UniversitédeParis-sud,Orsay,FR,June 1992
[3](MV)B.Ottersten,M.Viberg,P.Stoica and A.Nehorai Exact and large samplemaximum likelihood techniques for parameter estimation and detection in arrayprocessing.In S.Haykin,J.Litva and TJ.Shephers editors,Radar Array Processing,chapter 4,pages 99-151.Springer-Verlag,Berlin 1993.
[4](SMOOTH)S.U.Pillai and B.H.Kwon,Forward/backward spatial smoothingtechniques for coherent signal identification,IEEE Trans.Acoust.,Speech andSignal Processing,vol.37,pp.8-15,Jan.1988
[5](SMOO-INTER)B.Friedlander and A.J.Weiss.Direction Finding using spatialsmoothing with interpolated arrays.IEEE Transactions on Aerospace andElectronic Systems,Vol.28,No.2,pp.574-587,1992.
[6](INTER)T.P.Bronez,Sector interpolation of nonuniform arrays for efficient highresolution bearing estimation,in Proc.IEEE ICASSP’88,vol.5,pp.2885-2888,New York,NY,Apr.1988
[7](MODE)Y.Bresler and A.Macovski,Exact Maximum Likelihood ParameterEstimation of Superimposed Exponential Signals in Noise,IEEE Trans.on ASSP,34(5):1081--1089,October 1986
[8](MODE)Stoica P,Sharman KC.Maximum likelihood methods fordirection-of-arrival estimation.IEEE Transactions on Acoustics,Speech and SignalProcessing,38:1132-1143,July 1990
[9](ESPRIT)R.Roy and T.Kailath,ESPRIT-Estimation of signal parameters via.rotational invariance techniques,IEEE Trans.Acoust.Speech,Signal Processing,Vol 37,pp 984-995,July 1989.
[10](ESPRIT)K.T.Wong and M.Zoltowski,Uni-Vector Sensor ESPRIT forMulti-Source Azimuth-Elevation Angle Estimation,Digest of the 1996 IEEEInternational Antennas and Propagation Symposium,Baltimore,MD,July 21-26,1996,pp.1368-1371.
[11](ROOT-INTER)B.Friedlander.The Root-MUSIC algorithm for direction findingwith interpolated arrays.European J.(Elsevier)Signal Processing,Vol.30,pp.15-29,1993.
[12](ROOT)K.T.Wong and M.Zoltowski,Source Localization by 2-D Root-MUSICwith“Scalar Triads”of Velocity Hydrophones,Conference Record of the MidwestSymposium on Circuits and Systems,August 18-21,1996.

Claims (6)

1.一种用于在包括数个非均匀传感器的系统中确定相干源的到达角的方法,信号沿着源和网络的接收传感器之间的相干或基本相干的路径传播,所述方法特征在于,利用在方位角上全向的至少一个模态内插函数z(θ)k,其中z(θ)=exp(jθ),θ对应于角域,在所述角域上进行传感器网络的导向矢量a(θ)的内插以便处理由所述源发射并在所述传感器网络上接收的信号,并且应用空间平滑技术,以便使所述相干源去相关,内插函数W e(θ)以下列方式表示:
a(θ)≈W e(θ)其中,
Figure FPA00001021050600011
对于验证0≤θ<360°的方位角,通过在均方意义上最小化偏差‖a(θ)-We(θ)‖2来获得维数为N×(2L+1)的矩阵W,内插长度2L+1取决于所述网络的孔径。
2.如权利要求1所述的方法,其特征在于,所述内插函数包括数个内插矩阵Wi1...iP,P对应于不相交的角域的数量,接收到的信号的联合内插在所述角域上进行,所述矩阵和每个域的内插宽度δθ的确定至少包括下列步骤:
步骤No.A.1:对于1≤p≤P,δθ=180°/P且
Figure FPA00001021050600012
步骤No.A.2:对于
Figure FPA00001021050600013
和1≤p≤P,通过在均方意义上最小化
Figure FPA00001021050600014
来计算所述内插矩阵
步骤No.A.3:计算标准
Figure FPA00001021050600016
其中, W i 1 . . . i p - 1 a ( &theta; ) = e ^ 1 ( &theta; ) . . . e ^ N ( &theta; )
其中δθ是振幅误差A_dB小于给定的值A_dB_ref的最小值,
步骤No.A.4:如果
Figure FPA00001021050600021
则δθ=δθ/2,并返回到步骤A.2,
步骤No.A.5:计算K=180/(Pδθ)
步骤No.A.6:对于验证0≤i1≤...≤iP<K,K为在其上进行所述内插的域的数量,的所有P-元组(i1...iP):
步骤No.A.6.1:对于1≤p≤P,计算
Figure FPA00001021050600022
步骤No.A.6.2:对于
Figure FPA00001021050600023
和1≤p≤P,通过在均方的意义上最小化
Figure FPA00001021050600024
来计算所述内插矩阵
Figure FPA00001021050600025
步骤No.A.6.3:如果没有对验证0≤i1≤...≤iP<K的所有P-元组(i1...iP)进行测试,则返回到步骤A.6.1。
3.如权利要求1和2之一所述的方法,其特征在于,L的值以下列方式被确定:
A_dB(a(θ),
Figure FPA00001021050600026
其中
Figure FPA00001021050600027
其中L是验证A_dB小于0.1dB的最小值。特别地,当所述内插理想时并因此当a(θ)=We(θ)时,A_dB为零。
4.如权利要求3所述的方法,其特征在于,对于所述内插长度2L+1大于N的网络,所述网络使用方阵内插矩阵Wk通过宽度为δθ=180/K的K个域来被内插,其中
a(θ)=Wk e(θ)其中,
Figure FPA00001021050600028
其中K个矩阵Wk是N=2L0+1的方阵,对于|θ-θk|<δθ,通过在最小差平方的意义上最小化偏差‖a(θ)-Wke(θ)‖2来获得所述矩阵Wk,内插圆锥的宽度δθ根据下列振幅误差标准来确定:
A _ dB ( a ( &theta; ) , W k e ( &theta; ) ) = max &theta; k - &delta;&theta; &le; &theta; &le; &theta; k - &delta;&theta; , n { 20 log 10 ( | a n ( &theta; ) a ^ n ( &theta; ) | ) }
其中 W k e ( &theta; ) = a ^ 1 ( &theta; ) . . . a ^ N ( &theta; )
其中δθ是验证A_dB小于0.1dB的最小值,因为当a(θ)=Wke(θ)时,A_dB为零。
5.如权利要求1到4之一所述的方法,其特征在于,包括角度测定步骤,所述角度测定步骤至少包括下列步骤:
步骤No.B.0:初始化在
Figure FPA00001021050600033
的集合Θ。
步骤No.B.0:对于验证0≤i1≤...≤iP<K的所有P-元组(i1...iP):
步骤No.B.1:计算
Figure FPA00001021050600034
步骤No.B.2:对于1≤p≤P,计算
步骤No.B.3:将空间和/或前向-后向平滑技术应用于观测值接着应用角度测定算法以获得入射角
Figure FPA00001021050600037
Figure FPA00001021050600038
步骤No.B.4:选择估计的入射角
Figure FPA00001021050600039
其中对于1≤p≤P和
Figure FPA000010210506000310
Figure FPA000010210506000311
步骤No.B.5:针对与算法所处理的P-元组(i1...iP)相关联的所有域验证步骤B.4的入射角构成集合
步骤No.B.6:只要没有对验证0≤i1≤...≤iP<K的所有P-元组(i1...iP)进行测试,返回到步骤No.B.1。
6.如权利要求1所述的方法,其特征在于,对于相干源存在于不同域中的情况,所述导向矢量a(θ)在数个域上被联合内插。
CN2008801024453A 2007-06-08 2008-06-09 在任意传感器网络上使用空间平滑来测量相干源的到达角的方法 Expired - Fee Related CN101779140B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0704113 2007-06-08
FR0704113A FR2917180B1 (fr) 2007-06-08 2007-06-08 Procede d'estimation des angles d'arrivees de sources coherentes par une technique de lissage spatial sur un reseau de capteurs quelconque
PCT/EP2008/057165 WO2008155250A1 (fr) 2007-06-08 2008-06-09 Procede d'estimation des angles d'arrivees de sources coherentes par une technique de lissage spatial sur un reseau de capteurs quelconque

Publications (2)

Publication Number Publication Date
CN101779140A true CN101779140A (zh) 2010-07-14
CN101779140B CN101779140B (zh) 2013-07-17

Family

ID=38917367

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008801024453A Expired - Fee Related CN101779140B (zh) 2007-06-08 2008-06-09 在任意传感器网络上使用空间平滑来测量相干源的到达角的方法

Country Status (8)

Country Link
US (1) US8248304B2 (zh)
EP (1) EP2156210B1 (zh)
CN (1) CN101779140B (zh)
AT (1) ATE482409T1 (zh)
DE (1) DE602008002759D1 (zh)
FR (1) FR2917180B1 (zh)
IL (1) IL202540A (zh)
WO (1) WO2008155250A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020439A (zh) * 2014-06-20 2014-09-03 西安电子科技大学 基于空间平滑协方差矩阵稀疏表示的波达方向角估计方法
CN104833947A (zh) * 2015-04-03 2015-08-12 西北大学 一种任意阵接收对称虚拟变换2d-doa分离算法
CN108828667A (zh) * 2018-03-23 2018-11-16 中国矿业大学(北京) 一种微地震复杂地表高程校正方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940461B1 (fr) * 2008-12-23 2011-01-21 Thales Sa Procede de determination des angles d'arrivee en azimut et en elevation de sources coherentes
JP5931661B2 (ja) * 2012-09-14 2016-06-08 本田技研工業株式会社 音源方向推定装置、音源方向推定方法、及び音源方向推定プログラム
CN103269526B (zh) * 2013-05-23 2016-08-24 山西煤炭运销集团有限公司 一种用于矿井巷道的无线传感器网络
CN105242264B (zh) * 2015-11-26 2018-06-19 上海无线电设备研究所 一种平面阵列多目标角度高分辨实现方法
CN107315162B (zh) * 2017-07-25 2020-05-22 西安交通大学 基于内插变换和波束形成的远场相干信号doa估计方法
TWI666001B (zh) * 2018-06-11 2019-07-21 緯創資通股份有限公司 分析生理訊號的方法及相關分析裝置
WO2020041563A1 (en) * 2018-08-23 2020-02-27 Board Of Regents, The University Of Texas System Controlling a device by tracking movement of hand using acoustic signals
CN112255625B (zh) * 2020-09-01 2023-09-22 杭州电子科技大学 基于深度学习的二维角度依赖误差下的一维线阵测向方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2506779A1 (en) * 2002-11-22 2004-06-10 Ben Gurion University Smart antenna system with improved localization of polarized sources
CN1808949A (zh) * 2005-12-23 2006-07-26 西安交通大学 多输入多输出通信系统信道的一种非物理建模与仿真方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104020439A (zh) * 2014-06-20 2014-09-03 西安电子科技大学 基于空间平滑协方差矩阵稀疏表示的波达方向角估计方法
CN104020439B (zh) * 2014-06-20 2016-06-29 西安电子科技大学 基于空间平滑协方差矩阵稀疏表示的波达方向角估计方法
CN104833947A (zh) * 2015-04-03 2015-08-12 西北大学 一种任意阵接收对称虚拟变换2d-doa分离算法
CN104833947B (zh) * 2015-04-03 2017-10-31 西北大学 一种任意阵接收对称虚拟变换2d‑doa分离算法
CN108828667A (zh) * 2018-03-23 2018-11-16 中国矿业大学(北京) 一种微地震复杂地表高程校正方法
CN108828667B (zh) * 2018-03-23 2019-09-03 中国矿业大学(北京) 一种微地震复杂地表高程校正方法

Also Published As

Publication number Publication date
FR2917180B1 (fr) 2010-05-14
DE602008002759D1 (de) 2010-11-04
EP2156210B1 (fr) 2010-09-22
EP2156210A1 (fr) 2010-02-24
WO2008155250A1 (fr) 2008-12-24
FR2917180A1 (fr) 2008-12-12
IL202540A (en) 2014-08-31
ATE482409T1 (de) 2010-10-15
IL202540A0 (en) 2010-06-30
US20110025563A1 (en) 2011-02-03
US8248304B2 (en) 2012-08-21
CN101779140B (zh) 2013-07-17

Similar Documents

Publication Publication Date Title
CN101779140A (zh) 在任意传感器网络上使用空间平滑来测量相干源的到达角的方法
Bialer et al. Performance advantages of deep neural networks for angle of arrival estimation
EP1703297B1 (en) Method and apparatus for direction-of-arrival tracking
US8669901B2 (en) Method for determining azimuth and elevation angles of arrival of coherent sources
JPWO2004104620A1 (ja) 固有値分解を利用しない信号到来方向推定手法および受信ビーム形成装置
CN113329491B (zh) 定位参数确定方法、装置、设备和存储介质
JP2011014980A (ja) 電波伝搬パラメータ推定装置、電波伝搬パラメータ推定方法
Abdelbari et al. A novel DOA estimation method of several sources for 5G networks
Reddy et al. Analysis of spatial smoothing with uniform circular arrays
Chen et al. A new algorithm for joint range-DOA-frequency estimation of near-field sources
Rao et al. DOA estimation using sparse vector sensor arrays
Pan Spherical harmonic atomic norm and its application to DOA estimation
Ahmed et al. Simulation of Direction of Arrival Using MUSIC Algorithm and Beamforming using Variable Step Size LMS Algorithm
Kim et al. DOA estimation of angle-perturbed sources for wireless mobile communications
Eschbaumer et al. Analysis of a machine learning based virtual array augmentation technique for automotive radar
Do-Hong et al. Wideband Direction of Arrival Estimation in the Presence of Array Imperfection and Mutual Coupling
Lanne et al. Adaptive beamforming using calibration vectors with unknown gain and phase
Rong et al. Multiple source detection performance of linear sparse arrays
MC et al. Multikernel optimized beam forming using sparse representation for non-uniform linear array
Lardiès et al. Localization of radiating sources by an acoustical array
Sirianunpiboon et al. Joint frequency and DOA estimation using fourier coefficient interpolation
KR20080063000A (ko) 도래각 추정 장치 및 그 방법
Xiao et al. A Robust Two-Dimensional DOA Estimation Approach Based on Convolutional Attention Network
Tayem et al. Joint frequency and angle estimation algorithms
Wang et al. DoA Estimation on A MIMO Handset

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20130717

Termination date: 20170609

CF01 Termination of patent right due to non-payment of annual fee