CN101774528A - Cross-scale biomimetic micro-nano branch structure array and preparation method thereof - Google Patents
Cross-scale biomimetic micro-nano branch structure array and preparation method thereof Download PDFInfo
- Publication number
- CN101774528A CN101774528A CN201010046502A CN201010046502A CN101774528A CN 101774528 A CN101774528 A CN 101774528A CN 201010046502 A CN201010046502 A CN 201010046502A CN 201010046502 A CN201010046502 A CN 201010046502A CN 101774528 A CN101774528 A CN 101774528A
- Authority
- CN
- China
- Prior art keywords
- array
- nano
- micro
- level
- cylinder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000002360 preparation method Methods 0.000 title claims abstract description 23
- 230000003592 biomimetic effect Effects 0.000 title description 7
- 230000003647 oxidation Effects 0.000 claims abstract description 58
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 58
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 41
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 34
- 239000011664 nicotinic acid Substances 0.000 claims abstract description 15
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims abstract description 12
- 230000005684 electric field Effects 0.000 claims abstract description 10
- 238000010884 ion-beam technique Methods 0.000 claims abstract description 9
- 229920000642 polymer Polymers 0.000 claims abstract description 9
- 238000005530 etching Methods 0.000 claims abstract description 8
- 239000000758 substrate Substances 0.000 claims abstract description 7
- 229910052786 argon Inorganic materials 0.000 claims abstract description 6
- 238000000465 moulding Methods 0.000 claims abstract description 4
- 239000003792 electrolyte Substances 0.000 claims description 28
- 229920002120 photoresistant polymer Polymers 0.000 claims description 10
- 238000003491 array Methods 0.000 claims description 9
- 239000011148 porous material Substances 0.000 claims description 9
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 claims description 8
- 150000007522 mineralic acids Chemical class 0.000 claims description 6
- 150000007524 organic acids Chemical class 0.000 claims description 4
- 238000000233 ultraviolet lithography Methods 0.000 claims description 4
- 238000009415 formwork Methods 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 239000002253 acid Substances 0.000 claims 2
- 238000002048 anodisation reaction Methods 0.000 claims 1
- 239000008151 electrolyte solution Substances 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 17
- 239000000853 adhesive Substances 0.000 abstract description 16
- 230000001070 adhesive effect Effects 0.000 abstract description 16
- 239000002086 nanomaterial Substances 0.000 abstract description 14
- 238000005516 engineering process Methods 0.000 abstract description 10
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 20
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 16
- 239000000243 solution Substances 0.000 description 11
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 10
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 8
- VLTRZXGMWDSKGL-UHFFFAOYSA-N perchloric acid Chemical compound OCl(=O)(=O)=O VLTRZXGMWDSKGL-UHFFFAOYSA-N 0.000 description 8
- 210000003371 toe Anatomy 0.000 description 8
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 6
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 239000002041 carbon nanotube Substances 0.000 description 4
- 241000270290 Gekkota Species 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000004433 Thermoplastic polyurethane Substances 0.000 description 3
- 238000007743 anodising Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000000206 photolithography Methods 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000005411 Van der Waals force Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000000609 electron-beam lithography Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 235000006408 oxalic acid Nutrition 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- HPGGPRDJHPYFRM-UHFFFAOYSA-J tin(iv) chloride Chemical class Cl[Sn](Cl)(Cl)Cl HPGGPRDJHPYFRM-UHFFFAOYSA-J 0.000 description 2
- 240000004282 Grewia occidentalis Species 0.000 description 1
- 241000238631 Hexapoda Species 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000009193 crawling Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004100 electronic packaging Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000002493 microarray Methods 0.000 description 1
- 210000003097 mucus Anatomy 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- -1 polydimethylsiloxane Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000003362 replicative effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 235000019592 roughness Nutrition 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000001878 scanning electron micrograph Methods 0.000 description 1
- 238000002791 soaking Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229910052723 transition metal Inorganic materials 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
Images
Landscapes
- Micromachines (AREA)
Abstract
本发明涉及微纳米材料和机器人领域,特别涉及仿生粘附材料及其制备方法,也涉及电化学阳极氧化技术。所述跨尺度仿生微纳米分支结构阵列由基底和微纳米的多级分支结构阵列组成,微纳米的多级分支结构至少包括有一级微米圆柱体结构阵列和分支的微纳米圆柱体结构阵列。其制备方法是先用氩离子束刻蚀得到具有一级微米孔洞阵列的铝模板;然后以电化学阳极氧化法在该模板阵列上定点定向制备微纳米分支结构阵列;再采用聚合物复型法在该模板中塑膜、固化,最后去除模板成型,得到所需微纳米结构阵列,成为仿生干性粘附材料。本发明利用电场特性,有效解决了从微米到纳米的跨尺度分支结构阵列可控问题,对于仿生粘附材料的发展及相关干性仿生机器人的发展有着重要意义。
The invention relates to the fields of micro-nano materials and robots, in particular to a bionic adhesive material and a preparation method thereof, and also to an electrochemical anodic oxidation technology. The cross-scale bionic micro-nano branch structure array is composed of a substrate and a micro-nano multi-level branch structure array, and the micro-nano multi-level branch structure at least includes an array of one-level micro-cylindrical structures and an array of branched micro-nano-cylindrical structures. The preparation method is to firstly use argon ion beam etching to obtain an aluminum template with a first-level micron hole array; then use electrochemical anodic oxidation to prepare a micro-nano branch structure array at a fixed point on the template array; and then use the polymer replica method In the template, a film is molded, solidified, and finally the template is removed for molding to obtain the required micro-nano structure array, which becomes a bionic dry adhesive material. The invention utilizes the characteristics of the electric field to effectively solve the controllable problem of the cross-scale branch structure array from micron to nanometer, and has great significance for the development of bionic adhesive materials and the development of related dry bionic robots.
Description
技术领域:Technical field:
本发明涉及微纳米材料和机器人领域,特别涉及仿生粘附材料及其制备方法,也涉及电化学阳极氧化技术。The invention relates to the fields of micro-nano materials and robots, in particular to a bionic adhesive material and a preparation method thereof, and also to an electrochemical anodic oxidation technology.
背景技术:Background technique:
壁虎神奇的爬壁能力千百年来吸引着人们模仿。壁虎的粘附爬壁行为不同于其他昆虫或动物,在其攀爬过的表面不残留下任何粘液或抓痕。壁虎脚趾这种能在各种粗糙度的表面上迅速粘附与脱附的爬行粘附方式,研究者们称其为干性粘附。壁虎的脚趾刚毛的微纳结构,是实现迅速粘附与脱附,达到干性粘附的奥秘之所在。这种微纳结构阵列所产生的范德华力的聚集力,大大超出其身体的重量的许多倍。2000年Autumn和Full等人在《Nature》405卷第681页报道了壁虎脚趾上特殊的粘附力主要来自于其脚趾上数百万根微纳米结构的刚毛阵列所产生的范德瓦尔斯力的聚积。这种分子引力的聚积必须在适当的微纳米结构阵列中产生,而且这种微纳米结构阵列必须与所采用的构成微纳米结构的材料相匹配。将仿壁虎干性粘附材料与机器人技术相结合将有可能实现在不规则地面、墙面以及天花板上行走,到达人类难以到达的区域进行工作,在航空航天技术、电子封装和高温粘接等领域有非常大的应用前景。早期干性粘附材料的粘附强度远远低于期望值,随着微加工技术与纳米制备技术的在这个研究方向中的应用,干性粘附材料的粘附力已大大提高。然而,壁虎脚趾刚毛的微纳米结构相关的参数较多,它们之间又相互关联,找到一个合适的组成材料与微纳米结构相匹配的最佳条件是一项复杂的工作。要实现粘附与脱附的快速可逆转换目前仍然是一个挑战。The miraculous ability of geckos to climb walls has attracted people to imitate them for thousands of years. The wall-climbing behavior of geckos is different from that of other insects or animals, leaving no mucus or scratch marks on the surface they have climbed. The crawling adhesion method of gecko toes, which can quickly adhere and detach on surfaces with various roughnesses, is called dry adhesion by researchers. The micro-nano structure of gecko's toe bristles is the secret to achieve rapid adhesion and detachment, and dry adhesion. The aggregation force of van der Waals force produced by this micro-nano structure array greatly exceeds the weight of its body many times. In 2000, Autumn and Full et al. reported on page 681 of volume 405 of Nature that the special adhesive force on gecko toes mainly comes from the van der Waals force generated by the setae array of millions of micro-nano structures on the toes. accumulation. This accumulation of molecular attraction must be generated in an appropriate array of micro-nanostructures, and this array of micro-nanostructures must match the materials used to form the micro-nanostructures. Combining gecko-like dry adhesive materials with robotic technology will make it possible to walk on irregular floors, walls and ceilings, and work in areas that are difficult for humans to reach. In aerospace technology, electronic packaging and high-temperature bonding, etc. The field has great application prospects. The adhesive strength of early dry adhesive materials is far lower than the expected value. With the application of micro-processing technology and nano-fabrication technology in this research direction, the adhesive force of dry adhesive materials has been greatly improved. However, there are many parameters related to the micro-nano structure of gecko toe bristles, and they are interrelated. It is a complicated work to find a suitable composition material and the best condition to match the micro-nano structure. Achieving fast and reversible switching between adhesion and desorption remains a challenge.
尽管人类已对壁虎的干性粘附进行了大量的研究,但迄今为止人类还没有真正找到最合适的、类似壁虎脚趾刚毛的微纳结构,以实现理想的干性粘附。其最主要的原因在于目前人类不能像壁虎脚趾刚毛的一样将微纳结构与组成材料有效配合。壁虎通过刚毛的特殊结构降低了脚趾刚毛阵列整体的有效弹性模量,其独特的高密度、高纵横比的微纳多级分支结构刚毛阵列使其易于变形,能实现与各种粗糙表面的密切分子间接触,达到干性黏附。Although humans have done a lot of research on the dry adhesion of geckos, so far humans have not really found the most suitable micro-nano structure similar to the setae of gecko toes to achieve ideal dry adhesion. The main reason is that humans cannot effectively match the micro-nano structure with the constituent materials like the gecko toe bristles. Gecko reduces the effective elastic modulus of the whole toe setae array through the special structure of setae. Its unique high-density, high aspect ratio micro-nano multi-level branch structure setae array makes it easy to deform and can achieve close contact with various rough surfaces. Intermolecular contact to achieve dry adhesion.
对于仿壁虎干性粘附材料的制备,已经有很多报道,总体来说,有两类制备方案。即以微加工手段为基础的自上而下(top-down)的制备方法和以纳米生长、组装技术为基础的自下而上(Bottom-up)的方法。Top-down制备方法主要以高分子多聚物为基质材料。传统的自上而下的微纳米制备技术如光刻、电子束光刻以及刻蚀等,用来从基体上直接制备微纳米阵列,或以这些微加工为手段先制造带有直立微纳米孔洞的模板,然后再使用带有直立微纳米孔洞的模板将聚合物复型。如Geim等在《Nature Materials》2003年2卷第461页报道,使用电子束光刻制备的纳米孔洞模板,然后将聚酰亚胺复型制备直径大约0.5微米的仿壁虎粘附阵列。又如,Sitti等在《Langmuir》2007年23卷第3322页报道了通过光刻法制备的光刻胶微米阵列,它们同时报道了将光刻胶模板复型制备的直径8微米的聚氨酯粘附阵列。对于自下而上(Bottom-up)的方法,目前主要是以碳纳米管(Carbon Nanotubes,CNTs)生长制备为基础,如Dai等在《Science》2008年322卷第238页报道的通过化学气相沉积法在附有过渡金属催化剂颗粒的基板上的生长CNTs阵列便属于这种方法。There have been many reports on the preparation of gecko-like dry adhesive materials. Generally speaking, there are two types of preparation methods. That is, the top-down preparation method based on micro-processing means and the bottom-up method based on nanometer growth and assembly technology. The top-down preparation method mainly uses polymers as matrix materials. Traditional top-down micro-nano preparation techniques such as photolithography, electron beam lithography, and etching are used to directly prepare micro-nano arrays from the substrate, or use these micro-processing as a means to first fabricate micro-nano holes with vertical micro-nano holes. template, and then replicate the polymer using a template with upstanding micro- and nano-holes. As reported by Geim et al. in "Nature Materials" 2003,
综上所述,不同的制备方法都有各自的特点,而且不同材料制备的阵列也显示了不同的粘附性能。但是由于在微米结构上定点定向的组装或生长纳米有序结构十分困难,因此现有技术中得到的阵列结构要么只是在微米尺度范围中,要么只是在纳米尺度范围,没有达到跨尺度的微纳米结构参数可调的需求,因而不能适应某些特定的使用要求。如何找到有效的从的跨尺度分支结构阵列的可控制备方法,即如何在微米结构上定点定向的组装或生长纳米有序结构是摆在当今技术人员面前的难题。To sum up, different preparation methods have their own characteristics, and arrays prepared from different materials also show different adhesion properties. However, because it is very difficult to assemble or grow nano-ordered structures in a fixed-point orientation on micro-structures, the array structures obtained in the prior art are either only in the micro-scale range, or only in the nano-scale range, and have not reached the cross-scale micro-nano The structural parameters can be adjusted, so it can't adapt to some specific usage requirements. How to find an effective method for the controllable preparation of cross-scale branched structure arrays, that is, how to assemble or grow nano-ordered structures on micro-structures is a difficult problem for today's technicians.
发明内容Contents of the invention
本发明的目的在于提供一种跨尺度仿生微纳米分支结构阵列及其制备方法,以用于制备可迅速粘附与脱附交替的动态粘附材料,即仿生干性粘附材料,来满足不同用处的需要。The purpose of the present invention is to provide a cross-scale bionic micro-nano branch structure array and its preparation method, which is used to prepare a dynamic adhesive material that can rapidly adhere and detach alternately, that is, a bionic dry adhesive material, to meet different needs. Useful needs.
为了实现上述目的,本发明采用以下技术方案。In order to achieve the above object, the present invention adopts the following technical solutions.
本发明的跨尺度仿生微纳米分支结构阵列,其特征在于,它由基底和微纳米的多级分支结构阵列组成,所述微纳米的多级分支结构阵列至少包括有一级微米圆柱体结构阵列和分支的微纳米圆柱体结构阵列,其中一级微米圆柱体结构阵列成四角排列或六角密堆排列,圆柱体直径为3-10微米,高度为5-100微米,密度为0.25-3.21×106/cm2;或者,在一级微米圆柱的顶端面上先设置二级亚微米圆柱体阵列,然后在二级亚微米圆柱顶端面上设置分支的纳米圆柱体阵列,其中二级的亚微米圆柱体阵列为六角密堆排列,圆柱体直径为200-400纳米,高度为1-5微米,密度为0.4-1.3×109/cm2;或者,在每个二级的亚微米圆柱体顶端面上再设置2-3分支的三级亚微米圆柱体结构阵列,然后在三级亚微米圆柱顶端面上设置4-5分支的四级纳米圆柱体阵列,三级的亚微米圆柱体直径为100-200纳米,高度为0.5-2微米,密度为0.8-3.9×109/cm2,四级的纳米圆柱体直径50-100纳米,深度为100-500纳米,密度为0.32-1.95×1010/cm2;所述微纳米多级分支结构阵列与基底垂直或成0-30°倾斜。The cross-scale bionic micro-nano branch structure array of the present invention is characterized in that it is composed of a substrate and a micro-nano multi-level branch structure array, and the micro-nano multi-level branch structure array includes at least one level of micron cylinder structure array and Branched micro-nano cylinder structure array, wherein the first-level micron cylinder structure array is arranged in a quadrangular or hexagonal close-packed arrangement, the diameter of the cylinder is 3-10 microns, the height is 5-100 microns, and the density is 0.25-3.21×10 6 /cm 2 ; or, on the top surface of the first-level micron cylinder, the second-level submicron cylinder array is arranged first, and then the branched nano-cylindrical array is set on the top surface of the second-level submicron cylinder, wherein the second-level submicron cylinder The body array is hexagonal close-packed arrangement, the diameter of the cylinders is 200-400 nanometers, the height is 1-5 microns, and the density is 0.4-1.3×10 9 /cm 2 ; or, on the top surface of each secondary submicron cylinder Then set a 2-3 branched three-level submicron cylinder structure array, and then set a 4-5 branched four-level nano-cylinder array on the top surface of the three-level submicron cylinder. The diameter of the three-level submicron cylinder is 100 -200 nanometers, 0.5-2 microns in height, 0.8-3.9×10 9 /cm 2 density, 50-100 nanometers in diameter, 100-500 nanometers in depth, and 0.32-1.95×10 10 density in four-stage nano cylinders /cm 2 ; the micro-nano multi-level branch structure array is perpendicular to the substrate or inclined at 0-30°.
本发明的跨尺度仿生微纳米分支结构阵列的制备方法,包括首先在清理后的金属铝片表面通过紫外光刻获得光刻胶掩膜图案,再进行氩离子束刻蚀得到具有所需的一级微米孔洞阵列的铝模板;其特征在于,在得到具有所需的一级微米孔洞阵列的铝模板后,以电化学阳极氧化法在一级微米孔洞阵列上定点定向制备具有所需微纳米分支结构阵列的氧化铝模板;然后,采用聚合物复型法在该模板中塑膜、固化,最后去除模板成型,得到所需结构阵列;所述定点定向制备,是指在进行阳极氧化时,以具有孔洞阵列的铝模板作为阳极电极,另取铅板作为阴极电极,将阴阳两电极平行放置或成0-30°倾斜放置,使孔洞阵列的孔洞轴线方向与电场方向平行或成0-30°倾斜;通过调节阳极氧化过程中的电压、氧化时间和使用不同的电解液来控制所需孔径及深度,氧化过程结束得到所需的微纳米分支孔洞结构阵列的氧化铝模板。The preparation method of the cross-scale biomimetic micro-nano branch structure array of the present invention includes firstly obtaining a photoresist mask pattern on the surface of the cleaned metal aluminum sheet through ultraviolet lithography, and then performing argon ion beam etching to obtain a required one. The aluminum template of the first-level micron hole array; it is characterized in that, after obtaining the aluminum template with the required first-level micron hole array, the electrochemical anodic oxidation method is used to prepare the desired micro-nano branch on the first-level micron hole array. An aluminum oxide template of a structure array; then, the polymer replica method is used to mold a film in the template, solidify, and finally remove the template for molding to obtain the desired structure array; the fixed-point oriented preparation means that when anodizing The aluminum template with a hole array is used as the anode electrode, and the lead plate is used as the cathode electrode, and the positive and negative electrodes are placed in parallel or at an angle of 0-30°, so that the axis of the hole array is parallel to the direction of the electric field or at an angle of 0-30° Tilting; by adjusting the voltage, oxidation time and using different electrolytes to control the required pore size and depth during the anodic oxidation process, the alumina template with the required micro-nano branch hole structure array is obtained at the end of the oxidation process.
在上述制备方法中,所述氧化过程可分为一次或两次或两次以上进行,一次氧化过程可得到具有二级孔洞阵列的铝模板,两次氧化过程可得到具有三级孔洞阵列的铝模板,三次氧化过程可得到具有四级孔洞阵列的铝模板,例如,先在PH值为2-3.5的无机酸电解液中,例如磷酸电解液、硫酸电解液等,对所述具有一级微米孔洞阵列的铝模板进行一次阳极氧化,在微米孔洞底面获得六角密堆排列的二级亚微米孔,该二级亚微米孔直径为200-400纳米,深度为1-5微米,密度为0.4-1.3×109/cm2;然后通过降压法在上述磷酸电解液中进行二次阳极氧化,获得具有2-3分支的三级压微米孔结构,该三级微米孔直径为100-200纳米,高度为0.5-2微米,密度为0.8-3.9×109/cm2,最后再通过降压法在PH值为0.8-1.2的有机酸电解液中,如草酸电解液等,进行三次阳极氧化,获得具有4-5分支结构的四级氧化铝模板,孔径50-100纳米,深度为100-500纳米,密度为0.32-1.95×1010/cm2。In the above preparation method, the oxidation process can be divided into one time or two or more than two times, one oxidation process can obtain aluminum templates with secondary hole arrays, and two oxidation processes can obtain aluminum templates with tertiary hole arrays. Template, the aluminum template with four-level hole array can be obtained in three oxidation processes, for example, first in the inorganic acid electrolyte with a pH value of 2-3.5, such as phosphoric acid electrolyte, sulfuric acid electrolyte, etc., for the described one-level micron The aluminum template of the hole array is anodized once, and hexagonal close-packed secondary submicron holes are obtained on the bottom surface of the micron holes. The secondary submicron holes have a diameter of 200-400 nanometers, a depth of 1-5 microns, and a density of 0.4- 1.3×10 9 /cm 2 ; and then carry out secondary anodic oxidation in the above phosphoric acid electrolyte by the depressurization method to obtain a tertiary pressure micropore structure with 2-3 branches, and the diameter of the tertiary micropores is 100-200 nanometers , with a height of 0.5-2 microns and a density of 0.8-3.9×10 9 /cm 2 , and finally perform anodic oxidation three times in an organic acid electrolyte with a pH value of 0.8-1.2, such as oxalic acid electrolyte, etc. to obtain a quaternary alumina template with a 4-5 branch structure, a pore diameter of 50-100 nanometers, a depth of 100-500 nanometers, and a density of 0.32-1.95×10 10 /cm 2 .
在上述制备方法中,所述通过调节阳极氧化过程中的电压、氧化时间和使用不同的电解液来控制所需孔径及深度,是现有电化学阳极氧化技术中的常规技术,电压高、氧化时间长则得到的孔径大、深度长,反之则孔径小、深度短。例如,本发明中,在进行一次氧化时,使用PH值为2-3.5的无机酸电解液,其浓度为0.1%-2%,氧化电压为180-190V,氧化时间5-20小时,得到的孔洞直径200-400纳米,深度1-5微米;在进行二次氧化时,电解液不变,氧化电压逐渐降到105-135V,氧化时间减少到5-10小时,得到的孔洞直径为100-200纳米,深度0.5-2微米;进行三次阳极氧化,使用PH值为0.8-1.2的有机酸电解液,其浓度为0.1%-0.5%,氧化电压为40-50V,氧化时间10-30分钟,得到的孔洞直径50-100纳米,深度为100-500纳米。In the above preparation method, controlling the required pore size and depth by adjusting the voltage, oxidation time and using different electrolytes in the anodic oxidation process is a conventional technology in the existing electrochemical anodic oxidation technology, high voltage, oxidation If the time is long, the aperture will be large and the depth will be long, otherwise the aperture will be small and the depth will be short. For example, in the present invention, when carrying out primary oxidation, use inorganic acid electrolyte with pH value of 2-3.5, its concentration is 0.1%-2%, oxidation voltage is 180-190V, oxidation time is 5-20 hours, the obtained The hole diameter is 200-400 nanometers, and the depth is 1-5 microns; during the secondary oxidation, the electrolyte remains unchanged, the oxidation voltage is gradually reduced to 105-135V, and the oxidation time is reduced to 5-10 hours, and the obtained hole diameter is 100- 200 nanometers, 0.5-2 microns in depth; three times of anodizing, using an organic acid electrolyte with a pH value of 0.8-1.2, with a concentration of 0.1%-0.5%, an oxidation voltage of 40-50V, and an oxidation time of 10-30 minutes. The obtained pores have a diameter of 50-100 nanometers and a depth of 100-500 nanometers.
在上述制备方法中,所述氩离子束刻蚀得到的微米孔洞阵列,其分布方式为四角排列或六角密堆式排列,孔直径为3-10微米,深度为5-100微米,密度为0.25-3.21×106/cm2;所述“采用聚合物复型法在该模板中塑膜、固化,最后去除模板成型,得到所需结构阵列”是常规技术,即先对已具有微纳米分支孔洞结构阵列的氧化铝模板进行完全贯通处理,然后将液态化高分子多聚物,如聚氨酯(TPU)、聚甲基丙烯酸甲酯(PMMA)、聚二甲基硅氧烷(PDMS)等多聚物,在真空条件下覆于模板上,待其固化定型后,以饱和SnCl4溶液置换反应去除氧化铝模板背面的铝层,最后在0.2M的氢氧化钠溶液中浸泡去除模板,即得到由高分子多聚物材料构成的跨尺度仿生微纳米分支结构阵列。In the above preparation method, the array of micron holes obtained by the argon ion beam etching is distributed in a four-corner arrangement or a hexagonal close-packed arrangement, with a hole diameter of 3-10 microns, a depth of 5-100 microns, and a density of 0.25 -3.21×10 6 /cm 2 ; the said “Using the polymer replica method to form a film in the template, solidify, and finally remove the template for molding to obtain the required structure array” is a conventional technology, that is, to first create a micro-nano branch The aluminum oxide template of the hole structure array is completely penetrated, and then the liquid polymer, such as polyurethane (TPU), polymethyl methacrylate (PMMA), polydimethylsiloxane (PDMS) and so on The polymer is covered on the template under vacuum conditions. After it is solidified and shaped, the aluminum layer on the back of the alumina template is removed by a saturated SnCl 4 solution replacement reaction, and finally the template is removed by soaking in 0.2M sodium hydroxide solution to obtain A cross-scale biomimetic micro-nano branch structure array composed of polymer materials.
有关氧化过程的具体操作步骤是:The specific operation steps related to the oxidation process are:
(1)首先对具有一级微米孔洞阵列的铝模板进行一次阳极氧化5-20小时,氧化电压为180-190V,得到具有二级多分支结构氧化铝模板,即具有直径200-400纳米孔洞的氧化铝层,深度为1-5微米,孔密度为0.4-1.3×109/cm2,孔分布方式为六角密堆排列。氧化过程中,所用电解液是PH值为2-3.5的无机酸电解液,其浓度为0.1%-2%;(1) First anodize the aluminum template with a first-level micron hole array for 5-20 hours, and the oxidation voltage is 180-190V to obtain an aluminum oxide template with a second-level multi-branched structure, that is, an aluminum oxide template with a diameter of 200-400 nanometers The aluminum oxide layer has a depth of 1-5 microns, a pore density of 0.4-1.3×10 9 /cm 2 , and a hexagonal close-packed arrangement of pores. In the oxidation process, the electrolyte used is an inorganic acid electrolyte with a pH value of 2-3.5, and its concentration is 0.1%-2%;
(2)然后逐渐降低电压到105-135V,对二级氧化铝模板进行二次阳极氧化5-10小时,获得具有2-3分支结构的三级氧化铝模板,孔径100-200纳米,深度为0.5-2微米,所用电解液为PH值为2-3.5的无机酸电解液,其浓度为0.1%-2%;(2) Then gradually reduce the voltage to 105-135V, and carry out secondary anodic oxidation on the secondary alumina template for 5-10 hours to obtain a tertiary alumina template with a 2-3 branch structure, with a pore size of 100-200 nanometers and a depth of 0.5-2 microns, the electrolyte used is an inorganic acid electrolyte with a pH value of 2-3.5, and its concentration is 0.1%-2%;
(3)再逐渐降低电压到40-50V,对三级氧化铝模板进行三次阳极氧化10-30分钟,获得具有4-5分支结构的四级氧化铝模板,孔径50-100纳米,深度为0.2-1微米,所用电解液是PH值为0.8-1.2的有机酸,浓度为0.1-0.5M。(3) Gradually reduce the voltage to 40-50V, anodize the tertiary alumina template three times for 10-30 minutes, and obtain a quaternary alumina template with a 4-5 branch structure, with a pore size of 50-100 nanometers and a depth of 0.2 -1 micron, the electrolyte used is an organic acid with a pH value of 0.8-1.2 and a concentration of 0.1-0.5M.
本发明使用已有技术中的电化学阳极氧化法,以具有微米孔洞结构阵列的铝模板作为阳极电极,铅板作为阴极电极,将阴阳两电极平行放置或成0-30°倾斜放置,巧妙利用了电场特性,从而得到在微米结构阵列上定点定向组装纳米阵列的有序结构,实现了从微米结构到纳米结构的跨尺度结合。阴阳两电极平行放置时,在电场作用下,只在与电场方向垂直的孔洞底端面进行阳极氧化并形成新的孔洞结构,而且,形成的新孔洞的轴线与原孔洞轴线平行,原孔侧壁与电场方向平行,不能进行阳极氧化,也就不会产生新孔洞;或者当阴阳两电极呈0-30°夹角放置,即孔洞阵列的孔洞轴线方向与阴极电极具有0-30°夹角的倾斜时,使倾斜后的孔轴线方向与电场方向平行,在电场作用下,也只在倾斜的孔洞底端面发生阳极氧化并形成新的孔洞结构,新的孔洞轴线与原孔轴线具有0-30°夹角的倾斜;同样,原孔侧壁因与电场方向平行,阳极氧化不能进行。The present invention uses the electrochemical anodizing method in the prior art, uses an aluminum template with a micron hole structure array as the anode electrode, and a lead plate as the cathode electrode, and places the negative and positive electrodes in parallel or at an angle of 0-30°, cleverly utilizing The characteristics of the electric field are obtained, so that the ordered structure of the fixed-point oriented assembly of the nano-array on the micro-structure array is obtained, and the cross-scale combination from the micro-structure to the nano-structure is realized. When the two electrodes of yin and yang are placed in parallel, under the action of the electric field, only the bottom end surface of the hole perpendicular to the direction of the electric field is anodized and a new hole structure is formed, and the axis of the new hole formed is parallel to the axis of the original hole, and the side wall of the original hole Parallel to the direction of the electric field, anodic oxidation cannot be performed, and no new holes will be generated; or when the positive and negative electrodes are placed at an angle of 0-30°, that is, the axis direction of the hole array and the cathode electrode have an angle of 0-30° When tilting, make the tilted hole axis direction parallel to the direction of the electric field. Under the action of the electric field, anodic oxidation will only occur on the bottom surface of the tilted hole and form a new hole structure. The new hole axis and the original hole axis have a distance of 0-30 °Inclination angle; similarly, the side wall of the original hole is parallel to the direction of the electric field, so anodic oxidation cannot be carried out.
本发明有效地结合了光刻、离子束刻蚀及电化学阳极氧化法,制备出具有多级多分支结构跨尺度微纳米孔洞阵列的氧化铝模板,并且通过液态化后的高分子多聚物材料复型得到了具有分支结构的微纳米阵列,成为更有效的干性粘附材料。本发明在微米结构上定点定向的组装了纳米有序结构,有效解决了从微米尺度到纳米尺度的跨尺度分支结构阵列可控。本发明对于仿生微纳米阵列干性粘附材料的发展及相关的仿生机器人的发展都有着非常重要的意义。The invention effectively combines photolithography, ion beam etching and electrochemical anodic oxidation to prepare an alumina template with a multi-level and multi-branched cross-scale micro-nano hole array, and through the liquefied polymer The material replica obtained a micro-nano array with a branched structure, which became a more effective dry adhesive material. The invention assembles the nanometer ordered structure on the micrometer structure in a fixed-point and oriented manner, and effectively solves the problem of the controllability of the cross-scale branch structure array from the micrometer scale to the nanometer scale. The invention has very important significance for the development of bionic micro-nano array dry adhesive materials and the development of related bionic robots.
附图说明Description of drawings
图1是本发明实施例1制备的所述跨尺度仿生微纳米分支结构粘附阵列的示意图。Figure 1 is a schematic diagram of the cross-scale biomimetic micro-nano branch structure adhesion array prepared in Example 1 of the present invention.
图2是制备实施例1所述具有微纳米分支结构孔洞的氧化铝模板示意图。Fig. 2 is a schematic diagram of preparing the alumina template with micro-nano branch structure holes described in Example 1.
图3是实施例2得到的所述跨尺度仿生微纳米分支结构粘附阵列扫描电镜照片。FIG. 3 is a scanning electron micrograph of the cross-scale biomimetic micro-nano branch structure adhesion array obtained in Example 2.
具体实施方式Detailed ways
下面结合附图及实施例对本发明做进一步描述:The present invention will be further described below in conjunction with accompanying drawing and embodiment:
实施例1:Example 1:
(1)将高纯度铝片依次在丙酮和乙醇中超声清洗,除去铝片表面的油污。(1) The high-purity aluminum sheet is ultrasonically cleaned in acetone and ethanol in sequence to remove oil stains on the surface of the aluminum sheet.
(2)将去污后的高纯度铝片烘干后,在N2或惰性气氛中置于管式炉中,于500℃退火处理4小时。(2) After drying the decontaminated high-purity aluminum sheet, place it in a tube furnace in N 2 or an inert atmosphere, and anneal at 500°C for 4 hours.
(3)将退火后的铝片在无水乙醇和高氯酸的混合溶液(乙醇∶高氯酸=9∶1体积比)中进行电化学抛光,以石墨作为阴极,电压为20V,消除铝片表面的划痕和氧化层。(3) The aluminum sheet after annealing is carried out electrochemical polishing in the mixed solution (ethanol:perchloric acid=9:1 volume ratio) of absolute ethanol and perchloric acid, with graphite as negative electrode, voltage is 20V, eliminates aluminum Scratches and oxide layers on the chip surface.
(4)通过紫外光刻在铝片表面获得光刻胶掩膜图案。(4) Obtain a photoresist mask pattern on the surface of the aluminum sheet by ultraviolet lithography.
(5)对带有光刻胶掩膜的铝片进行氩离子束刻蚀,离子能量为500eV,离子束垂直入射,束流密度0.5mA/cm2,工作压强2×10-2Pa,得到具有微米孔洞阵列的铝模板,其微米孔直径3微米,深度5微米,孔间距3微米的,孔分布形式为六角排列。(5) Perform argon ion beam etching on the aluminum sheet with a photoresist mask, the ion energy is 500eV, the ion beam is vertically incident, the beam current density is 0.5mA/cm 2 , and the working pressure is 2×10 -2 Pa, to obtain An aluminum template with a micron hole array has a diameter of 3 microns, a depth of 5 microns, and a hole spacing of 3 microns, and the hole distribution is in a hexagonal arrangement.
(6)去除铝模板表面的光刻胶并对再次对表面进行清洗及电化学抛光处理。(6) The photoresist on the surface of the aluminum template is removed, and the surface is cleaned and electrochemically polished again.
(7)在磷酸电解液中对铝模板进行一次氧化,直流电压为190V,氧化时间12小时,得到具有直径400纳米,深2微米孔洞的二级多分支结构阵列的氧化铝模板。电解液是PH值为3的磷酸溶液,其浓度为0.2%,(7) The aluminum template is oxidized once in a phosphoric acid electrolyte with a DC voltage of 190V and an oxidation time of 12 hours to obtain an alumina template with a secondary multi-branched array of holes with a diameter of 400 nm and a depth of 2 microns. The electrolyte is a phosphoric acid solution with a pH value of 3, and its concentration is 0.2%.
(8)二次氧化结束后开始降压,电压降到110V,电解液不变,继续氧化8小时,获得具有直径150纳米,深1微米孔洞的三级分支结构阵列的氧化铝模板。(8) After the secondary oxidation, the voltage drops to 110V, the electrolyte remains unchanged, and the oxidation is continued for 8 hours to obtain an alumina template with a tertiary branched array of holes with a diameter of 150 nm and a depth of 1 micron.
(9)三次氧化结束后继续降压,电压降到40V后,电解液换成PH值为1的草酸电解液,浓度为0.3M,继续氧化30分钟,获得具有直径60纳米,深500纳米孔洞的四级分支结构阵列的氧化铝模板。其示意如图2所示。从图可以看出,四级不同的微纳米孔洞轴线均平行。(9) After the third oxidation, continue to reduce the voltage. After the voltage drops to 40V, the electrolyte is replaced with an oxalic acid electrolyte with a pH value of 1, the concentration is 0.3M, and the oxidation is continued for 30 minutes to obtain a hole with a diameter of 60 nanometers and a depth of 500 nanometers. Alumina templates for arrays of quaternary branch structures. Its schematic diagram is shown in Figure 2. It can be seen from the figure that the axes of the four different micro-nano holes are all parallel.
(10)利用饱和SnCl4溶液置换反应除去氧化铝模板背面的铝,并将该模板漂浮在6w%的磷酸溶液中,在30℃下腐蚀到氧化铝模板膜表面有溶液渗透出,即得到完全贯通的双通氧化铝模板。(10) Utilize the saturated SnCl4 solution displacement reaction to remove the aluminum on the back of the alumina template, and float the template in a 6w% phosphoric acid solution, and corrode it at 30°C until the solution permeates out of the surface of the alumina template membrane, that is, a complete Through double-pass aluminum oxide formwork.
(11)将热塑性聚氨酯(TPU)覆于模板上,待其定型后去除模板,得到聚氨酯仿生微纳米分支结构粘附阵列,如图1所示。图1中,一级微米圆柱体阵列2垂直连接在基板1上,二级亚微米圆柱体阵列3垂直连接在一级微米圆柱体阵列的顶端面上,三级亚微米圆柱体阵列4垂直连接在二级微圆柱体阵列的顶端面上,四级纳米圆柱体阵列5垂直连接在三级亚微米圆柱体阵列的顶端面上。(11) Cover thermoplastic polyurethane (TPU) on the template, remove the template after it is shaped, and obtain the adhesive array of polyurethane bionic micro-nano branch structure, as shown in Figure 1. In Fig. 1, the first-level
实施例2:Example 2:
(1)将高纯度铝片依次在丙酮和乙醇中超声清洗,除去铝片表面的油污。(1) The high-purity aluminum sheet is ultrasonically cleaned in acetone and ethanol in sequence to remove oil stains on the surface of the aluminum sheet.
(2)将去脂后高纯度铝片烘干后,在N2或惰性气氛中置于管式炉中,于500℃退火处理4小时。(2) Dry the degreased high-purity aluminum sheet, place it in a tube furnace in N 2 or an inert atmosphere, and anneal at 500°C for 4 hours.
(3)将退火后的铝片在无水乙醇和高氯酸的混合溶液(乙醇∶高氯酸=9∶1体积比)中进行电化学抛光,以石墨作为阴极,电压为20V,消除铝片表面的划痕和氧化层。(3) The aluminum sheet after annealing is carried out electrochemical polishing in the mixed solution (ethanol:perchloric acid=9:1 volume ratio) of absolute ethanol and perchloric acid, with graphite as negative electrode, voltage is 20V, eliminates aluminum Scratches and oxide layers on the chip surface.
(4)通过紫外光刻在铝片表面获得光刻胶掩膜图案。(4) Obtain a photoresist mask pattern on the surface of the aluminum sheet by ultraviolet lithography.
(5)对带有光刻胶掩膜的铝片进行氩离子束刻蚀,离子能量为600V,离子束入射角度30°,束流密度0.6mA/cm2,工作压强2×10-2Pa,得到直径5微米,深度10微米倾斜的微米孔洞阵列。(5) Carry out argon ion beam etching on the aluminum sheet with a photoresist mask, the ion energy is 600V, the ion beam incident angle is 30°, the beam current density is 0.6mA/cm 2 , and the working pressure is 2×10 -2 Pa , to obtain a micro-hole array with a diameter of 5 microns and a depth of 10 microns.
(6)去除铝片表面的光刻胶并对再次铝片表面进行清洗及电化学抛光处理。(6) Removing the photoresist on the surface of the aluminum sheet and performing cleaning and electrochemical polishing on the surface of the aluminum sheet again.
(7)对氧化铝模板进行一次氧化,电解液是PH值为2.5的磷酸溶液,磷酸浓度1.2%,直流电压为190V,氧化时间18小时,得到具有直径400纳米,深4微米孔洞的氧化铝层。(7) The alumina template is oxidized once. The electrolyte is a phosphoric acid solution with a pH value of 2.5, a phosphoric acid concentration of 1.2%, a DC voltage of 190V, and an oxidation time of 18 hours to obtain alumina with a diameter of 400 nanometers and a depth of 4 microns. layer.
(8)二次氧化结束后开始降压,电压降到135V,电解液不变,继续氧化10小时,获得直径200纳米,深2微米具有二分支结构孔洞的氧化铝层。(8) After the secondary oxidation, the voltage drops to 135V, the electrolyte remains unchanged, and the oxidation is continued for 10 hours to obtain an aluminum oxide layer with a diameter of 200 nanometers and a depth of 2 microns with bifurcated holes.
(9)利用饱和SnCl4溶液置换反应将氧化铝模板背面的铝层除去,并将氧化铝模板漂浮在6w%的磷酸溶液,在30℃下腐蚀到氧化铝模板膜表面有溶液渗透出,即得到完全贯通的双通氧化铝模板。(9) The aluminum layer on the back of the alumina template is removed by a saturated SnCl4 solution displacement reaction, and the alumina template is floated in a 6w% phosphoric acid solution, which is corroded at 30°C until the surface of the alumina template film has a solution seeping out, that is A fully through double-pass alumina template is obtained.
(10)将热塑性聚甲基丙烯酸甲酯(PPMA)覆于模板上,待其定型后去除模板,得到三级仿生微纳米分支结构粘附阵列。(10) Cover thermoplastic polymethyl methacrylate (PPMA) on the template, remove the template after it is shaped, and obtain a three-level biomimetic micro-nano branch structure adhesion array.
图3所示的是用电镜对实施例2得到的所述跨尺度仿生微纳米分支结构粘附阵列扫描得到的照片。由该照片可以看出,其结构和以上所述一致,即三级仿生微纳米分支结构粘附阵列,其中,一级微米圆柱体结构阵列为四角排列;二级亚微米圆柱体在一级微米圆柱体的顶端面上,成六角密堆排列;三级纳米圆柱体在二级微米圆柱体的顶端面上,所有微纳圆柱体轴线均相互平行。FIG. 3 is a photo obtained by scanning the adhesion array of the cross-scale biomimetic micro-nano branch structure obtained in Example 2 with an electron microscope. It can be seen from the photo that its structure is consistent with the above, that is, the three-level bionic micro-nano branch structure adhesion array, in which the first-level micron cylinder structure array is arranged in four corners; the second-level sub-micron cylinders are in the first-level micron The top surface of the cylinders is arranged in a hexagonal close-packed arrangement; the third-level nano cylinders are on the top surface of the second-level micron cylinders, and the axes of all the micro-nano cylinders are parallel to each other.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010046502XA CN101774528B (en) | 2010-01-04 | 2010-01-04 | Cross-scale biomimetic micro-nano branch structure array and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201010046502XA CN101774528B (en) | 2010-01-04 | 2010-01-04 | Cross-scale biomimetic micro-nano branch structure array and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101774528A true CN101774528A (en) | 2010-07-14 |
CN101774528B CN101774528B (en) | 2011-12-21 |
Family
ID=42511154
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201010046502XA Expired - Fee Related CN101774528B (en) | 2010-01-04 | 2010-01-04 | Cross-scale biomimetic micro-nano branch structure array and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN101774528B (en) |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102153867A (en) * | 2010-10-28 | 2011-08-17 | 南京航空航天大学 | Highly-geometric biomimetic seta array and preparation method and application thereof |
CN102653289A (en) * | 2011-03-01 | 2012-09-05 | 中国科学院合肥物质科学研究院 | Wall climbing robot with biomimetic vibration absorbing and biomimetic adhesion structure |
CN102692480A (en) * | 2012-06-08 | 2012-09-26 | 北京英博苑科技有限公司 | Bionic mixing-extruding experimental machine |
CN103318837A (en) * | 2013-05-08 | 2013-09-25 | 安徽工业大学 | Flexible noise reduction bionic mebrane with blocking property and preparation method thereof |
CN103325718A (en) * | 2013-06-27 | 2013-09-25 | 合肥京东方光电科技有限公司 | Absorption panel, manufacturing method thereof and opposite combination device |
CN103330562A (en) * | 2013-07-11 | 2013-10-02 | 无锡交大联云科技有限公司 | Bionic flexible dry electrode and manufacturing method thereof |
CN103451703A (en) * | 2013-08-30 | 2013-12-18 | 河北民族师范学院 | Alumina film with iridescent structural color and preparation method thereof |
CN103482602A (en) * | 2013-09-09 | 2014-01-01 | 中国科学院合肥物质科学研究院 | Carbon nanotube-based biomimetic material with micro-nano branch structure and preparation method for same |
CN104555900A (en) * | 2014-12-30 | 2015-04-29 | 西安建筑科技大学 | Micro-nano composite structure template and production method thereof |
US9132605B2 (en) | 2011-05-13 | 2015-09-15 | Mylan Group | Dry adhesives comprised of micropores and nanopores |
CN106276775A (en) * | 2015-05-12 | 2017-01-04 | 国家纳米科学中心 | A kind of micro-nano array structure, preparation method and application |
CN107010590A (en) * | 2017-03-31 | 2017-08-04 | 西安交通大学 | A kind of being done across yardstick for millimicro three-level adheres to composite construction and its preparation technology |
CN108275650A (en) * | 2017-12-07 | 2018-07-13 | 天津大学 | A kind of magnetic field control method of magnetism micro-nano robot |
CN108417524A (en) * | 2018-05-18 | 2018-08-17 | 苏州世华新材料科技有限公司 | A kind of glue-free self-exhaust protective film and preparation method thereof |
CN109545730A (en) * | 2017-09-21 | 2019-03-29 | 三星电子株式会社 | Supporting substrate, electronic device manufacturing method, semiconductor package part and manufacturing method |
CN110076938A (en) * | 2019-04-26 | 2019-08-02 | 清华大学 | Flexible formation body and its preparation method and application |
CN110323285A (en) * | 2019-04-30 | 2019-10-11 | 山东大学 | A kind of multi-function membrane and the preparation method and application thereof based on micro-nano compound structure and coating |
CN110318080A (en) * | 2019-08-02 | 2019-10-11 | 吉林大学 | Form-material cooperates with bionical Anti-erosion function surface structure and preparation method thereof |
CN110478607A (en) * | 2019-08-24 | 2019-11-22 | 哈尔滨工业大学 | A kind of preparation method of the magnetic polymer polypody micron climbing robot of new shape |
CN111319177A (en) * | 2020-03-01 | 2020-06-23 | 西南交通大学 | Biomimetic adhesive material of mushroom-shaped end and preparation method thereof |
CN113967325A (en) * | 2021-10-29 | 2022-01-25 | 固安翌光科技有限公司 | Physiotherapy equipment and preparation method thereof |
CN114477078A (en) * | 2022-04-08 | 2022-05-13 | 中国科学技术大学 | Processing method and application of integrated cross-scale micro-nano column array |
-
2010
- 2010-01-04 CN CN201010046502XA patent/CN101774528B/en not_active Expired - Fee Related
Cited By (35)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102153867B (en) * | 2010-10-28 | 2013-01-30 | 南京航空航天大学 | High geometry bionic bristle array and its preparation method and application |
CN102153867A (en) * | 2010-10-28 | 2011-08-17 | 南京航空航天大学 | Highly-geometric biomimetic seta array and preparation method and application thereof |
CN102653289A (en) * | 2011-03-01 | 2012-09-05 | 中国科学院合肥物质科学研究院 | Wall climbing robot with biomimetic vibration absorbing and biomimetic adhesion structure |
TWI609941B (en) * | 2011-05-13 | 2018-01-01 | 米蘭集團公司 | Dry adhesives |
US9434129B2 (en) | 2011-05-13 | 2016-09-06 | Mylan Group | Dry adhesives |
US9132605B2 (en) | 2011-05-13 | 2015-09-15 | Mylan Group | Dry adhesives comprised of micropores and nanopores |
CN102692480A (en) * | 2012-06-08 | 2012-09-26 | 北京英博苑科技有限公司 | Bionic mixing-extruding experimental machine |
CN102692480B (en) * | 2012-06-08 | 2014-10-15 | 北京英博苑科技有限公司 | Bionic mixing-extruding experimental machine |
CN103318837A (en) * | 2013-05-08 | 2013-09-25 | 安徽工业大学 | Flexible noise reduction bionic mebrane with blocking property and preparation method thereof |
CN103318837B (en) * | 2013-05-08 | 2015-07-08 | 安徽工业大学 | A flexible noise-reducing bionic membrane with adhesion properties and its preparation method |
CN103325718A (en) * | 2013-06-27 | 2013-09-25 | 合肥京东方光电科技有限公司 | Absorption panel, manufacturing method thereof and opposite combination device |
WO2014206020A1 (en) * | 2013-06-27 | 2014-12-31 | 合肥京东方光电科技有限公司 | Adsorption panel and manufacturing process therefor, and box butt-jointing apparatus |
CN103325718B (en) * | 2013-06-27 | 2016-01-06 | 合肥京东方光电科技有限公司 | One adsorbs panel and preparation method thereof, to locking device |
CN103330562A (en) * | 2013-07-11 | 2013-10-02 | 无锡交大联云科技有限公司 | Bionic flexible dry electrode and manufacturing method thereof |
CN103330562B (en) * | 2013-07-11 | 2015-01-28 | 无锡交大联云科技有限公司 | Bionic flexible dry electrode and manufacturing method thereof |
CN103451703A (en) * | 2013-08-30 | 2013-12-18 | 河北民族师范学院 | Alumina film with iridescent structural color and preparation method thereof |
CN103482602A (en) * | 2013-09-09 | 2014-01-01 | 中国科学院合肥物质科学研究院 | Carbon nanotube-based biomimetic material with micro-nano branch structure and preparation method for same |
CN104555900A (en) * | 2014-12-30 | 2015-04-29 | 西安建筑科技大学 | Micro-nano composite structure template and production method thereof |
CN106276775A (en) * | 2015-05-12 | 2017-01-04 | 国家纳米科学中心 | A kind of micro-nano array structure, preparation method and application |
CN106276775B (en) * | 2015-05-12 | 2019-01-08 | 国家纳米科学中心 | A kind of micro-nano array structure, preparation method and application |
CN107010590A (en) * | 2017-03-31 | 2017-08-04 | 西安交通大学 | A kind of being done across yardstick for millimicro three-level adheres to composite construction and its preparation technology |
CN107010590B (en) * | 2017-03-31 | 2019-07-30 | 西安交通大学 | A kind of across the scale dry adhesion composite construction and its preparation process of millimicro three-level |
CN109545730A (en) * | 2017-09-21 | 2019-03-29 | 三星电子株式会社 | Supporting substrate, electronic device manufacturing method, semiconductor package part and manufacturing method |
CN108275650A (en) * | 2017-12-07 | 2018-07-13 | 天津大学 | A kind of magnetic field control method of magnetism micro-nano robot |
CN108417524A (en) * | 2018-05-18 | 2018-08-17 | 苏州世华新材料科技有限公司 | A kind of glue-free self-exhaust protective film and preparation method thereof |
CN110076938A (en) * | 2019-04-26 | 2019-08-02 | 清华大学 | Flexible formation body and its preparation method and application |
CN110323285A (en) * | 2019-04-30 | 2019-10-11 | 山东大学 | A kind of multi-function membrane and the preparation method and application thereof based on micro-nano compound structure and coating |
CN110318080A (en) * | 2019-08-02 | 2019-10-11 | 吉林大学 | Form-material cooperates with bionical Anti-erosion function surface structure and preparation method thereof |
CN110478607A (en) * | 2019-08-24 | 2019-11-22 | 哈尔滨工业大学 | A kind of preparation method of the magnetic polymer polypody micron climbing robot of new shape |
CN110478607B (en) * | 2019-08-24 | 2021-11-09 | 哈尔滨工业大学 | Preparation method of multi-foot micron crawling robot for magnetic polymer with novel shape |
CN111319177A (en) * | 2020-03-01 | 2020-06-23 | 西南交通大学 | Biomimetic adhesive material of mushroom-shaped end and preparation method thereof |
CN111319177B (en) * | 2020-03-01 | 2021-05-18 | 西南交通大学 | Biomimetic adhesive material of mushroom-shaped end and preparation method thereof |
CN113967325A (en) * | 2021-10-29 | 2022-01-25 | 固安翌光科技有限公司 | Physiotherapy equipment and preparation method thereof |
CN114477078A (en) * | 2022-04-08 | 2022-05-13 | 中国科学技术大学 | Processing method and application of integrated cross-scale micro-nano column array |
CN114477078B (en) * | 2022-04-08 | 2022-07-15 | 中国科学技术大学 | Processing method and application of integrated cross-scale micro-nano column array |
Also Published As
Publication number | Publication date |
---|---|
CN101774528B (en) | 2011-12-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101774528A (en) | Cross-scale biomimetic micro-nano branch structure array and preparation method thereof | |
CN101962792B (en) | Method for preparing pore diameter controllable through hole anodized aluminum oxide film | |
JP5361130B2 (en) | Porous polymer membrane and method for producing the same | |
CN104928746B (en) | A kind of method for preparing the three-dimensional interconnection nano-pore anodic oxidation aluminium formwork of micro- curved surface | |
CN102912357B (en) | Method for preparing micro-nanostructure on surface of titanium implant | |
CN102864476A (en) | Preparation method of through-hole anodic aluminum oxide template | |
CN102268713A (en) | Stainless steel surface nano-pore array film and preparation method thereof | |
CN101581879A (en) | Method for preparing soft template for nanoimprint | |
JP2009107878A (en) | Method for producing glass material having concavo-convex pattern on surface | |
CN100432301C (en) | Process for preparing porous anode aluminium oxide mould of height ordered by mixed acid electrolyzing liquid | |
CN111364081B (en) | Preparation method of porous alumina template with gradient change of aperture and thickness | |
CN102277607B (en) | Method for preparing through hole anode alumina film with controllable aperture and thickness | |
CN104947167B (en) | Preparation method of double-sided uniform porous anodized aluminum nano-template | |
KR101049220B1 (en) | Manufacturing method of stamp for imprint lithography | |
WO2021093791A1 (en) | Anodized titanium dioxide nanotube array and preparation method therefor | |
CN104725075A (en) | Bionic micro-nano structure super hydrophilic silicon surface preparation method | |
JP2008229869A (en) | Roll mold for continuous imprint and manufacturing method thereof | |
CN116497420A (en) | A Method for Controlling Pore Morphology of Anodized Aluminum Template Based on Microsphere Array Imprint Master | |
Beri et al. | A review on studies of mechanical properties of anodized alumina oxide | |
CN1460733A (en) | Method for preparing conductive polymer pyrrole nano material by alternating current electrochemistry | |
Huang et al. | Study on cellar behaviors on different nanostructures by nanoporous alumina template | |
CN105496577A (en) | Titanium implant with bone resorption lacunae-like surface appearance and preparation method of titanium implant | |
CN110241450A (en) | A kind of porous anodized aluminum template and its preparation method and application | |
CN108707944A (en) | A kind of preparation method of the porous anodic alumina template of three-dimensional manometer protrusion of the surface with hexagonal close-packing arrangement | |
CN111704799A (en) | Preparation method and application of a PDMS and AAO bilayer embedded template for polymer film patterning |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20111221 Termination date: 20190104 |