CN101772618A - 重油储层经由水平井筒的排放 - Google Patents
重油储层经由水平井筒的排放 Download PDFInfo
- Publication number
- CN101772618A CN101772618A CN200880101472A CN200880101472A CN101772618A CN 101772618 A CN101772618 A CN 101772618A CN 200880101472 A CN200880101472 A CN 200880101472A CN 200880101472 A CN200880101472 A CN 200880101472A CN 101772618 A CN101772618 A CN 101772618A
- Authority
- CN
- China
- Prior art keywords
- stratum
- pit shaft
- inclusion enclave
- fluid
- inclusion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000295 fuel oil Substances 0.000 title abstract description 27
- 238000007599 discharging Methods 0.000 title abstract description 11
- 238000000034 method Methods 0.000 claims abstract description 89
- 239000012530 fluid Substances 0.000 claims abstract description 72
- 239000013049 sediment Substances 0.000 claims abstract description 21
- 239000011148 porous material Substances 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 13
- 238000002513 implantation Methods 0.000 claims description 4
- 238000002347 injection Methods 0.000 claims description 2
- 239000007924 injection Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 description 12
- 239000011435 rock Substances 0.000 description 12
- 230000008569 process Effects 0.000 description 8
- 239000004576 sand Substances 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 7
- 239000002783 friction material Substances 0.000 description 7
- 230000003321 amplification Effects 0.000 description 5
- 238000005243 fluidization Methods 0.000 description 5
- 238000003199 nucleic acid amplification method Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 238000002485 combustion reaction Methods 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 239000002689 soil Substances 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 3
- 239000003129 oil well Substances 0.000 description 3
- 239000003208 petroleum Substances 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- CVOFKRWYWCSDMA-UHFFFAOYSA-N 2-chloro-n-(2,6-diethylphenyl)-n-(methoxymethyl)acetamide;2,6-dinitro-n,n-dipropyl-4-(trifluoromethyl)aniline Chemical compound CCC1=CC=CC(CC)=C1N(COC)C(=O)CCl.CCCN(CCC)C1=C([N+]([O-])=O)C=C(C(F)(F)F)C=C1[N+]([O-])=O CVOFKRWYWCSDMA-UHFFFAOYSA-N 0.000 description 1
- 208000037656 Respiratory Sounds Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- ORILYTVJVMAKLC-UHFFFAOYSA-N adamantane Chemical compound C1C(C2)CC3CC1CC2C3 ORILYTVJVMAKLC-UHFFFAOYSA-N 0.000 description 1
- 229910001573 adamantine Inorganic materials 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000004411 aluminium Substances 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009533 lab test Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000002620 method output Methods 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003027 oil sand Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/30—Specific pattern of wells, e.g. optimising the spacing of wells
- E21B43/305—Specific pattern of wells, e.g. optimising the spacing of wells comprising at least one inclined or horizontal well
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B43/00—Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
- E21B43/16—Enhanced recovery methods for obtaining hydrocarbons
Landscapes
- Geology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- Environmental & Geological Engineering (AREA)
- Fluid Mechanics (AREA)
- Physics & Mathematics (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Underground Structures, Protecting, Testing And Restoring Foundations (AREA)
- Preparation Of Clay, And Manufacture Of Mixtures Containing Clay Or Cement (AREA)
Abstract
经由水平井筒排放重油储层的系统和方法。一种从地层中产出流体的改进方法,包括将大体竖直的包裹体从贯穿地层的大体水平的井筒扩散到地层中的步骤。包裹体扩散到地层的具有小于约750,000psi的体积模量的部分中。油井系统包括从贯穿地层的大体水平的井筒扩散到地层中的大体竖直的包裹体。地层包括弱粘结沉积物。
Description
技术领域
本发明概括地涉及与地下油井相关地利用的设备和执行的操作,在本文所述实施例中,更具体地提供了重油储层经由大体水平的井筒的排放。
背景技术
公知广阔的重油储层是在包括疏松的弱粘结沉积物的地层中发现的。不幸的是,当前使用的从这些地层中提取重油的方法尚未取得令人完全满意的效果。
重油在这些地层中的移动性很差,因此,期望能够在地层中形成渗透性更高的平面。渗透性增大的平面将提高重油在地层中的移动性和/或提高注入蒸汽和溶剂、火烧油层(in situ combustion)等的效率。
然而,在硬脆的岩石中使用的在其中形成裂缝的方法通常不适用于包括疏松的弱粘结沉积物的韧性(ductile)地层。因此,人们将认识到,从疏松的弱粘结地层中排放重油的技术需要改进。
发明内容
在本发明的原理实现中,提供了解决本技术领域中的至少一个问题的油井系统和方法。在下面描述了一个实例,其中包裹体扩散到包括弱粘结沉积物的地层中。在下面描述了另一个实例,其中包裹体促进重油从地层产出到大体水平的井筒中。
一方面,提供了一种从地层中产出流体的改进的方法。该方法包括以下步骤:将大体竖直的包裹体从贯穿(intersecting)地层的大体水平的井筒扩散到地层中。包裹体扩散到地层的具有小于约750,000psi的体积模量的部分中。
另一方面,提供了一种油井系统,其包括从贯穿地层的大体水平的井筒扩散到地层中的大体竖直的包裹体。地层包括弱粘结沉积物。
在仔细思考下文中对本发明的代表性实施例的详细描述和附图之后,这些和其它的特征、优点、益处及目的对于本领域中普通技术人员将是显而易见的,在附图中,使用相同的附图标记表示各图中相似的部件。
附图说明
图1为体现本发明原理的油井系统和相关方法的示意性局部剖视图。
图2为沿图1的线2-2剖开的贯穿油井系统的放大的示意性剖视图;
图3为油井系统的可替换结构的示意性局部剖视图;
图4为沿图3的线4-4剖开的贯穿油井系统的可替换结构的放大的示意性剖视图;
图5A和图5B为油井系统的另一可替换结构的示意性局部剖视图,其中,图5A示出了流体注入,图5B示出了流体产出;以及
图6A和图6B为油井系统的分别沿图5A中的线6A-6A和图5B中的线6B-6B剖开的放大的示意性剖视图。
具体实施方式
应理解,在不偏离本发明的原理的情况下,可以以各种取向(例如,倾斜、倒置、水平、竖直等)和各种结构来运用在此描述的本发明的各个实施例。这些实施例仅作为有效应用本发明的原理的实例来描述,本发明不限于这些实施例的任何特定细节。
在图1中示意性示出了体现本发明原理的油井系统10和相关的方法。系统10对于从地层14产出重油12特别有用。地层14可包含疏松的和/或弱粘结的沉积物,对此传统的破裂操作(fracturing operation)不太适合。[01]本文中使用的术语“重油”表示具有较高粘度和高密度的烃,例如沥青。重油在其天然状态(例如未经加热或稀释)下通常是不能经由油井获得的,而可通过使用注入蒸汽和溶剂、火烧油层等方法,经由油井开采或获得。无气体的重油通常具有大于100厘泊的粘度和小于20度API比重(大于约900千克/立方米)的密度。
如图1所示,两个大体水平的井筒16、18已经钻入到地层14内。两个套管柱20、22已安置和粘结于对应的井筒16、18中。
本文中使用的术语“套管”表示井筒的保护衬套。可使用任何类型的保护衬套,包括本技术领域的技术人员公知的保护衬套,例如,衬垫、套管、管道等。套管可为连续的或分段的、连结的或非连结的,可由任何材料(如钢、铝、聚合物、合成材料等)制成,并且可经过扩张处理或不经扩张处理,等等。
请注意,套管柱20、22的任一个或两个不必粘结在井筒16、18中。例如,井筒16、18的其中之一或二者在井筒的与地层14相交的部分可不粘结或为“裸眼(open hole)”。
优选地,至少套管柱20粘结在上井筒16中,且其中具有相连的扩张装置(expansion device)24。扩张装置24动作使套管柱20沿径向向外扩张,并由此使该装置附近的地层14膨胀(dilate),以便开始形成从井筒16向外扩展的大体竖直和平坦的包裹体(inclusion)26、28。
在第6991037、6792720、6216783、6330914、6443227号美国专利及其同族专利以及第11/610819号美国专利申请中描述了适合在油井系统10中使用的扩张装置。这些在先专利和专利申请的全文在此并入供参考。依据本发明的原理,可在油井系统10中使用其它的扩张装置。
一旦装置24动作使套管柱20沿径向向外扩张,流体即被迫进入膨胀的地层14中,从而将包裹体26、28扩散到地层中。包裹体26、28不必同时形成,或者说,所有的向上或向下扩展的包裹体不必一起形成。
地层14可由相对硬而脆的岩石组成,但上述的系统10和方法在由疏松的或弱粘结的沉积物形成的韧性地层中发现了特别有利的应用,在这种地层中,通常很难随着包裹体的形成对包裹体进行方向或形状上的控制。
弱粘结的沉积物是主要的摩擦物质,因为它们的粘合强度最小。不具有固有粘合强度的未粘结的沙子(即没有粘结物将沙粒保持在一起)不能在它的结构内形成稳定的破裂并且不能承受脆性破裂。这种材料被归类为在剪应力破裂的摩擦物质,而脆质的粘合物质(例如坚固的岩石)在正常的应力下破裂。
在本技术领域中用术语“内聚力(cohesion)”来表示在有效平均应力为零的情况下材料的强度。在沉积物仅部分饱和的情况下,因细小颗粒状沉积物中的毛细管吸引所产生的抽吸压力或负的孔隙压力(pore pressure),弱粘结物质可能表现出某种表观内聚力(apparent cohesion)。上述抽吸压力在低有效应力下将颗粒保持在一起,并由此通常称作表观内聚力。
抽吸压力并没有将沉积物的颗粒真正地粘结在一起,这是因为沉积物的完全饱和会使抽吸压力消失。表观内聚力通常是强度的如此之小的一个组成部分:对于坚固的岩石不能有效地测量到表观内聚力,而表观内聚力仅在测试极弱粘结的沉积物时变得明显。
地质意义坚固的物质(例如,相对坚固的岩石)在正常的石油储层深度表现得像脆性物质,但在很深的深度(即在非常高的束缚应力下)或者非常高的温度下,这些岩石可表现得像韧性摩擦物质那样。疏松的沙子和弱粘结的地层则从很浅的深度到很深的深度表现得像韧性摩擦物质,并且这些物质的表现本质上不同于展现出脆性破裂性质的岩石。韧性摩擦物质在剪应力下破裂,并因摩擦性的滑动、旋转以及移动而消耗能量。
在石油储层上,作为控制沙子的手段,大范围地进行弱粘结沉积物的传统的液压膨胀。该过程通常称作“压裂充填”。在典型的操作中,在想要进行破裂的地层间隔处对套管进行穿孔,并对地层注入不含支撑剂的低凝胶填充物的处理流体,以便形成破裂的期望的两翼结构。随后,充分地增加在处理流体中装入的支撑剂,以形成破裂的顶端裂纹(tip screen-out)。以这种方式,破裂的顶端不再扩展,并且破裂和穿孔重新填有支撑剂。
该过程假定像传统的脆性液压破裂中那样形成两翼结构。然而,该过程
在实验室或浅地域试验中尚未被不重复过。在实验室实验和浅地域试验中,所观测到的是被注入流体的混乱的几何分布,在很多情况下,油井周围的处理流体的空腔扩张增长明显,并且主体地层(host formation)变形或收缩。
因沉积物的颗粒之间占主导地位的摩擦特点和低内聚力,在生产中弱粘结沉积物表现得像韧性摩擦物质。这样的物质不“破裂”,因此,与对硬脆岩石进行的传统的液压破裂相比,在这些物质中不存在固有的破裂过程。
线性弹性破裂方法通常不适用于弱粘结沉积物的情况。在弱粘结沉积物中使粘性的平坦的包裹体扩散的知识库主要来自过去十年的近期经验,而关于粘性流体在这些沉积物中扩散的过程则大部分仍是未知的。
然而,本发明提供的信息使得液压破裂、岩土力学技术领域的技术人员能够实施方法和系统10,以启动和控制粘性流体在弱粘结沉积物中的扩散。粘性流体在这些沉积物中的扩散过程包括:在扩散的粘性流体40的顶端30的附近除去地层,引起地层14膨胀,由此产生朝向该膨胀区域的孔隙压力梯度。随着地层14在行进的粘性流体40的顶端30处膨胀,孔隙压力在上述顶端处急剧减小,致使围绕顶端的孔隙压力梯度增大。
在包裹体26、28的顶端30处的孔隙压力梯度致使迅速顶端周围的地层14液化、空化(cavitation)(脱气)或流化(fluidization)。即,由于地层的强度、结构以及地层应力已被流化过程破坏,所以在膨胀区域中的地层14围绕着顶端30像流体那样动作,并且地层中的这种流化区域直接位于粘性流体32的前方,扩散的顶端30对于粘性流体进一步扩散而言是具有最小阻碍的平坦路径。至少在这种方式下,系统10和相关的方法提供了对行进的包裹体26、28的方向和形状的控制。
粘性流体32的动作特性优选受控,以确保扩散的粘性流体不会超过流化区域而导致扩散过程失控。因此,流体40的粘性和注入流体的体积流量应被控制,以确保在包裹体36扩散经过地层12的同时继续保持上述条件。
例如,流体32的粘性优选大于约100厘泊。然而,如果在系统10和方法中使用泡沫流体32,则可在仍保持对包裹体26、28的方向和形状控制的同时允许更大范围的粘度和注入速率。
系统10和相关的方法适用于弱粘结沉积物的地层,这种地层具有比在关心的深度占主导地位的竖直过载应力更低的粘合强度。低粘合强度在此限定为不大于400磅/平方英寸(psi)加上在扩散深度的平均有效应力(p′)的0.4倍。
c<400psi+0.4p′ (1)
其中c为粘合强度,而p′为地层14中的平均有效应力。
这种弱粘结沉积物的实例是沙子和砂岩地层、泥岩、页岩以及粉砂岩,所有这些物质都具有固有的低粘合强度。临界状态土力学有助于确定物质何时表现得像能够脆性破裂的粘合物质那样,或物质何时主要表现得像韧性摩擦物质那样。
弱粘结沉积物的特征还在于:由于缺少颗粒之间的内聚粘结,所以在低有效平均应力下具有柔软的骨架结构。另一方面,在载荷因平均应力增大而增大的情况下,非常坚硬的岩石的体积不会大幅减小。
在孔隙弹性技术中,斯凯普顿B参数(Skempton B parameter)是沉积物的与沉积物的孔隙内包含的流体相比的特有刚度指标。斯凯普顿B参数是平均应力在未排放状态下增大升高时物质中的孔隙压力升高的指标。
在坚硬的岩石中,岩石骨架承受了平均应力的增大,因此,孔隙压力不升高,即,相当于斯凯普顿B参数值为0或大约为0。但在松软的土壤中,在平均应力增大的情况下,土壤骨架(soil skeleton)容易变形,因此,在未排放状态下,由孔隙流体来承受平均应力的增大(相当于斯凯普顿B参数为1或大约为1)。
以下公式示出了这些参数之间的关系:
u=Bp (2)
B=(Ku-K)/(αKu) (3)
α=1-(K/Ks) (4)
其中u为孔隙压力的增量,B为斯凯普顿B参数,p为平均应力的增量,Ku为未排放的地层体积模量,K为排放的地层体积模量,α为Biot-Willis孔隙弹性参数,Ks为地层颗粒的体积模量。在系统10和相关的方法中,地层14的体积模量K优选小于约750,000psi。
对于在弱粘结沉积物中使用系统10和方法,斯凯普顿B参数优选如下所示:
B>0.95exp(-0.04p’)+0.008p′ (5)
系统10和相关的方法适用于弱粘结沉积物(例如致密砂岩、泥岩以及页岩)的地层,其中期望广阔的被支撑的竖直的可渗透排放面相交于砂岩透镜体(sand lense)并为来自地层的大量气体产物提供排放路径。在包含重油(粘度>100厘泊)或通常称作油砂的沥青(极高的粘度>100,000厘泊)的弱粘结的地层中,被支撑的竖直的可渗透排放面为来自这些地层的冷产物提供了排放路径,并为蒸汽、溶剂、油以及热提供了通路,以提高石油烃的移动性,并由此协助从地层中提取烃。在高渗透性的弱沙地层中,侧边长度大的可渗透排放面致使储层中的压力下降到更低,这使得朝向井筒起作用的流体梯度减小,导致地层中对细屑(fine)的拉力减小,使得流到井筒中的地层细屑减少。
尽管本发明设想,可渗透的排放路径的地层(大体侧向延伸、离开竖直或近似竖直的井筒14)穿过地层14,并沿相对的方向大体处于与井筒垂直的平面中,但是本领域技术人员将认识到,可如下在地层中实施本发明:其中可渗透的排放路径和井筒可沿除竖直以外的方向(例如沿倾斜或水平的方向)延伸。而且,平坦的包裹体36不一定用于排放,因为在一些情况中可能期望专门用平坦的包裹体将流体注入到地层14内,以在地层中形成不可渗透的屏障等。
图2示意性示出了油井系统10的放大的剖视图。该视图示出了包裹体26、28已形成之后并且重油12正在从地层14中产出的系统10。
请注意,从上井筒16朝向下井筒18向下扩展的包裹体26既可用于将流体34从上井筒注入到地层14中,又可用于将重油12从地层产出到下井筒中。注入的流体34可为蒸汽、溶剂、火烧油层中的燃料或任何其它类型的用于增进重油12的移动性的流体。
如果套管柱22被粘结在井筒中,则重油12诸如经由穿孔36被容置在下井筒18中。可替换地,套管柱22可为开孔或开槽的衬垫(该衬垫处于井筒18的裸露部分中,以砾石填充),等等。然而,应该清楚地认识到,本发明不限于井筒16、18中,用于将流体34注入到地层14中或从地层中获得重油12的任何特定的设备或构件配置。
现在另参考图3,其示意性示出了油井系统10的一种可替换的结构。在该结构中,不使用下井筒18和包裹体26。取而代之,用扩张装置来促使向上扩展的包裹体28开始形成并扩散到地层14中。
在图4中示意性示出了图3的油井系统10的结构的放大的剖视图。在该视图中可看出,包裹体28可用于将流体34注入到地层14中和/或使重油12从地层产出到井筒16中。
请注意,图3和图4中示出的装置24与图1和图2中示出的装置略微不同。具体地,图4中示出的装置24仅有一个对应于零度相位的最终包裹体28的膨胀开口,而图2中示出的装置24有两个对应于180度的相对相位的包裹体26、28的膨胀开口。
然而,应该认识到,在不偏离本发明的原理的情况下,可在本文描述的各种结构的油井系统10中应用任何相位或相对相位的组合。例如,图3和图4的油井系统10的结构可包括具有180度相对相位的扩张装置24,在这种情况下,可在该结构中形成向上扩展的包裹体26和向下扩展的包裹体28。
现在另参考图5A和图5B,其示意性示出了油井系统10的另一可替换的结构。该结构在很多方面与图3的结构类似。然而,在这种形式的油井系统10中,包裹体28被交替地用于将流体34注入到地层14中(如图5A所示)和将重油12从地层产出到井筒16中(如图5B所示)。
例如,流体34可为蒸汽,其在一段延长的时间中被注入到地层14中,以加热地层中的重油12。在适当的时刻,停止蒸汽注入,并将被加热的重油12产出到井筒16中。因此,包裹体28既被用于将流体34注入到地层14中,又被用于将重油12从地层产出。
图6A示意性地示出了图5A的油井系统10在注入操作中的剖视图。图6B示意性地示出了图5B的油井系统10在产出操作中的另一剖视图。
如上面对图3的油井系统10的结构所述的,任何相位或相对相位的组合均可用于图5A至图6B的油井系统中的装置24。另外,可在图5A至图6B的油井系统10中形成向下扩展的包裹体26。
尽管各种结构的油井系统10在上面描述为用于从地层14中获得重油12,但是应该清楚地认识到,可使用结合了本发明原理的油井系统和相关的方法产出其它种类的流体。例如,在不偏离本发明的原理的情况下,可产出密度和粘度较低的石油流体。
现在可全面地认识到,上面的详细描述提供了用于改进从地层14中产出流体(例如重油12)的油井系统10和相关方法。该方法包括下列步骤:将一个或多个大体竖直的包裹体26、28从贯穿地层的大体水平的井筒16扩散到一个或多个地层14中的步骤。包裹体26、28优选扩散到具有小于约750,000psi的体积模量的地层14的一部分中。
油井系统10优选包括从贯穿地层的井筒16扩散到地层14中的大体竖直的包裹体26、28。地层14可包括弱粘结沉积物。
包裹体28可扩展到井筒16上方。该方法还可包括使另一大体竖直的包裹体26扩散到位于井筒16下方的地层14。扩散包裹体26、28的步骤可同时进行或者可分别地进行。
包裹体26可沿朝向贯穿地层14de大体水平的第二井筒18的方向扩散。可将流体34从井筒16注入到地层14中,并且可将另一流体12从地层产出到井筒18中。
上述扩散步骤可包括朝向贯穿地层14的大体水平的井筒18来扩散包裹体26。该方法可包括使相应井筒16、18中的套管20、22沿径向向外扩张。
该方法可包括下列步骤:交替地将流体34从井筒16注入到地层14中,和将另一流体12从地层产出到井筒中。
上述扩散步骤可包括在扩散步骤期间,减小地层14中在包裹体26、28的顶端30处的孔隙压力。扩散步骤可包括增大地层14中在包裹体26、28的顶端30处的孔隙压力梯度。
地层14的一部分可包括弱粘结沉积物。上述扩散步骤可包括在包裹体26、28的顶端30处将地层14流化。地层14可具有小于400磅/平方英寸再加上地层中在包裹体26、28的深度的平均有效应力的0.4倍的粘合强度。地层可具有大于0.95exp(-0.04p′)+0.008p′的斯凯普顿B参数,其中p′为在包裹体26、28的深度的平均有效应力。
上述扩散步骤可包括将流体32注入到地层14中。流体注入步骤中的流体32的粘度可大于约100厘泊。
当然,本领域的技术人员在仔细思考本发明的代表性实施例的上述说明之后很容易预见到,可对这些具体的实施例进行各种修改、添加、替换、删除以及其它的变化,并且这些变化均在本发明原理的范围内。因此,应清楚地认识到,前面的详细描述仅是以说明和示例的方式给出的,本发明的原理和范围仅由所附权利要求及其等同方案限定。
Claims (66)
1.一种从地层进行产出的改进的方法,所述方法包括以下步骤:
将大体竖直的第一包裹体从贯穿所述地层的大体水平的第一井筒扩散到所述地层中,所述第一包裹体扩散到所述地层的具有大于0.95exp(-0.04p′)+0.008p′的斯凯普顿B参数的部分中,其中p′为在所述第一包裹体的深度的平均有效应力。
2.如权利要求1所述的方法,其中所述第一包裹体在所述第一井筒的上方扩展。
3.如权利要求1所述的方法,还包括以下步骤:将大体竖直的第二包裹体扩散到位于所述第一井筒的下方的所述地层中。
4.如权利要求3所述的方法,其中所述第一和第二包裹体的扩散步骤是同时进行的。
5.如权利要求3所述的方法,其中所述第一和第二包裹体的扩散步骤是分别进行的。
6.如权利要求3所述的方法,其中所述第二包裹体的扩散步骤还包括:沿朝向贯穿所述地层的大体水平的第二井筒的方向,扩散所述第二包裹体。
7.如权利要求3所述的方法,还包括以下步骤:将第一流体从所述第一井筒注入到所述地层中;以及将第二流体从所述地层产出到所述第二井筒中。
8.如权利要求1所述的方法,其中所述扩散步骤还包括:朝向贯穿所述地层的大体水平的第二井筒,扩散所述第一包裹体。
9.如权利要求1所述的方法,还包括以下步骤:交替地将第一流体从所述第一井筒注入到所述地层中,和将第二流体从所述地层产出到所述第一井筒中。
10.如权利要求1所述的方法,其中所述扩散步骤还包括:在所述扩散步骤期间,减小所述地层中在所述第一包裹体的顶端处的孔隙压力。
11.如权利要求1所述的方法,其中所述扩散步骤还包括:增大所述地层中在所述第一包裹体的顶端处的孔隙压力梯度。
12.如权利要求1所述的方法,其中所述地层的所述部分包括弱粘结沉积物。
13.如权利要求1所述的方法,其中所述扩散步骤还包括:在所述第一包裹体的顶端处将所述地层流化。
14.如权利要求1所述的方法,其中所述地层具有如下粘合强度:该粘合强度小于400磅/平方英寸与所述地层中在所述包裹体的深度的平均有效应力的0.4倍之和。
15.如权利要求1所述的方法,其中所述地层具有小于约750,000psi的体积模量。
16.如权利要求1所述的方法,其中所述扩散步骤还包括:将流体注入到所述地层中。
17.如权利要求16所述的方法,其中所述流体注入步骤中的流体的粘度大于约100厘泊。
18.如权利要求1所述的方法,还包括以下步骤:使所述第一井筒中的套管沿径向向外扩张。
19.一种油井系统,包括:
大体竖直的第一包裹体,其从贯穿地层的大体水平的第一井筒扩散到所述地层中;并且
其中所述地层包括弱粘结沉积物。
20.如权利要求19所述的油井系统,其中所述第一包裹体扩散到所述地层的具有小于约750,000psi的体积模量的部分中。
21.如权利要求19所述的油井系统,其中所述第一包裹体从所述第一井筒向上扩展。
22.如权利要求21所述的油井系统,还包括:大体竖直的第二包裹体,其扩散到所述地层中并从所述第一井筒向下扩展。
23.如权利要求22所述的油井系统,其中所述第二包裹体沿朝向贯穿所述地层的大体水平的第二井筒的方向扩展。
24.如权利要求22所述的油井系统,还包括:第一流体,其从所述第一井筒注入到所述地层中;和第二流体,其从所述地层产出到所述第二井筒中。
25.如权利要求19所述的油井系统,其中所述第一包裹体朝向贯穿所述地层的大体水平的第二井筒扩展。
26.如权利要求19所述的油井系统,还包括:第一流体,其从所述第一井筒注入到所述地层中;和第二流体,其从所述地层产出到所述第一井筒中。
27.如权利要求26所述的油井系统,其中所述第一流体的注入与所述第二流体的产出交替进行。
28.如权利要求19所述的油井系统,其中所述地层具有如下粘合强度:该粘合强度小于400磅/平方英寸与所述地层中在所述包裹体的深度的平均有效应力的0.4倍之和。
29.如权利要求19所述的油井系统,其中所述地层具有大于0.95exp(-0.04p′)+0.008p′的斯凯普顿B参数,其中p′为在所述第一包裹体的深度的平均有效应力。
30.如权利要求19所述的油井系统,还包括:在所述第一井筒中沿径向向外扩张的套管。
31.一种从地层进行产出的改进的方法,所述方法包括以下步骤:
将大体竖直的第一包裹体从贯穿所述地层的大体水平的第一井筒扩散到所述地层的具有如下粘合强度的部分中:该粘合强度小于400磅/平方英寸与所述地层中在所述包裹体的深度的平均有效应力的0.4倍之和。
32.如权利要求31所述的方法,其中所述第一包裹体在所述第一井筒的上方扩展。
33.如权利要求32所述的方法,还包括以下步骤:将大体竖直的第二包裹体扩散到位于所述第一井筒的下方的所述地层中。
34.如权利要求33所述的方法,其中所述第一和第二包裹体扩散的步骤是同时进行的。
35.如权利要求33所述的方法,其中所述第一和第二包裹体扩散的步骤是分别进行的。
36.如权利要求33所述的方法,其中所述第二包裹体的扩散步骤还包括:沿朝向贯穿所述地层的大体水平的第二井筒的方向,扩散所述第二包裹体。
37.如权利要求32所述的方法,还包括以下步骤:将第一流体从所述第一井筒注入到所述地层中;以及将第二流体从所述地层产出到所述第二井筒中。
38.如权利要求31所述的方法,其中所述扩散步骤还包括:朝向贯穿所述地层的大体水平的第二井筒,扩散所述第一包裹体。
39.如权利要求31所述的方法,还包括以下步骤:交替地将第一流体从所述第一井筒注入到所述地层中,和将第二流体从所述地层产出到所述第一井筒中。
40.如权利要求31所述的方法,其中所述扩散步骤还包括:在所述扩散步骤期间,减小所述地层中在所述第一包裹体的顶端处的孔隙压力。
41.如权利要求31所述的方法,其中所述扩散步骤还包括:增大所述地层中在所述第一包裹体的顶端处的孔隙压力梯度。
42.如权利要求31所述的方法,其中所述地层的所述部分包括弱粘结沉积物。
43.如权利要求31所述的方法,其中所述扩散步骤还包括:在所述第一包裹体的顶端处将所述地层流化。
44.如权利要求31所述的方法,其中所述地层具有小于约750,000psi的体积模量。
45.如权利要求31所述的方法,其中所述地层具有大于0.95exp(-0.04p’)+0.008p’的斯凯普顿B参数,其中p’为所述第一包裹体深度处的平均有效应力。
46.如权利要求31所述的方法,其中所述扩散步骤还包括将流体注入到所述地层中。
47.如权利要求36所述的方法,其中所述流体注入步骤中的流体的粘度大于约100厘泊。
48.如权利要求31所述的方法,其还包括使所述第一井筒中的套管沿径向向外扩张的步骤。
49.一种从地层中进行产出的改进的方法,所述方法包括以下步骤:
将大体竖直的第一包裹体从贯穿所述地层的大体水平的第一井筒扩散到所述地层中,所述第一包裹体扩散到所述地层的具有小于约750,000psi的体积模量的部分中。
50.如权利要求49所述的方法,其中所述第一包裹体在所述第一井筒的上方扩展。
51.如权利要求50所述的方法,还包括以下步骤:将大体竖直的第二包裹体扩散到位于所述第一井筒的下方的所述地层中。
52.如权利要求51所述的方法,其中所述第一和第二包裹体的扩散步骤是同时进行的。
53.如权利要求51所述的方法,其中所述第一和第二包裹体的扩散步骤是分别进行的。
54.如权利要求51所述的方法,其中所述第二包裹体的扩散步骤还包括:沿朝向贯穿所述地层的大体水平的第二井筒的方向,扩散所述第二包裹体。
55.如权利要求50所述的方法,还包括以下步骤:将第一流体从所述第一井筒注入到所述地层中;以及将第二流体从所述地层产出到所述第二井筒中。
56.如权利要求49所述的方法,其中所述扩散步骤还包括:朝向贯穿所述地层的大体水平的第二井筒,扩散所述第一包裹体。
57.如权利要求49所述的方法,还包括以下步骤:交替地将第一流体从所述第一井筒注入到所述地层中,和将第二流体从所述地层产出到所述第一井筒中。
58.如权利要求49所述的方法,其中所述扩散步骤还包括:在所述扩散步骤期间,减小所述地层中在所述第一包裹体的顶端处的孔隙压力。
59.如权利要求所述的方法,其中所述扩散步骤还包括:增大所述地层中在所述第一包裹体的顶端处的孔隙压力梯度。
60.如权利要求49所述的方法,其中所述地层的所述部分包括弱粘结沉积物。
61.如权利要求49所述的方法,其中所述扩散步骤还包括:在所述第一包裹体顶端处将所述地层流化。
62.如权利要求49所述的方法,其中所述地层具有如下粘合强度:该粘合强度小于400磅/平方英寸与所述地层中在所述包裹体的深度的平均有效应力的0.4倍的之和。
63.如权利要求49所述的方法,其中所述地层具有大于0.95exp(-0.04p′)+0.008p′的斯凯普顿B参数,其中p′为在所述第一包裹体的深度的平均有效应力。
64.如权利要求49所述的方法,其中所述扩散步骤还包括:将流体注入到所述地层中。
65.如权利要求64所述的方法,其中所述流体注入步骤中的流体的粘度大于约100厘泊。
66.如权利要求49所述的方法,还包括以下步骤:将所述第一井筒中的套管沿径向向外扩张。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/832,620 | 2007-08-01 | ||
US11/832,620 US7647966B2 (en) | 2007-08-01 | 2007-08-01 | Method for drainage of heavy oil reservoir via horizontal wellbore |
PCT/US2008/070776 WO2009018019A2 (en) | 2007-08-01 | 2008-07-22 | Drainage of heavy oil reservoir via horizontal wellbore |
Publications (2)
Publication Number | Publication Date |
---|---|
CN101772618A true CN101772618A (zh) | 2010-07-07 |
CN101772618B CN101772618B (zh) | 2013-06-19 |
Family
ID=40305188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN2008801014729A Expired - Fee Related CN101772618B (zh) | 2007-08-01 | 2008-07-22 | 重油储层经由水平井筒的排放 |
Country Status (7)
Country | Link |
---|---|
US (3) | US7647966B2 (zh) |
CN (1) | CN101772618B (zh) |
AR (1) | AR067735A1 (zh) |
BR (1) | BRPI0814733A2 (zh) |
CA (3) | CA2693754C (zh) |
RU (1) | RU2423605C1 (zh) |
WO (1) | WO2009018019A2 (zh) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107045582A (zh) * | 2017-05-06 | 2017-08-15 | 东北石油大学 | 水平井分段多簇压裂诱导应力计算方法 |
CN109386264A (zh) * | 2017-08-08 | 2019-02-26 | 魏志海 | 干热岩(egs)双井同向大垂深长水平段人工致裂换热系统 |
CN112253070A (zh) * | 2020-10-10 | 2021-01-22 | 中煤科工集团西安研究院有限公司 | 厚煤层顶底部联动水平井分段造缝洗煤消突方法 |
CN114293958A (zh) * | 2021-12-13 | 2022-04-08 | 常州大学 | 一种采用双水平井高效开发含底水稠油油藏的方法 |
Families Citing this family (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8151874B2 (en) | 2006-02-27 | 2012-04-10 | Halliburton Energy Services, Inc. | Thermal recovery of shallow bitumen through increased permeability inclusions |
US7814978B2 (en) * | 2006-12-14 | 2010-10-19 | Halliburton Energy Services, Inc. | Casing expansion and formation compression for permeability plane orientation |
WO2008115356A1 (en) | 2007-03-22 | 2008-09-25 | Exxonmobil Upstream Research Company | Resistive heater for in situ formation heating |
BRPI0810590A2 (pt) | 2007-05-25 | 2014-10-21 | Exxonmobil Upstream Res Co | Método in situ de produzir fluidos de hidrocarboneto de uma formação rochosa rica em matéria orgânica |
US7647966B2 (en) * | 2007-08-01 | 2010-01-19 | Halliburton Energy Services, Inc. | Method for drainage of heavy oil reservoir via horizontal wellbore |
US7913755B2 (en) | 2007-10-19 | 2011-03-29 | Baker Hughes Incorporated | Device and system for well completion and control and method for completing and controlling a well |
US7832477B2 (en) | 2007-12-28 | 2010-11-16 | Halliburton Energy Services, Inc. | Casing deformation and control for inclusion propagation |
US8113292B2 (en) | 2008-05-13 | 2012-02-14 | Baker Hughes Incorporated | Strokable liner hanger and method |
US8555958B2 (en) | 2008-05-13 | 2013-10-15 | Baker Hughes Incorporated | Pipeless steam assisted gravity drainage system and method |
US8171999B2 (en) | 2008-05-13 | 2012-05-08 | Baker Huges Incorporated | Downhole flow control device and method |
US20100300674A1 (en) * | 2009-06-02 | 2010-12-02 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints |
US8151881B2 (en) | 2009-06-02 | 2012-04-10 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints |
US8132624B2 (en) | 2009-06-02 | 2012-03-13 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints and method |
US8056627B2 (en) | 2009-06-02 | 2011-11-15 | Baker Hughes Incorporated | Permeability flow balancing within integral screen joints and method |
US8863839B2 (en) * | 2009-12-17 | 2014-10-21 | Exxonmobil Upstream Research Company | Enhanced convection for in situ pyrolysis of organic-rich rock formations |
US8731382B2 (en) * | 2010-01-14 | 2014-05-20 | Halliburton Energy Services, Inc. | Steam generator |
EP2400111A1 (en) * | 2010-06-24 | 2011-12-28 | Shell Internationale Research Maatschappij B.V. | Producing hydrocarbon material from a layer of oil sand |
CA2714935A1 (en) | 2010-09-20 | 2012-03-20 | Alberta Innovates - Technology Futures | Confined open face (trench) reservoir access for gravity drainage processes |
JP5399436B2 (ja) * | 2011-03-30 | 2014-01-29 | 公益財団法人地球環境産業技術研究機構 | 貯留物質の貯留装置および貯留方法 |
US9074466B2 (en) * | 2011-04-26 | 2015-07-07 | Halliburton Energy Services, Inc. | Controlled production and injection |
US20120325458A1 (en) * | 2011-06-23 | 2012-12-27 | El-Rabaa Abdel Madood M | Electrically Conductive Methods For In Situ Pyrolysis of Organic-Rich Rock Formations |
US8955585B2 (en) | 2011-09-27 | 2015-02-17 | Halliburton Energy Services, Inc. | Forming inclusions in selected azimuthal orientations from a casing section |
US9080441B2 (en) | 2011-11-04 | 2015-07-14 | Exxonmobil Upstream Research Company | Multiple electrical connections to optimize heating for in situ pyrolysis |
US10400561B2 (en) * | 2012-01-18 | 2019-09-03 | Conocophillips Company | Method for accelerating heavy oil production |
AU2013256823B2 (en) | 2012-05-04 | 2015-09-03 | Exxonmobil Upstream Research Company | Systems and methods of detecting an intersection between a wellbore and a subterranean structure that includes a marker material |
CA2820742A1 (en) | 2013-07-04 | 2013-09-20 | IOR Canada Ltd. | Improved hydrocarbon recovery process exploiting multiple induced fractures |
US9828840B2 (en) * | 2013-09-20 | 2017-11-28 | Statoil Gulf Services LLC | Producing hydrocarbons |
CA2923681A1 (en) | 2013-10-22 | 2015-04-30 | Exxonmobil Upstream Research Company | Systems and methods for regulating an in situ pyrolysis process |
US9394772B2 (en) | 2013-11-07 | 2016-07-19 | Exxonmobil Upstream Research Company | Systems and methods for in situ resistive heating of organic matter in a subterranean formation |
US9574428B2 (en) * | 2013-12-23 | 2017-02-21 | Baker Hughes Incorporated | Screened production sleeve for multilateral junctions |
RU2558058C1 (ru) * | 2014-06-03 | 2015-07-27 | Открытое акционерное общество "Татнефть" имени В.Д. Шашина | Способ поинтервального гидравлического разрыва карбонатного пласта в горизонтальном стволе скважины с подошвенной водой |
US9644466B2 (en) | 2014-11-21 | 2017-05-09 | Exxonmobil Upstream Research Company | Method of recovering hydrocarbons within a subsurface formation using electric current |
RU2627345C1 (ru) * | 2016-06-24 | 2017-08-07 | Публичное акционерное общество "Татнефть" имени В.Д. Шашина | Способ разработки залежи высоковязкой нефти или битума с применением трещин гидроразрыва пласта |
CA2972203C (en) | 2017-06-29 | 2018-07-17 | Exxonmobil Upstream Research Company | Chasing solvent for enhanced recovery processes |
CA2974712C (en) | 2017-07-27 | 2018-09-25 | Imperial Oil Resources Limited | Enhanced methods for recovering viscous hydrocarbons from a subterranean formation as a follow-up to thermal recovery processes |
CA2978157C (en) | 2017-08-31 | 2018-10-16 | Exxonmobil Upstream Research Company | Thermal recovery methods for recovering viscous hydrocarbons from a subterranean formation |
CA2983541C (en) | 2017-10-24 | 2019-01-22 | Exxonmobil Upstream Research Company | Systems and methods for dynamic liquid level monitoring and control |
DE102017222737A1 (de) | 2017-12-14 | 2019-06-19 | Bühler Barth Gmbh | Wärmebehandlung von stückigen Lebensmitteln |
RU2681796C1 (ru) * | 2018-05-18 | 2019-03-12 | Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" | Способ разработки залежи сверхвязкой нефти с глинистой перемычкой |
RU2737437C1 (ru) * | 2019-10-29 | 2020-11-30 | Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") | Способ эксплуатации горизонтальных скважин в слабосцементированном коллекторе |
RU2760747C1 (ru) * | 2021-06-18 | 2021-11-30 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ разработки неоднородного пласта сверхвязкой нефти |
RU2760746C1 (ru) * | 2021-06-18 | 2021-11-30 | Публичное акционерное общество «Татнефть» имени В.Д. Шашина | Способ разработки неоднородного пласта сверхвязкой нефти |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5148869A (en) * | 1991-01-31 | 1992-09-22 | Mobil Oil Corporation | Single horizontal wellbore process/apparatus for the in-situ extraction of viscous oil by gravity action using steam plus solvent vapor |
US5215146A (en) * | 1991-08-29 | 1993-06-01 | Mobil Oil Corporation | Method for reducing startup time during a steam assisted gravity drainage process in parallel horizontal wells |
US5297627A (en) * | 1989-10-11 | 1994-03-29 | Mobil Oil Corporation | Method for reduced water coning in a horizontal well during heavy oil production |
CN1140227A (zh) * | 1995-04-07 | 1997-01-15 | 国际壳牌研究有限公司 | 一种产油井及其装配 |
US6991037B2 (en) * | 2003-12-30 | 2006-01-31 | Geosierra Llc | Multiple azimuth control of vertical hydraulic fractures in unconsolidated and weakly cemented sediments |
CN1888382A (zh) * | 2006-07-19 | 2007-01-03 | 尤尼斯油气技术(中国)有限公司 | 一种深层低渗透油层稀油火驱水平井注气水平井采油工艺技术 |
Family Cites Families (143)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2687179A (en) | 1948-08-26 | 1954-08-24 | Newton B Dismukes | Means for increasing the subterranean flow into and from wells |
US2642142A (en) | 1949-04-20 | 1953-06-16 | Stanolind Oil & Gas Co | Hydraulic completion of wells |
US2862564A (en) | 1955-02-21 | 1958-12-02 | Otis Eng Co | Anchoring devices for well tools |
US2870843A (en) | 1955-06-21 | 1959-01-27 | Gulf Oil Corp | Apparatus for control of flow through the annulus of a dual-zone well |
US3062286A (en) | 1959-11-13 | 1962-11-06 | Gulf Research Development Co | Selective fracturing process |
US3071481A (en) | 1959-11-27 | 1963-01-01 | Gulf Oil Corp | Cement composition |
US3058730A (en) | 1960-06-03 | 1962-10-16 | Fmc Corp | Method of forming underground communication between boreholes |
US3270816A (en) | 1963-12-19 | 1966-09-06 | Dow Chemical Co | Method of establishing communication between wells |
US3280913A (en) | 1964-04-06 | 1966-10-25 | Exxon Production Research Co | Vertical fracturing process and apparatus for wells |
US3353599A (en) | 1964-08-04 | 1967-11-21 | Gulf Oil Corp | Method and apparatus for stabilizing formations |
US3351134A (en) | 1965-05-03 | 1967-11-07 | Lamphere Jean K | Casing severing tool with centering pads and tapered cutters |
US3338317A (en) | 1965-09-22 | 1967-08-29 | Schlumberger Technology Corp | Oriented perforating apparatus |
US3690380A (en) | 1970-06-22 | 1972-09-12 | Donovan B Grable | Well apparatus and method of placing apertured inserts in well pipe |
US3727688A (en) | 1972-02-09 | 1973-04-17 | Phillips Petroleum Co | Hydraulic fracturing method |
US3987854A (en) | 1972-02-17 | 1976-10-26 | Baker Oil Tools, Inc. | Gravel packing apparatus and method |
US3779915A (en) | 1972-09-21 | 1973-12-18 | Dow Chemical Co | Acid composition and use thereof in treating fluid-bearing geologic formations |
US3884303A (en) | 1974-03-27 | 1975-05-20 | Shell Oil Co | Vertically expanded structure-biased horizontal fracturing |
US3948325A (en) | 1975-04-03 | 1976-04-06 | The Western Company Of North America | Fracturing of subsurface formations with Bingham plastic fluids |
US4005750A (en) | 1975-07-01 | 1977-02-01 | The United States Of America As Represented By The United States Energy Research And Development Administration | Method for selectively orienting induced fractures in subterranean earth formations |
US4018293A (en) | 1976-01-12 | 1977-04-19 | The Keller Corporation | Method and apparatus for controlled fracturing of subterranean formations |
US4280569A (en) | 1979-06-25 | 1981-07-28 | Standard Oil Company (Indiana) | Fluid flow restrictor valve for a drill hole coring tool |
US4311194A (en) | 1979-08-20 | 1982-01-19 | Otis Engineering Corporation | Liner hanger and running and setting tool |
US4678037A (en) | 1985-12-06 | 1987-07-07 | Amoco Corporation | Method and apparatus for completing a plurality of zones in a wellbore |
US4834181A (en) | 1987-12-29 | 1989-05-30 | Mobil Oil Corporation | Creation of multi-azimuth permeable hydraulic fractures |
US5131471A (en) | 1989-08-16 | 1992-07-21 | Chevron Research And Technology Company | Single well injection and production system |
US4977961A (en) | 1989-08-16 | 1990-12-18 | Chevron Research Company | Method to create parallel vertical fractures in inclined wellbores |
US5036918A (en) | 1989-12-06 | 1991-08-06 | Mobil Oil Corporation | Method for improving sustained solids-free production from heavy oil reservoirs |
GB2240798A (en) | 1990-02-12 | 1991-08-14 | Shell Int Research | Method and apparatus for perforating a well liner and for fracturing a surrounding formation |
US5010964A (en) | 1990-04-06 | 1991-04-30 | Atlantic Richfield Company | Method and apparatus for orienting wellbore perforations |
US5211714A (en) | 1990-04-12 | 1993-05-18 | Halliburton Logging Services, Inc. | Wireline supported perforating gun enabling oriented perforations |
US5111881A (en) | 1990-09-07 | 1992-05-12 | Halliburton Company | Method to control fracture orientation in underground formation |
US5105886A (en) * | 1990-10-24 | 1992-04-21 | Mobil Oil Corporation | Method for the control of solids accompanying hydrocarbon production from subterranean formations |
US5123487A (en) | 1991-01-08 | 1992-06-23 | Halliburton Services | Repairing leaks in casings |
US5318123A (en) | 1992-06-11 | 1994-06-07 | Halliburton Company | Method for optimizing hydraulic fracturing through control of perforation orientation |
US5392854A (en) | 1992-06-12 | 1995-02-28 | Shell Oil Company | Oil recovery process |
US5944446A (en) | 1992-08-31 | 1999-08-31 | Golder Sierra Llc | Injection of mixtures into subterranean formations |
US5325923A (en) | 1992-09-29 | 1994-07-05 | Halliburton Company | Well completions with expandable casing portions |
US5396957A (en) | 1992-09-29 | 1995-03-14 | Halliburton Company | Well completions with expandable casing portions |
US5361856A (en) | 1992-09-29 | 1994-11-08 | Halliburton Company | Well jetting apparatus and met of modifying a well therewith |
US5360066A (en) | 1992-12-16 | 1994-11-01 | Halliburton Company | Method for controlling sand production of formations and for optimizing hydraulic fracturing through perforation orientation |
US5394941A (en) | 1993-06-21 | 1995-03-07 | Halliburton Company | Fracture oriented completion tool system |
US5335724A (en) | 1993-07-28 | 1994-08-09 | Halliburton Company | Directionally oriented slotting method |
US5372195A (en) | 1993-09-13 | 1994-12-13 | The United States Of America As Represented By The Secretary Of The Interior | Method for directional hydraulic fracturing |
US5607016A (en) | 1993-10-15 | 1997-03-04 | Butler; Roger M. | Process and apparatus for the recovery of hydrocarbons from a reservoir of hydrocarbons |
US5407009A (en) | 1993-11-09 | 1995-04-18 | University Technologies International Inc. | Process and apparatus for the recovery of hydrocarbons from a hydrocarbon deposit |
US5404952A (en) | 1993-12-20 | 1995-04-11 | Shell Oil Company | Heat injection process and apparatus |
US5431224A (en) | 1994-04-19 | 1995-07-11 | Mobil Oil Corporation | Method of thermal stimulation for recovery of hydrocarbons |
US5472049A (en) | 1994-04-20 | 1995-12-05 | Union Oil Company Of California | Hydraulic fracturing of shallow wells |
TW358120B (en) | 1994-08-24 | 1999-05-11 | Shell Int Research | Hydrocarbon conversion catalysts |
US5431225A (en) | 1994-09-21 | 1995-07-11 | Halliburton Company | Sand control well completion methods for poorly consolidated formations |
ZA96241B (en) | 1995-01-16 | 1996-08-14 | Shell Int Research | Method of creating a casing in a borehole |
US5829520A (en) | 1995-02-14 | 1998-11-03 | Baker Hughes Incorporated | Method and apparatus for testing, completion and/or maintaining wellbores using a sensor device |
US5564499A (en) | 1995-04-07 | 1996-10-15 | Willis; Roger B. | Method and device for slotting well casing and scoring surrounding rock to facilitate hydraulic fractures |
US5626191A (en) | 1995-06-23 | 1997-05-06 | Petroleum Recovery Institute | Oilfield in-situ combustion process |
US5824214A (en) | 1995-07-11 | 1998-10-20 | Mobil Oil Corporation | Method for hydrotreating and upgrading heavy crude oil during production |
DK0870100T3 (da) | 1995-12-27 | 2000-07-17 | Shell Int Research | Flammeløs forbrændingsindretning |
US6283216B1 (en) | 1996-03-11 | 2001-09-04 | Schlumberger Technology Corporation | Apparatus and method for establishing branch wells from a parent well |
US5743334A (en) | 1996-04-04 | 1998-04-28 | Chevron U.S.A. Inc. | Evaluating a hydraulic fracture treatment in a wellbore |
CA2185837C (en) | 1996-09-18 | 2001-08-07 | Alberta Oil Sands Technology And Research Authority | Solvent-assisted method for mobilizing viscous heavy oil |
US6056057A (en) | 1996-10-15 | 2000-05-02 | Shell Oil Company | Heater well method and apparatus |
US6079499A (en) | 1996-10-15 | 2000-06-27 | Shell Oil Company | Heater well method and apparatus |
US5871637A (en) | 1996-10-21 | 1999-02-16 | Exxon Research And Engineering Company | Process for upgrading heavy oil using alkaline earth metal hydroxide |
US5765642A (en) | 1996-12-23 | 1998-06-16 | Halliburton Energy Services, Inc. | Subterranean formation fracturing methods |
US5862858A (en) | 1996-12-26 | 1999-01-26 | Shell Oil Company | Flameless combustor |
US6116343A (en) | 1997-02-03 | 2000-09-12 | Halliburton Energy Services, Inc. | One-trip well perforation/proppant fracturing apparatus and methods |
US6023554A (en) | 1997-05-20 | 2000-02-08 | Shell Oil Company | Electrical heater |
US5981447A (en) | 1997-05-28 | 1999-11-09 | Schlumberger Technology Corporation | Method and composition for controlling fluid loss in high permeability hydrocarbon bearing formations |
US6003599A (en) | 1997-09-15 | 1999-12-21 | Schlumberger Technology Corporation | Azimuth-oriented perforating system and method |
GB9723031D0 (en) | 1997-11-01 | 1998-01-07 | Petroline Wellsystems Ltd | Downhole tubing location method |
DE69813031D1 (de) | 1997-12-11 | 2003-05-08 | Alberta Res Council | Erdölaufbereitungsverfahren in situ |
US6360819B1 (en) | 1998-02-24 | 2002-03-26 | Shell Oil Company | Electrical heater |
EP1092080B1 (en) | 1998-07-01 | 2003-01-29 | Shell Internationale Research Maatschappij B.V. | Method and tool for fracturing an underground formation |
CA2243105C (en) | 1998-07-10 | 2001-11-13 | Igor J. Mokrys | Vapour extraction of hydrocarbon deposits |
US6076046A (en) | 1998-07-24 | 2000-06-13 | Schlumberger Technology Corporation | Post-closure analysis in hydraulic fracturing |
US6142229A (en) | 1998-09-16 | 2000-11-07 | Atlantic Richfield Company | Method and system for producing fluids from low permeability formations |
US6446727B1 (en) | 1998-11-12 | 2002-09-10 | Sclumberger Technology Corporation | Process for hydraulically fracturing oil and gas wells |
US7231985B2 (en) | 1998-11-16 | 2007-06-19 | Shell Oil Company | Radial expansion of tubular members |
US6216783B1 (en) | 1998-11-17 | 2001-04-17 | Golder Sierra, Llc | Azimuth control of hydraulic vertical fractures in unconsolidated and weakly cemented soils and sediments |
US7185710B2 (en) | 1998-12-07 | 2007-03-06 | Enventure Global Technology | Mono-diameter wellbore casing |
US7240728B2 (en) | 1998-12-07 | 2007-07-10 | Shell Oil Company | Expandable tubulars with a radial passage and wall portions with different wall thicknesses |
US6508307B1 (en) | 1999-07-22 | 2003-01-21 | Schlumberger Technology Corporation | Techniques for hydraulic fracturing combining oriented perforating and low viscosity fluids |
US6427776B1 (en) | 2000-03-27 | 2002-08-06 | Weatherford/Lamb, Inc. | Sand removal and device retrieval tool |
US7086468B2 (en) | 2000-04-24 | 2006-08-08 | Shell Oil Company | In situ thermal processing of a hydrocarbon containing formation using heat sources positioned within open wellbores |
DZ3387A1 (fr) | 2000-07-18 | 2002-01-24 | Exxonmobil Upstream Res Co | Procede pour traiter les intervalles multiples dans un trou de forage |
US6372678B1 (en) | 2000-09-28 | 2002-04-16 | Fairmount Minerals, Ltd | Proppant composition for gas and oil well fracturing |
CA2342955C (en) | 2001-04-04 | 2005-06-14 | Roland P. Leaute | Liquid addition to steam for enhancing recovery of cyclic steam stimulation or laser-css |
CA2349234C (en) | 2001-05-31 | 2004-12-14 | Imperial Oil Resources Limited | Cyclic solvent process for in-situ bitumen and heavy oil production |
US6550539B2 (en) | 2001-06-20 | 2003-04-22 | Weatherford/Lamb, Inc. | Tie back and method for use with expandable tubulars |
CA2351148C (en) | 2001-06-21 | 2008-07-29 | John Nenniger | Method and apparatus for stimulating heavy oil production |
US7143825B2 (en) | 2001-07-10 | 2006-12-05 | Shell Oil Company | Expandable wellbore stabiliser |
MY135121A (en) | 2001-07-18 | 2008-02-29 | Shell Int Research | Wellbore system with annular seal member |
US6591908B2 (en) | 2001-08-22 | 2003-07-15 | Alberta Science And Research Authority | Hydrocarbon production process with decreasing steam and/or water/solvent ratio |
US6662874B2 (en) | 2001-09-28 | 2003-12-16 | Halliburton Energy Services, Inc. | System and method for fracturing a subterranean well formation for improving hydrocarbon production |
US6725933B2 (en) | 2001-09-28 | 2004-04-27 | Halliburton Energy Services, Inc. | Method and apparatus for acidizing a subterranean well formation for improving hydrocarbon production |
US6719054B2 (en) | 2001-09-28 | 2004-04-13 | Halliburton Energy Services, Inc. | Method for acid stimulating a subterranean well formation for improving hydrocarbon production |
US6820690B2 (en) | 2001-10-22 | 2004-11-23 | Schlumberger Technology Corp. | Technique utilizing an insertion guide within a wellbore |
US7066284B2 (en) | 2001-11-14 | 2006-06-27 | Halliburton Energy Services, Inc. | Method and apparatus for a monodiameter wellbore, monodiameter casing, monobore, and/or monowell |
US6883611B2 (en) | 2002-04-12 | 2005-04-26 | Halliburton Energy Services, Inc. | Sealed multilateral junction system |
US6732800B2 (en) | 2002-06-12 | 2004-05-11 | Schlumberger Technology Corporation | Method of completing a well in an unconsolidated formation |
US7055598B2 (en) | 2002-08-26 | 2006-06-06 | Halliburton Energy Services, Inc. | Fluid flow control device and method for use of same |
US6792720B2 (en) | 2002-09-05 | 2004-09-21 | Geosierra Llc | Seismic base isolation by electro-osmosis during an earthquake event |
US6854522B2 (en) | 2002-09-23 | 2005-02-15 | Halliburton Energy Services, Inc. | Annular isolators for expandable tubulars in wellbores |
US7152676B2 (en) | 2002-10-18 | 2006-12-26 | Schlumberger Technology Corporation | Techniques and systems associated with perforation and the installation of downhole tools |
WO2004092530A2 (en) | 2003-04-14 | 2004-10-28 | Enventure Global Technology | Radially expanding casing and driling a wellbore |
US7044225B2 (en) | 2003-09-16 | 2006-05-16 | Joseph Haney | Shaped charge |
US7316274B2 (en) | 2004-03-05 | 2008-01-08 | Baker Hughes Incorporated | One trip perforating, cementing, and sand management apparatus and method |
US7404416B2 (en) | 2004-03-25 | 2008-07-29 | Halliburton Energy Services, Inc. | Apparatus and method for creating pulsating fluid flow, and method of manufacture for the apparatus |
US7159660B2 (en) | 2004-05-28 | 2007-01-09 | Halliburton Energy Services, Inc. | Hydrajet perforation and fracturing tool |
US8765955B2 (en) | 2004-06-03 | 2014-07-01 | Brandeis University | Asymmetric aldol additions using bifunctional cinchona-alkaloid-based catalysts |
US7069989B2 (en) | 2004-06-07 | 2006-07-04 | Leon Marmorshteyn | Method of increasing productivity and recovery of wells in oil and gas fields |
US7228908B2 (en) | 2004-12-02 | 2007-06-12 | Halliburton Energy Services, Inc. | Hydrocarbon sweep into horizontal transverse fractured wells |
US7219732B2 (en) | 2004-12-02 | 2007-05-22 | Halliburton Energy Services, Inc. | Methods of sequentially injecting different sealant compositions into a wellbore to improve zonal isolation |
US7273099B2 (en) | 2004-12-03 | 2007-09-25 | Halliburton Energy Services, Inc. | Methods of stimulating a subterranean formation comprising multiple production intervals |
US7412331B2 (en) * | 2004-12-16 | 2008-08-12 | Chevron U.S.A. Inc. | Method for predicting rate of penetration using bit-specific coefficient of sliding friction and mechanical efficiency as a function of confined compressive strength |
US7555414B2 (en) | 2004-12-16 | 2009-06-30 | Chevron U.S.A. Inc. | Method for estimating confined compressive strength for rock formations utilizing skempton theory |
US20060162923A1 (en) | 2005-01-25 | 2006-07-27 | World Energy Systems, Inc. | Method for producing viscous hydrocarbon using incremental fracturing |
US7426960B2 (en) | 2005-05-03 | 2008-09-23 | Luca Technologies, Inc. | Biogenic fuel gas generation in geologic hydrocarbon deposits |
US7946340B2 (en) | 2005-12-01 | 2011-05-24 | Halliburton Energy Services, Inc. | Method and apparatus for orchestration of fracture placement from a centralized well fluid treatment center |
US7740072B2 (en) | 2006-10-10 | 2010-06-22 | Halliburton Energy Services, Inc. | Methods and systems for well stimulation using multiple angled fracturing |
US7711487B2 (en) | 2006-10-10 | 2010-05-04 | Halliburton Energy Services, Inc. | Methods for maximizing second fracture length |
US20070199705A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations |
US20070199712A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by steam injection of oil sand formations |
US7604054B2 (en) | 2006-02-27 | 2009-10-20 | Geosierra Llc | Enhanced hydrocarbon recovery by convective heating of oil sand formations |
US7866395B2 (en) | 2006-02-27 | 2011-01-11 | Geosierra Llc | Hydraulic fracture initiation and propagation control in unconsolidated and weakly cemented sediments |
US20070199699A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced Hydrocarbon Recovery By Vaporizing Solvents in Oil Sand Formations |
US20070199711A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by vaporizing solvents in oil sand formations |
US7404441B2 (en) | 2006-02-27 | 2008-07-29 | Geosierra, Llc | Hydraulic feature initiation and propagation control in unconsolidated and weakly cemented sediments |
US20070199706A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by convective heating of oil sand formations |
US20070199700A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by in situ combustion of oil sand formations |
US7748458B2 (en) | 2006-02-27 | 2010-07-06 | Geosierra Llc | Initiation and propagation control of vertical hydraulic fractures in unconsolidated and weakly cemented sediments |
US7591306B2 (en) | 2006-02-27 | 2009-09-22 | Geosierra Llc | Enhanced hydrocarbon recovery by steam injection of oil sand formations |
US7520325B2 (en) | 2006-02-27 | 2009-04-21 | Geosierra Llc | Enhanced hydrocarbon recovery by in situ combustion of oil sand formations |
US20070199710A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by convective heating of oil sand formations |
US20070199697A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Enhanced hydrocarbon recovery by steam injection of oil sand formations |
US20070199701A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Ehanced hydrocarbon recovery by in situ combustion of oil sand formations |
US20070199695A1 (en) | 2006-02-27 | 2007-08-30 | Grant Hocking | Hydraulic Fracture Initiation and Propagation Control in Unconsolidated and Weakly Cemented Sediments |
US7814978B2 (en) | 2006-12-14 | 2010-10-19 | Halliburton Energy Services, Inc. | Casing expansion and formation compression for permeability plane orientation |
US7909094B2 (en) | 2007-07-06 | 2011-03-22 | Halliburton Energy Services, Inc. | Oscillating fluid flow in a wellbore |
US7640982B2 (en) * | 2007-08-01 | 2010-01-05 | Halliburton Energy Services, Inc. | Method of injection plane initiation in a well |
US7647966B2 (en) * | 2007-08-01 | 2010-01-19 | Halliburton Energy Services, Inc. | Method for drainage of heavy oil reservoir via horizontal wellbore |
US7640975B2 (en) | 2007-08-01 | 2010-01-05 | Halliburton Energy Services, Inc. | Flow control for increased permeability planes in unconsolidated formations |
US7726403B2 (en) | 2007-10-26 | 2010-06-01 | Halliburton Energy Services, Inc. | Apparatus and method for ratcheting stimulation tool |
US7832477B2 (en) | 2007-12-28 | 2010-11-16 | Halliburton Energy Services, Inc. | Casing deformation and control for inclusion propagation |
-
2007
- 2007-08-01 US US11/832,620 patent/US7647966B2/en not_active Expired - Fee Related
- 2007-08-08 CA CA2693754A patent/CA2693754C/en not_active Expired - Fee Related
- 2007-08-08 CA CA2596463A patent/CA2596463C/en active Active
- 2007-08-08 CA CA2769709A patent/CA2769709C/en not_active Expired - Fee Related
-
2008
- 2008-07-22 WO PCT/US2008/070776 patent/WO2009018019A2/en active Application Filing
- 2008-07-22 BR BRPI0814733A patent/BRPI0814733A2/pt not_active IP Right Cessation
- 2008-07-22 RU RU2010107229/03A patent/RU2423605C1/ru not_active IP Right Cessation
- 2008-07-22 CN CN2008801014729A patent/CN101772618B/zh not_active Expired - Fee Related
- 2008-07-30 AR ARP080103289A patent/AR067735A1/es not_active Application Discontinuation
-
2009
- 2009-11-24 US US12/625,302 patent/US7918269B2/en active Active
-
2011
- 2011-02-28 US US13/036,090 patent/US8122953B2/en not_active Expired - Fee Related
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5297627A (en) * | 1989-10-11 | 1994-03-29 | Mobil Oil Corporation | Method for reduced water coning in a horizontal well during heavy oil production |
US5148869A (en) * | 1991-01-31 | 1992-09-22 | Mobil Oil Corporation | Single horizontal wellbore process/apparatus for the in-situ extraction of viscous oil by gravity action using steam plus solvent vapor |
US5215146A (en) * | 1991-08-29 | 1993-06-01 | Mobil Oil Corporation | Method for reducing startup time during a steam assisted gravity drainage process in parallel horizontal wells |
CN1140227A (zh) * | 1995-04-07 | 1997-01-15 | 国际壳牌研究有限公司 | 一种产油井及其装配 |
US6991037B2 (en) * | 2003-12-30 | 2006-01-31 | Geosierra Llc | Multiple azimuth control of vertical hydraulic fractures in unconsolidated and weakly cemented sediments |
CN1888382A (zh) * | 2006-07-19 | 2007-01-03 | 尤尼斯油气技术(中国)有限公司 | 一种深层低渗透油层稀油火驱水平井注气水平井采油工艺技术 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107045582A (zh) * | 2017-05-06 | 2017-08-15 | 东北石油大学 | 水平井分段多簇压裂诱导应力计算方法 |
CN107045582B (zh) * | 2017-05-06 | 2019-10-25 | 东北石油大学 | 水平井分段多簇压裂诱导应力计算方法 |
CN109386264A (zh) * | 2017-08-08 | 2019-02-26 | 魏志海 | 干热岩(egs)双井同向大垂深长水平段人工致裂换热系统 |
CN112253070A (zh) * | 2020-10-10 | 2021-01-22 | 中煤科工集团西安研究院有限公司 | 厚煤层顶底部联动水平井分段造缝洗煤消突方法 |
CN112253070B (zh) * | 2020-10-10 | 2023-08-15 | 中煤科工集团西安研究院有限公司 | 厚煤层顶底部联动水平井分段造缝洗煤消突方法 |
CN114293958A (zh) * | 2021-12-13 | 2022-04-08 | 常州大学 | 一种采用双水平井高效开发含底水稠油油藏的方法 |
CN114293958B (zh) * | 2021-12-13 | 2023-10-20 | 常州大学 | 一种采用双水平井高效开发含底水稠油油藏的方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2009018019A2 (en) | 2009-02-05 |
US7918269B2 (en) | 2011-04-05 |
CA2596463C (en) | 2010-11-23 |
US20110139444A1 (en) | 2011-06-16 |
CA2769709A1 (en) | 2009-02-01 |
CA2693754C (en) | 2012-10-09 |
AR067735A1 (es) | 2009-10-21 |
CA2693754A1 (en) | 2009-02-01 |
US8122953B2 (en) | 2012-02-28 |
CN101772618B (zh) | 2013-06-19 |
US20090032251A1 (en) | 2009-02-05 |
BRPI0814733A2 (pt) | 2019-04-09 |
WO2009018019A3 (en) | 2009-03-19 |
RU2423605C1 (ru) | 2011-07-10 |
US7647966B2 (en) | 2010-01-19 |
US20100071900A1 (en) | 2010-03-25 |
CA2596463A1 (en) | 2009-02-01 |
CA2769709C (en) | 2014-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101772618B (zh) | 重油储层经由水平井筒的排放 | |
CN101842550B (zh) | 在地层中形成至少一个大体平直的包裹体的方法 | |
Wang et al. | Impact of hydraulic fracturing on cement sheath integrity; A modelling approach | |
RU2470148C2 (ru) | Способ извлечения тяжелой нефти (варианты) | |
Lu et al. | A new method of drilling long boreholes in low permeability coal by improving its permeability | |
US7404441B2 (en) | Hydraulic feature initiation and propagation control in unconsolidated and weakly cemented sediments | |
US7866395B2 (en) | Hydraulic fracture initiation and propagation control in unconsolidated and weakly cemented sediments | |
US7640975B2 (en) | Flow control for increased permeability planes in unconsolidated formations | |
US20070199695A1 (en) | Hydraulic Fracture Initiation and Propagation Control in Unconsolidated and Weakly Cemented Sediments | |
US20150204171A1 (en) | Carbon dioxide energy storage and enhanced oil recovery | |
US20140096954A1 (en) | Method of developing subsurface barriers | |
Fjaer et al. | Mechanics of hydraulic fracturing | |
CA2829031A1 (en) | Enhanced hydrocarbon recovery from a single well by electrical resistive heating of a single inclusion in an oil sand formations | |
WO2023172823A2 (en) | Strengthening fracture tips for precision fracturing | |
US20140096951A1 (en) | Enhanced hydrocarbon recovery from a single well by electrical resistive heating of multiple inclusions in an oil sand formation | |
US20140110118A1 (en) | Inclusion propagation by casing expansion giving rise to formation dilation and extension | |
Rylance et al. | Tip Screen Out Fracturing Delivering Optimum Performance in Conventional Applications for 40 Years: Case Histories and Lessons Learned | |
Arbelaez-Londoño et al. | The Wormholes Formation During the Cold Heavy Oil Production with Sand (CHOPS) | |
HANAFI et al. | HYDRAULIC FRACTURE SIMULATION | |
Hocking et al. | Comparisons of Plane Propagation from Dilating Casing and Conventional Perforations when Stimulating the Milk River Formation | |
Zaki et al. | Geo-mechanics of batch injection in horizontal waste disposal wells-North Sea | |
Mohammadi et al. | OPTIMAL CONDITIONS FOR IMMISCIBLE RECYCLE GAS INJECTION PROCESS: A SIMULATION STUDY FOR ONE OF THE IRANIAN OIL RESERVOIRS (RESEARCH NOTE) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
ASS | Succession or assignment of patent right |
Owner name: HOCKING GRANT |
|
C41 | Transfer of patent application or patent right or utility model | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20100817 Address after: texas Applicant after: Halliburton Energy Services, Inc. Co-applicant after: Grant Hocking Address before: texas Applicant before: Halliburton Energy Services, Inc. |
|
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20130619 Termination date: 20170722 |
|
CF01 | Termination of patent right due to non-payment of annual fee |