RU2760746C1 - Способ разработки неоднородного пласта сверхвязкой нефти - Google Patents

Способ разработки неоднородного пласта сверхвязкой нефти Download PDF

Info

Publication number
RU2760746C1
RU2760746C1 RU2021117798A RU2021117798A RU2760746C1 RU 2760746 C1 RU2760746 C1 RU 2760746C1 RU 2021117798 A RU2021117798 A RU 2021117798A RU 2021117798 A RU2021117798 A RU 2021117798A RU 2760746 C1 RU2760746 C1 RU 2760746C1
Authority
RU
Russia
Prior art keywords
formation
injection
well
steam
wells
Prior art date
Application number
RU2021117798A
Other languages
English (en)
Inventor
Марат Инкилапович Амерханов
Нияз Анисович Аслямов
Марат Зуфарович Гарифуллин
Original Assignee
Публичное акционерное общество «Татнефть» имени В.Д. Шашина
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Публичное акционерное общество «Татнефть» имени В.Д. Шашина filed Critical Публичное акционерное общество «Татнефть» имени В.Д. Шашина
Priority to RU2021117798A priority Critical patent/RU2760746C1/ru
Application granted granted Critical
Publication of RU2760746C1 publication Critical patent/RU2760746C1/ru

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/16Enhanced recovery methods for obtaining hydrocarbons
    • E21B43/24Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection
    • E21B43/2405Enhanced recovery methods for obtaining hydrocarbons using heat, e.g. steam injection in association with fracturing or crevice forming processes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти в неоднородном пласте. Способ разработки неоднородного пласта сверхвязкой нефти, включающий бурение в продуктивном пласте паронагнетательной горизонтальной скважины и расположенной ниже горизонтальной параллельной добывающей скважины, проведение исследования в пробуренных скважинах и определение наличия слабопроницаемых и непроницаемых перемычек, гидродинамическое воздействие на перемычку с образованием гидродинамической связи между параллельными скважинами, закачку пара в скважины с образованием паровой камеры в пласте, закачку пара в нагнетательные скважины и отбор продукции пласта из добывающих скважин. Предварительно при строительстве скважин анализом кернов определяют давления образования трещин в перемычках и нарушения целостности кровли, исследованиями отбирают добывающие скважины, которые пересекают перемычки, спускают в каждую отобранную скважину оборудование для избирательного воздействия с отсечением по краям пакерами интервала скважины, взаимодействующего с перемычкой. Проводят предварительный прогрев пласта закачкой пара через соответствующую параллельную нагнетательную скважину, гидродинамическое воздействие на перемычку осуществляют закачкой пара через оборудование для избирательного воздействия с остановкой закачки через параллельную нагнетательную скважину и давлением, как минимум на 5% превосходящим давление образования трещин в соответствующей перемычке, но ниже давления нарушения целостности кровли пласта. После образования трещин в перемычке, достаточных для участия в разработке пласта, что определяют наличием гидродинамической связи с параллельной нагнетательной скважиной, оборудование для избирательного воздействия снимают и извлекают из добывающей скважины. При этом начинают закачку пара в параллельную нагнетательную скважину и переводят под закачку пара по всей длине и добывающую скважину до образования паровой камеры в пласте. Обеспечивается упрощение разработки пласта. 1 ил.

Description

Изобретение относится к нефтедобывающей промышленности и может найти применение при разработке залежи высоковязкой и битумной нефти в неоднородном пласте.
Известен способ разработки неоднородного пласта сверхвязкой нефти (патент RU №2678738, МПК E21B 43/27, E21B 43/24, E21B 7/04, E21B 47/06, E21B 49/00, опубл. 31.01.2019 Бюл. №4), включающий использование пары горизонтальных - нагнетательной и добывающей - скважин, горизонтальные участки которых размещены параллельно один над другим в вертикальной плоскости продуктивного пласта, оснащенных колоннами насосно-компрессорных труб - НКТ, закачку теплоносителя в разные интервалы горизонтальных стволов скважин, прогрев продуктивного пласта с созданием паровой камеры, отбор продукции через добывающую скважину по колоннам НКТ и контроль технологических параметров пласта и скважины, осуществляют равномерный прогрев паровой камеры путем регулирования режима закачки теплоносителя или отбора продукции скважин, причем до строительства горизонтальных скважин участок разбуривают сеткой оценочных вертикальных скважин, проводят комплексные геофизические исследования скважин - ГИС, по результатам обобщения полученных материалов и лабораторных исследований керна получают предварительные геометрические и геолого-физические параметры залежи сверхвязкой нефти, уточняют контуры нефтеносности, выявляют наличие уплотненных и глинистых пропластков и проектируют размещение пар одноустьевых горизонтальных скважин в участках пласта с наименьшим количеством таких пропластков, после строительства горизонтальных скважин в них также проводят ГИС по определению уплотненных и глинистых пропластков, а также нефтенасыщенности вдоль горизонтальных стволов парных скважин, причем концы колонн двух НКТ в нагнетательной скважине располагают в первой и второй половинах горизонтального ствола в зонах с наибольшей нефтенасыщенностью, а концы одной или двух колонн НКТ для закачки пара в добывающей скважине размещают со смещением по горизонтали относительно концов НКТ нагнетательной скважины не менее чем на 15 м, в нагнетательной скважине производят обработку призабойной зоны соляной кислотой и глинокислотой в тех частях, где между нагнетательной и добывающей скважинами выявлены наиболее обширные уплотненные и глинистые пропластки, после технологической выдержки, достаточной для растворения уплотнений и глинистых пропластков, в обе скважины через колонны НКТ закачивают пар до создания гидродинамической связи между скважинами, останавливают закачку на выдержку для термокапиллярной пропитки и остывания ствола добывающей скважины, в которой проводят термобарометрические измерения посредством ГИС, по результатам которых в горизонтальном стволе добывающей скважины выявляют переходные зоны с температурой между большим и меньшим прогревом, а среди выявленных зон определяют зону с изменением угла набора кривизны не более 2 градусов на 10 м, в которой размещают спускаемый на колонне НКТ насос, для контролирования процесса равномерного прогрева паровой камеры производят регулируемую закачку пара через колонны НКТ нагнетательной скважины и регулируемый отбор продукции насосом со съемом термограммы вдоль ствола добывающей скважины посредством оптоволоконного кабеля и замером температуры на приеме насоса при наличии датчика.
Недостатками данного способа являются узкая область применения из-за возможности использования только в пластах имеющим тонкие горизонтальные глинистые пропластки, которые можно расположить между добывающими и нагнетательными горизонтальными скважинами, и сложность реализации, так как нужно контролировать проводку горизонтальных стволов скважин, чтобы они находились за пределами пропластков.
Наиболее близким по технической сущности является способ разработки залежи сверхвязкой нефти с глинистой перемычкой (патент RU №2681796, МПК E21B 43/24, E21B 7/04, E21B 43/267, опубл. 12.03.2019 Бюл. №8), включающий бурение в продуктивном пласте паронагнетательной горизонтальной скважины и расположенной ниже горизонтальной добывающей скважины, проведение гидравлического разрыва пласта, закачку пара в нагнетательную скважину и отбор продукции из добывающей скважины, причем горизонтальные стволы длиной L добывающей и нагнетательной скважин размещают параллельно в вертикальной плоскости и под углом не более 15° в горизонтальной плоскости, при отсутствии гидродинамической связи между стволами добывающей и нагнетательной скважин при закачке пара в течение не более 12 месяцев бурят 1 или 2 вертикальные скважины, которые размещают в вертикальной плоскости на расстоянии (0,3-0,7) L от носка горизонтальных стволов скважин, а в горизонтальной плоскости на расстоянии не более 0,2 L от горизонтальных стволов скважин, проводят исследования и определяют наличие глинистой перемычки, препятствующей указанной гидродинамической связи, в данных вертикальных скважинах из продуктивной части отбирают образцы пород, в том числе глин, проводят геомеханические исследования, по результатам которых подбирают оптимальный дизайн, рабочие жидкости и проппант для гидроразрыва глинистой перемычки, гидроразрыв глинистой перемычки проводят таким образом, чтобы создать как горизонтальные, так и вертикальные трещины, затем вертикальные скважины осваивают закачкой пара в течение 1-6 месяцев, в последующем данные вертикальные скважины используют для контроля и регулирования разработки участка продуктивного пласта между горизонтальными стволами добывающей и нагнетательной скважин, а также для подачи химических реагентов с целью повышения нефтеизвлечения и/или блокирования обводнившихся участков продуктивного пласта.
Недостатками данного способа являются узкая область применения из-за возможности использования только в пластах имеющим тонкие горизонтальные глинистые пропластки, которые располагаются между добывающими и нагнетательными горизонтальными скважинами, сложность реализации, так как нужно контролировать проводку вертикальных стволов скважин для их эффективного воздействия на пропластки, и большие временные и финансовые затраты на строительство дополнительных вертикальных скважин.
Технической задачей предлагаемого изобретения является создание способа разработки неоднородного пласта сверхвязкой нефти, позволяющего упростить и, как следствие, удешевить разработку пласта за счет строительства горизонтальных стволов добывающих и нагнетательных скважин без учета строения пласта с пересечением добывающими скважинами слабопроницаемых или непроницаемых перемычек и воздействия для интенсификации добычи на перемычки из уже построенных стволов скважин.
Техническая задача решается способом разработки неоднородного пласта сверхвязкой нефти, включающим бурение в продуктивном пласте паронагнетательной горизонтальной скважины и расположенной ниже горизонтальной параллельной добывающей скважины, проведение исследования в пробуренных скважинах и определение наличие слабопроницаемых и непроницаемых перемычек, гидродинамическое воздействие на перемычку с образованием гидродинамической связи между параллельными скважинами, закачку пара в скважины с образованием паровой камеры в пласте, закачку пара в нагнетательные скважины и отбор продукции пласта из добывающих скважин.
Новым является то, что предварительно при строительстве скважин анализом кернов определяют давления образования трещин в перемычах и нарушения целостности кровли, исследованиями отбирают добывающие скважины, которые пересекают перемычки, спускают в каждую отобранную скважину оборудования для избирательного воздействия с отсечением по краям пакерами интервала скважины, взаимодействующего с перемычкой, при этом проводят предварительны прогреев пласта закачкой пара через соответствующую параллельную нагнетательную скважину, гидродинамическое воздействие на перемычку осуществляют закачкой пара через оборудование для избирательного воздействия с остановкой закачки через параллельную нагнетательную скважину и давлением как минимум на 5% превосходящим давление образования трещин в соответствующей перемычке, но ниже давления нарушения целостности кровли пласта, после образования трещин в перемычке, достаточных для участия в разработке пласта, что определяют наличием гидродинамической связи с параллельной нагнетательной скважиной, оборудование для избирательного воздействия снимают и извлекают из добывающей скважины, при этом начинают закачку пара в параллельную нагнетательную скважину и переводят под закачку пара по всей длине и добывающую скважину до образования паровой камеры в пласте.
На чертеже изображена схема реализации способа.
Конструктивные элементы и технологические соединения, не влияющие на реализацию способа, на чертеже не показаны.
Способ разработки неоднородного продуктивного пласта 1 сверхвязкой нефти включает в себя стандартные геофизические исследования (авторы на это не претендуют) с определением свойств пласта 1 и интервала залегания (по абсолютным и относительным отметкам). Очень редко встречаются полностью однородные пласты 1, чаще всего они имеют слабопроницаемые или непроницаемые перемычки 2, участки (не показаны) пласта 1 с которыми выбираются для контроля. В пласте 1 производят бурение по любой из известных сеток без учета строения пласта 1 паронагнетательных горизонтальных скважин 3 и расположенной ниже горизонтальных параллельных добывающих скважин 4. А на выбранных участках пласта 1 производят также при бурении скважин 3 и 4 отбор кернов. Анализом кернов в лабораторных условиях определяют давления образования трещин в перемычках 2 и нарушения целостности кровли 5 пласта 1. Закачкой пара в добывающие скважины 4 в выбранном участке пласта 1 отбирают добывающие скважины 4 с приемистостью как минимум на 20% меньшей средней по пласту 1, что свидетельствует взаимодействии отобранных добывающих скважин 4 с перемычкой 2. В каждой из отобранных добывающих скважинах 4 проводят геофизические исследования (например, измерение удельного сопротивления пород, индукционный каротаж, поляризация скважин или т.п. - авторы на это не претендуют) для определения краев интервала L добывающей скважины 4, взаимодействующего с перемычкой 2. Спускают в каждую отобранную добывающую скважину 4 оборудование 6 для избирательного воздействия (см. патенты RU №№74414, 94628, 2299970, 2734301 или т.п. - авторы на их конструкцию и способы установки не претендуют) с отсечением пакерами 7 и 8 по краям интервала L добывающей скважины 4, взаимодействующего с перемычкой 2. При этом проводят предварительный прогрев пласта 1 закачкой пара через соответствующую отобранной добывающей скважине 4 параллельную нагнетательную скважину 3. Осуществляют гидродинамическое воздействие на перемычку 2 закачкой в интервал L пара через оборудование 6 для избирательного воздействия давлением как минимум на 5% превосходящим давление образования трещин в соответствующей перемычке 2, но ниже давления нарушения целостности кровли 5 пласта 1 для исключения прорва пара через кровлю 5. При этом останавливают закачку пара через параллельную нагнетательную скважину 3, в результате пар, взаимодействуя с более холодной породой пласта 1 охлаждается и конденсируется, снижая давление вокруг нагнетательной скважины 3 и увеличивая перепад давлений между соответствующими парными скважинами 3 и 4, что способствует образования трещин в перемычке 2 именно между этими скважинами 3 и 4. Также снижается воздействие избыточным давлением на подошву 9 плата 1, которая при технологии паро-гравитационного воздействия (ПГВ) находится гораздо ближе кровли 5 к добывающей скважине 4 (например, на месторождениях Республики Татарстан не более 7 м от добывающей скважины 4), исключая тем самым нарушение целостности подошвы 9 пласта 1. После образования трещин в перемычке 2, достаточных для участия в разработке пласта 1, что определяют наличием гидродинамической связи с параллельной нагнетательной скважиной 3. Для этого в нагнетательной скважине 3 контролируют давление и/или уровень жидкости, рост которых свидетельствует о наличии гидродинамической связи с соответствующей добывающей скважиной 4. Температуру не измеряют, потому что, как показали исследования, фронт вытеснения опережает фронт прогрева в 9 - 13 раз (чем меньше толщина пласта 1, тем сильнее запаздывание) и является более информативным для определения гидродинамической связи между скважинами 3 и 4. После чего оборудование 6 для избирательного воздействия снимают и извлекают из добывающей скважины 4. При этом начинают закачку пара в параллельную нагнетательную скважину 3 и переводят под закачку пара по всей длине и добывающую скважину 4 до образования паровой камеры (не показана) в пласте 1. После чего продолжают закачку пара в нагнетательную скважину 3 и отбор продукции пласта 1 осуществляют из добывающей скважины 4 по известной технологии ПГВ.
Пример конкретного выполнения
На послойно-зонально-неоднородной Вишневской залежи сверхвязкой нефти с продуктивным пластом 1, находящейся на глубине 136 м, со средней эффективной нефтенасыщенной толщиной 17 м, пластовой температурой 8°С, давлением 0,44 МПа, нефтенасыщенностью 0,55 д. ед., пористостью 29% (коэффициент пористости - 0,29 доли ед), проницаемостью 2,478 мкм2, плотностью битума в пластовых условиях 979 кг/м3, вязкостью 27000 мПа⋅с, выбрали участок с продуктивными пропластками, разделенными слабопродуктивной (непроницаемым) перемычкой 2, с пористостью 8% (коэффициент пористости - 0,08 доли ед). В пласте 1 произвели бурение по рядной сетке паронагнетательных горизонтальных скважин 3 и расположенной ниже добывающих скважин 4, располагаемой на 2 м выше подошвы 9. На выбранном участке пласта 1 производят также при бурении скважин 3 и 4 отбор кернов. Анализом кернов в лабораторных условиях определили давления образования трещин в перемычках 2 (6 МПа) и нарушения целостности кровли 5 (11 МПа) пласта 1. Закачкой пара в добывающие скважины 4 в выбранном участке пласта 1 отбирали добывающую скважину 4 с приемистостью на 34% меньшей средней по пласту 1, что свидетельствует взаимодействии отобранной добывающей скважины 3 с перемычкой 2. В отобранной скважине 4 провели геофизические исследования для определения краев интервала L (98 м) добывающей скважины 4, взаимодействующего с перемычкой 2. Спустили в отобранную добывающую скважину 4 оборудование 6 для избирательного воздействия (см. патент RU №2299970) с отсечением пакерами 7 и 8 по краям интервала L добывающей скважины 4. Осуществляют гидродинамическое воздействие на перемычку 2 закачкой в интервал L пара (через оборудование 6 для избирательного воздействия давлением 8 МПа. При этом проводят предварительный прогрев пласта 1 закачкой пара с температурой 200°С и давлением 15 МПа через соответствующую добывающей скважине 4 нагнетательную скважину 3. Осуществили гидродинамическое воздействие на перемычку 2 закачкой в интервал L пара через оборудование 6 для избирательного воздействия давлением 8 МПа. При этом останавливают закачку пара через параллельную нагнетательную скважину 3, в результате пар, взаимодействуя с более холодной породой пласта 1 охлаждается и конденсируется, снижая давление вокруг нагнетательной скважины 3 до 0,2 МПа и увеличивая перепад давлений между соответствующими парными скважинами 3 и 4. После образования трещин в перемычке 2, достаточных для участия в разработке пласта 1, что определили ростом давления до 3 МПа и нагнетательной скважине 3, оборудование 6 для избирательного воздействия сняли распакеровав пакеры 7 и 8 и извлекли из добывающей скважины 4. При этом начали закачку пара в параллельную нагнетательную скважину 3 с температурой 200°С и давлением 16 МПа с переводом под закачку пара по всей длине добывающей скважины 4 до образования паровой камеры (определили термометрией пласта 1). После чего продолжили закачку пара в нагнетательную скважину 3 и отбор продукции пласта 1 осуществляли из добывающей скважины 4 по известной технологии ПГВ. При этом затраты на строительство добывающей скважины 4 с наличием перемычки 2 снизилось более 60% по сравнению с наиболее близким аналогом, на охват всего пласта 1 затраты снизились на 14%.
Предлагаемый способ разработки неоднородного пласта сверхвязкой нефти позволяет упростить и, как следствие, удешевить разработку пласта за счет строительства горизонтальных стволов добывающих и нагнетательных скважин без учета строения пласта с пересечением добывающими скважинами слабопроницаемых или непроницаемых перемычек и воздействия для интенсификации добычи на перемычки из уже построенных стволов скважин.

Claims (1)

  1. Способ разработки неоднородного пласта сверхвязкой нефти, включающий бурение в продуктивном пласте паронагнетательной горизонтальной скважины и расположенной ниже горизонтальной параллельной добывающей скважины, проведение исследования в пробуренных скважинах и определение наличия слабопроницаемых и непроницаемых перемычек, гидродинамическое воздействие на перемычку с образованием гидродинамической связи между параллельными скважинами, закачку пара в скважины с образованием паровой камеры в пласте, закачку пара в нагнетательные скважины и отбор продукции пласта из добывающих скважин, отличающийся тем, что предварительно при строительстве скважин анализом кернов определяют давления образования трещин в перемычках и нарушения целостности кровли, исследованиями отбирают добывающие скважины, которые пересекают перемычки, спускают в каждую отобранную скважину оборудование для избирательного воздействия с отсечением по краям пакерами интервала скважины, взаимодействующего с перемычкой, при этом проводят предварительный прогрев пласта закачкой пара через соответствующую параллельную нагнетательную скважину, гидродинамическое воздействие на перемычку осуществляют закачкой пара через оборудование для избирательного воздействия с остановкой закачки через параллельную нагнетательную скважину и давлением, как минимум на 5% превосходящим давление образования трещин в соответствующей перемычке, но ниже давления нарушения целостности кровли пласта, после образования трещин в перемычке, достаточных для участия в разработке пласта, что определяют наличием гидродинамической связи с параллельной нагнетательной скважиной, оборудование для избирательного воздействия снимают и извлекают из добывающей скважины, при этом начинают закачку пара в параллельную нагнетательную скважину и переводят под закачку пара по всей длине и добывающую скважину до образования паровой камеры в пласте.
RU2021117798A 2021-06-18 2021-06-18 Способ разработки неоднородного пласта сверхвязкой нефти RU2760746C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2021117798A RU2760746C1 (ru) 2021-06-18 2021-06-18 Способ разработки неоднородного пласта сверхвязкой нефти

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2021117798A RU2760746C1 (ru) 2021-06-18 2021-06-18 Способ разработки неоднородного пласта сверхвязкой нефти

Publications (1)

Publication Number Publication Date
RU2760746C1 true RU2760746C1 (ru) 2021-11-30

Family

ID=79174020

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2021117798A RU2760746C1 (ru) 2021-06-18 2021-06-18 Способ разработки неоднородного пласта сверхвязкой нефти

Country Status (1)

Country Link
RU (1) RU2760746C1 (ru)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813873C1 (ru) * 2023-07-11 2024-02-19 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи сверхвязкой нефти с использованием парных горизонтальных скважин

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2268356C1 (ru) * 2004-04-22 2006-01-20 ООО "ЛУКОЙЛ-Коми" Способ теплового воздействия на залежь высоковязкой нефти
EA010677B1 (ru) * 2003-11-03 2008-10-30 Эксонмобил Апстрим Рисерч Компани Способ извлечения углеводородов из непроницаемых нефтеносных сланцев
RU2344280C1 (ru) * 2007-04-02 2009-01-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ разработки месторождений высоковязких нефтей и битумов направленно-горизонтальными скважинами
WO2009027262A1 (de) * 2007-08-27 2009-03-05 Siemens Aktiengesellschaft Verfahren und vorrichtung zur in situ-förderung von bitumen oder schwerstöl
RU2395676C1 (ru) * 2009-06-05 2010-07-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки залежи битума
US7918269B2 (en) * 2007-08-01 2011-04-05 Halliburton Energy Services, Inc. Drainage of heavy oil reservoir via horizontal wellbore
RU2528760C1 (ru) * 2013-05-07 2014-09-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" Способ разработки изометрических залежей природного битума
RU2681796C1 (ru) * 2018-05-18 2019-03-12 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Способ разработки залежи сверхвязкой нефти с глинистой перемычкой
RU2687833C1 (ru) * 2018-07-25 2019-05-16 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи битуминозной нефти термическим воздействием на пласт

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA010677B1 (ru) * 2003-11-03 2008-10-30 Эксонмобил Апстрим Рисерч Компани Способ извлечения углеводородов из непроницаемых нефтеносных сланцев
RU2268356C1 (ru) * 2004-04-22 2006-01-20 ООО "ЛУКОЙЛ-Коми" Способ теплового воздействия на залежь высоковязкой нефти
RU2344280C1 (ru) * 2007-04-02 2009-01-20 Государственное образовательное учреждение высшего профессионального образования "Санкт-Петербургский государственный горный институт имени Г.В. Плеханова (технический университет)" Способ разработки месторождений высоковязких нефтей и битумов направленно-горизонтальными скважинами
US7918269B2 (en) * 2007-08-01 2011-04-05 Halliburton Energy Services, Inc. Drainage of heavy oil reservoir via horizontal wellbore
WO2009027262A1 (de) * 2007-08-27 2009-03-05 Siemens Aktiengesellschaft Verfahren und vorrichtung zur in situ-förderung von bitumen oder schwerstöl
RU2395676C1 (ru) * 2009-06-05 2010-07-27 Открытое акционерное общество "Татнефть" им. В.Д. Шашина Способ разработки залежи битума
RU2528760C1 (ru) * 2013-05-07 2014-09-20 Государственное бюджетное образовательное учреждение высшего профессионального образования "Альметьевский государственный нефтяной институт" Способ разработки изометрических залежей природного битума
RU2681796C1 (ru) * 2018-05-18 2019-03-12 Государственное бюджетное образовательное учреждение высшего образования "Альметьевский государственный нефтяной институт" Способ разработки залежи сверхвязкой нефти с глинистой перемычкой
RU2687833C1 (ru) * 2018-07-25 2019-05-16 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи битуминозной нефти термическим воздействием на пласт

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2813873C1 (ru) * 2023-07-11 2024-02-19 Публичное акционерное общество "Татнефть" имени В.Д. Шашина Способ разработки залежи сверхвязкой нефти с использованием парных горизонтальных скважин

Similar Documents

Publication Publication Date Title
US7451814B2 (en) System and method for producing fluids from a subterranean formation
US4633948A (en) Steam drive from fractured horizontal wells
US10196888B2 (en) Placement and uses of lateral assisting wellbores and/or kick-off wellbores
US3480079A (en) Well treating methods using temperature surveys
CA2986355A1 (en) Thermally induced low flow rate fracturing
US10087737B2 (en) Enhanced secondary recovery of oil and gas in tight hydrocarbon reservoirs
RU2387819C1 (ru) Способ разработки залежи вязкой нефти и битума
RU2567918C1 (ru) Способ разработки многопластового неоднородного нефтяного месторождения
Sun et al. The application of geomechanical SAGD dilation startup in a Xinjiang oil field heavy-oil reservoir
US10677036B2 (en) Integrated data driven platform for completion optimization and reservoir characterization
RU2513484C1 (ru) Способ разработки залежи вязкой нефти или битума
RU2681796C1 (ru) Способ разработки залежи сверхвязкой нефти с глинистой перемычкой
US3346048A (en) Thermal recovery method for oil sands
Parshall Barnett Shale showcases tight-gas development
Bosikov et al. Comprehensive assessment of hydraulic fracturing technology efficiency for well construction during hydrocarbon production
RU2678738C1 (ru) Способ разработки неоднородного пласта сверхвязкой нефти
RU2760746C1 (ru) Способ разработки неоднородного пласта сверхвязкой нефти
RU2760747C1 (ru) Способ разработки неоднородного пласта сверхвязкой нефти
Ezenweichu et al. THE CAUSES, EFFECTS AND MINIMIZATION OF FORMATION DAMAGE IN HORIZONTAL WELLS.
RU2467161C1 (ru) Термошахтный способ разработки трещиноватой залежи высоковязкой нефти
RU2693055C1 (ru) Способ разработки залежи высоковязкой нефти с водонасыщенными зонами
RU2486335C1 (ru) Способ разработки залежи сверхвязкой нефти с термическим воздействием
RU2652245C1 (ru) Способ разработки залежи битуминозной нефти
RU2623407C1 (ru) Способ разработки залежи битуминозной нефти
GB2539002A (en) Improvements in or relating to hydrocarbon production from shale