CN101767061A - 一种静电除尘用新型高频高压电源 - Google Patents

一种静电除尘用新型高频高压电源 Download PDF

Info

Publication number
CN101767061A
CN101767061A CN200910155325A CN200910155325A CN101767061A CN 101767061 A CN101767061 A CN 101767061A CN 200910155325 A CN200910155325 A CN 200910155325A CN 200910155325 A CN200910155325 A CN 200910155325A CN 101767061 A CN101767061 A CN 101767061A
Authority
CN
China
Prior art keywords
frequency
circuit
power supply
control
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200910155325A
Other languages
English (en)
Other versions
CN101767061B (zh
Inventor
张浩然
丘杰凡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Normal University CJNU
Original Assignee
Zhejiang Normal University CJNU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Normal University CJNU filed Critical Zhejiang Normal University CJNU
Priority to CN2009101553256A priority Critical patent/CN101767061B/zh
Publication of CN101767061A publication Critical patent/CN101767061A/zh
Application granted granted Critical
Publication of CN101767061B publication Critical patent/CN101767061B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

本发明提供一种静电除尘用新型高频高压电源,包括整流模块、负载模块、设在整流模块与负载模块之间的若干个并联的电源变换电路模块,所述整流模块与负载模块之间还设有控制回路模块。能够克服传统工频电源的缺点和现有高频电源的不足,可靠性好,功率大。

Description

一种静电除尘用新型高频高压电源
技术领域
本发明涉及一种静电除尘用新型高频高压电源。
背景技术
随着我国工业化规模的不断提高,带来了严重的空气污染问题,治理工业粉尘污染的高压静电除尘器因除尘效率高、能耗低、维修管理方便等,越来越受到人们的重视。高压供电电源是静电除尘器的核心部分,其供电方式、运行方式及其控制方式,对静电除尘器的除尘效率和运行稳定性具有重要的影响。目前静电除尘器所使用的高压供电电源基本上都是采用输入为单相的可控硅工频相控电源,而这种电源的缺点是明显的:电源的转换效率低;会造成输入供电的不平衡;供电波形波动大,闪烙电压低,除尘的效率不高。最关键的是,2004年我国火力电厂粉尘排放标准由原来90年代的200毫克/立方米降低至50毫克/立方米,如果严格执行50毫克/立方米的排放标准,采用传统的电源难以达到要求,提高除尘效率、降低运行能耗的关键是采用新一代的电源技术。
近几年,大家已经开始认识到高频高压电源用于电除尘的一些突出的优点。很多研究报告也都显示高频高压电源能够显著提高除尘的效率,能够大大提高功率因数。然而与其他应用领域有所不同,电除尘的环境及其负载特性对高频高压电源提出了极为苛刻的要求。首先是电除尘用高频高压电源只能安装在室外而且置于房顶,电源的设计必须考虑室外环境。除了负载的动态变化范围大之外,电源必须能承受多达每秒一次的频繁放电也是一个苛刻的要求。目前我国几家企业推出的高频高压电源只是局限于小功率的,电流大于800MA(毫安)以后电源的可靠性、功率管的寿命和散热就遇到了很多问题,很难保持长时间可靠地运行。
发明内容
本发明所要解决的技术问题在于提供一种静电除尘用新型高频高压电源,能够克服传统工频电源的缺点和现有高频电源的不足,可靠性好,功率大。
为解决上述现有的技术问题,本发明采用如下方案:一种静电除尘用新型高频高压电源,包括整流模块、负载模块、设在整流模块与负载模块之间的若干个并联的电源变换电路模块,所述整流模块与负载模块之间还设有控制回路模块。电源变换电路模块的并联结构和控制回路的两级结构能有效地解决高频高压电源的大功率化问题和高可靠性问题。
作为优选,所述整流模块包括配电开关、与配电开关连接的三相工频整流器、与三相工频整流器连接的滤波器。
作为优选,所述电源变换电路模块包括IGBT(绝缘栅双极型晶体管)全桥逆变器、串并联谐振(简称LCC谐振)元件、高频升压变压器、高频整流桥。每个电源变换电路模块内部的构成和参数是相同的,电源的输出电流被平均地分配到这若干个电源变换电路模块中,这些电源变换电路模块由同一个控制回路模块控制,一个电源变换电路模块的损坏和停止工作不会对另外的模块产生影响。
作为优选,所述控制回路模块包括DSP(数字信号处理器)芯片、谐振变换器控制电路构成两级控制结构。控制电路分成两级控制,上层DSP28335控制电路和底层谐振逆变控制电路,上层控制电路不直接控制底层主回路,底层谐振逆变控制电路相对于上层控制电路来说具有一定的独立性。谐振逆变控制电路采用专用ASIC芯片,DSP系统的工作异常不会造成底层谐振控制电路的异常,增强了控制电路工作的可靠性。
作为优选,所述DSP芯片上设有LCD显示器(液晶显示器)、键盘、通信电路,所述DSP芯片与整流模块、负载模块之间设有电流电压采样电路。
作为优选,所述谐振逆变控制电路中采用专用硬件电路来实现短路检测和控制脉冲关断,综合利用电源输出的直流电压U2和直流电流I2去判断短路,并综合利用短路和故障信号、控制脉冲OUTA、OUTB信号共同去控制关断控制脉冲输出。
作为优选,所述谐振变换器控制电路与各电源变换电路模块之间设有驱动保护电路。谐振变换器控制电路与驱动保护电路之间利用射随器来实现隔离。
有益效果:
本发明采用上述技术方案提供一种静电除尘用新型高频高压电源,能够克服传统工频电源的缺点和现有高频电源的不足,可靠性好,功率大。
说明书附图
图1为本发明的结构示意图;
图2为本发明中电源并联模块结构示意图;
图3为本发明中电源变换电路示意图;
图4是闪烙短路检测与停止IGBT脉冲信号电路图;
图5是本发明中谐振逆变器控制电路图。
具体实施方式
如图1至图5所示,一种静电除尘用新型高频高压电源,包括整流模块1、负载模块2、设在整流模块1与负载模块2之间的若干个并联的电源变换电路模块3,所述整流模块1与负载模块2之间还设有控制回路模块4。所述整流模块1包括配电开关11、与配电开关11连接的三相工频整流器12、与三相工频整流器12连接的滤波器13。所述电源变换电路模块3包括IGBT全桥逆变器31、串并联谐振元件32、高频升压变压器33、高频整流桥34。所述控制回路模块4包括DSP芯片41、谐振变换器控制电路42构成两级控制结构。所述DSP芯片41上设有LCD显示器43、键盘44、通信电路45,所述DSP芯片41与整流模块1、负载模块2之间设有电流电压采样电路46。所述谐振逆变控制电路42中采用专用硬件电路来实现短路检测和控制脉冲关断,综合利用电源输出的直流电压U2和直流电流I2去判断短路,并综合利用短路和故障信号、控制脉冲OUTA、OUTB信号共同去控制关断控制脉冲输出。所述谐振变换器控制电路42与各电源变换电路模块3之间设有驱动保护电路47,谐振变换器控制电路42与驱动保护电路47之间利用射随器来实现隔离。
高频高压电源的主要变流经过是AC-DC-AC-AC-DC,其中DC-AC高频逆变电路的实现和AC-AC高频升压变压器的实现是两个难点,尤其是大功率的高频高压电源,主回路的电流大,有分布参数效应,给开关管的开通、关断和散热带来一系列的问题,不能保证开关管的长时间可靠工作,另外,大功率高频升压变压器也是一个难点,功率越大,磁芯里面的磁滞损耗和涡流损耗很大,产生的热量很难快速散出去,而除尘电源要一天24小时不间断工作,变压器升到70度温度时就处于危险工作状态。这两点就制约了高频电源的大功率化和长时间可靠运行,造成了我们国家高频电源超过了1000MA输出能力的很少,即使研制出来,由于不能解决主功率开关管的散热问题、可靠开关问题、变压器散热问题,不能长时间可靠运行。本发明立足于现在的主功率开关管和变压器磁芯损耗的制约现实,提出模块化并联式高频电源的思路,把大功率的高频电源中的逆变部分和变压器部分分成几个小功率的逆变电路和变压器来实现,本发明是功率变换电路的直接并联,不是串联,也不是串并联,每个功率变换模块可以输出80000V/500MA直流电,N(N代表若干,N=1,2,3,…)个模块并联后,可以有80000V/500*N MA直流电输出能力,在现有功率开关管和变压器散热问题的制约下,解决了静电除尘高频高压电源的大功率问题,并且提高了高频电源的可靠性。
本发明的电源变换主回路如图3,主要变流过程是AC-DC-AC-AC-DC,其中B部分是工频整流器,把三相50Hz工频电网电源整流,再经过一个电容平滑滤波,变成直流电,供给各个模块电源变换电路,B部分是N个模块电源变换电路共用的,A部分是模块电源变换电路的内部电路图,每个并联模块都有一个逆变桥、LCC谐振电路、高频升压变压器、高频整流桥,在高频整流桥的输出点处,N个模块的输出并联,然后给除尘器本体供电。这样,大功率高频电源的设计问题就转化为对每个模块电源的设计和控制问题,以及各模块输出的均流问题。
LCC谐振电路具有较小的开关损耗和较高的效率,尤其是具有抗负载短路与打火的优点,很适合高压电源的应用领域。在高压电源的应用中LCC谐振比串联谐振(简称LC谐振)有很多的优势,有并联电容的存在可以减小正向谐振电流的峰值,并且LCC谐振电路具有短路和开路保护功能。LCC串并联谐振有两种工作方式,一种是谐振电流连续的工作方式,另一种是谐振电流断续的工作方式。当LCC谐振电路工作在连续模式时,负载电容对电路的影响很大,并且主回路开关管实现软开关比较困难,而且在连续模式下控制复杂,因此本发明让LCC谐振电路工作在断续模式,这在控制上非常容易实现,只要满足开关频率
Figure G2009101553256D00051
Figure G2009101553256D00052
谐振频率即可,控制策略是调频调压,开关频率的下限是0,上限是
Figure G2009101553256D00053
具体实现方法是定宽调频,在断续工作模式下,可以很容易实现主回路功率开关管的零电流零电压开关,提高主回路工作效率和可靠性。另外工作在断续模式下还有一个最大的好处是,每个模块变换电路的输出平均电流是一个常数,近似恒流源的特性,在理论上可以证明,每个模块的平均输出电流为:
Io=8fs CsVi/n×1-0.5kVo/(Vi-Vo)
其中fs为开关频率,Cs为串联谐振电容,Vi为逆变桥输入直流电压,n为高频升压变压器变比,k为串联谐振电容与并联谐振电容之比。Vo为输出电压,可以从上式看出,当N个模块如图2那样并联时,每个模块的Vi和Vo相同,在选取参数时使N个模块的Cs、k、n相同,再用同一个控制器去控制N个模块电路,即开关频率fs相同,这样就能保证N个模块电路并联时有相同的输出电流,自然就能做到并联时的均流效果,这是本发明的重要理论依据。
解决完并联模块的均流效果后,就要解决每个模块电路的控制问题,本发明从提高控制电路的可靠性出发,不用DSP直接发脉冲去控制逆变电路,而是采用一块谐振电路专用控制芯片U1去控制N个电路模块,如图5,Vin是从主控制芯片DSP过来的控制信号,控制芯片U1根据这一信号,发出PWM控制脉冲OUTA和OUTB,脉冲的频率随Vin的变化而变化,其变化范围由R1、R2、C2、C4、C5来决定,脉冲的宽度由C3、R3和由J1过来的谐振电流互感器的信号共同决定,脉冲OUTA和OUTB经过一个由高频三极管组成的射随电路后,被连接到N个驱动电路去驱动N个模块电路的主开关功率管,两个射随器可以有效阻止驱动电路对控制芯片U1的干扰,使U1能稳定可靠地工作,如果有故障信号STOP时,控制芯片U1关闭脉冲的输出,停止电源主回路的工作。这种由DSP控制U1,U1再去控制N个变换电路的控制结构有很大的优点,即使主控芯片DSP由于受到干扰工作不正常,由U1组成的控制电路还可以正常的工作,保证电源主回路的稳定工作,DSP是一个由软、硬件组成的微处理器结构,是非常容易受到干扰的,如果直接由它来发脉冲去控制主回路的功率开关管,一旦由于DSP受到干扰,发出错误控制脉冲,有可能直接损坏电源的主回路,而本发明采用的谐振电路控制芯片U1是一个纯硬件实现的专用ASIC芯片,由于里面没有软件,抗干扰能力大大提高,本发明又加了一个射随电路来隔离控制电路和驱动电路,进一步增加了控制的可靠性。这种由DSP+U1的双级控制结构,即使DSP受到干扰,工作异常,造成Vin信号异常,对U1的影响也不大,因为由U1组成的控制电路本身对发出的控制脉冲有一个范围的限制,频率和宽度的范围由R1、R2、C2、C4、C5、C3、R3来决定,只要在选择参数时,把脉冲的频率和宽度限制在主回路能正常工作的范围即可。
静电除尘电源的负载除尘器本体经常会发生短路打火,这时需要及时判断负载是否发生短路,及时去关闭电源输出,本发明在谐振逆变控制电路中设计了硬件短路判断电路和关断控制脉冲电路,如图4所示,U2和I2分别是高频高压电源输出的直流电压和直流电流,本发明采用U2和I2综合判断是否发生短路。当输出电流I2达到一定的上限阈值,即可以认为发生短路,但对于小火花的短路,有时候电流没有上升太高,有可能没有达到设定的阈值,单靠电流信号就不行了,本发明又引进电压信号,通过检测电压信号下降速度电压的变化率达到一个阈值,即可认为发生了短路,这样就能及时检测到小火花的短路和大火花的短路,在检测到发生短路或其他过流过压等故障后,本发明并不立即关闭控制脉冲OUTA和OUTB,因为如果在关闭脉冲的时候,主回路的谐振电流正处在谐振峰值时,突然关闭功率开关管,电流的突变会在功率开关管两侧造成很高的电压尖峰,很容易击穿损坏功率开关管,因此本发明在检测到短路和其他故障信号后,利用控制脉冲OUTA和OUTB去控制这个信号,如图5所示,当OUTA和OUTB均为低电平时,让短路和其他故障信号通过去关闭功率开关管,因为当OUTA和OUTB均为低电平时,主回路已经完成一个谐振过程,谐振电流为零,此时关闭功率开关管是零电流软关断,可以可靠地安全地关断功率开关管。当OUTA和OUTB均为高电平时,通过与非门U3:A阻断短路和其他故障信号,因为此时主回路正处于谐振过程,谐振电流很大,此时不宜关断功率开关管,等到主回路完成一个谐振过程,当OUTA和OUTB再次变成低电平时,再去关断功率管。本发明的这一措施进一步加强了所设计电源的控制回路和主回路工作的可靠性。
除了底层的逆变电路的控制电路之外,本发明可以在以DSP芯片为核心的上层控制电路上设置人机接口电路、通信电路、模拟信号采集电路等,完成高频高压电源的状态变量采集、状态显示、指令输入、与上位机的交互通信,以便完成远程监控。

Claims (7)

1.一种静电除尘用新型高频高压电源,其特征在于:包括整流模块(1)、负载模块(2)、设在整流模块(1)与负载模块(2)之间的若干个并联的电源变换电路模块(3),所述整流模块(1)与负载模块(2)之间还设有控制回路模块(4)。
2.根据权利要求1所述的一种静电除尘用新型高频高压电源,其特征在于:所述整流模块(1)包括配电开关(11)、与配电开关(11)连接的三相工频整流器(12)、与三相工频整流器(12)连接的滤波器(13)。
3.根据权利要求1所述的一种静电除尘用新型高频高压电源,其特征在于:所述电源变换电路模块(3)包括IGBT全桥逆变器(31)、串并联谐振元件(32)、高频升压变压器(33)、高频整流桥(34)。
4.根据权利要求1所述的一种静电除尘用新型高频高压电源,其特征在于:所述控制回路模块(4)包括DSP芯片(41)、谐振变换器控制电路(42)构成两级控制结构。
5.根据权利要求4所述的一种静电除尘用新型高频高压电源,其特征在于:所述DSP芯片(41)上设有LCD显示器(43)、键盘(44)、通信电路(45),所述DSP芯片(41)与整流模块(1)、负载模块(2)之间设有电流电压采样电路(46)。
6.根据权利要求4所述的一种静电除尘用新型高频高压电源,其特征在于:所述谐振逆变控制电路(42)中采用专用硬件电路来实现短路检测和控制脉冲关断,综合利用电源输出的直流电压和直流电流去判断短路,并综合利用短路和故障信号、控制脉冲信号共同去控制关断下一个控制脉冲输出。
7.根据权利要求4所述的一种静电除尘用新型高频高压电源,其特征在于:所述谐振变换器控制电路(42)与各电源变换电路模块(3)之间设有驱动保护电路(47),谐振变换器控制电路(42)与驱动保护电路(47)之间利用射随器来实现隔离。
CN2009101553256A 2009-12-21 2009-12-21 一种静电除尘用新型高频高压电源 Expired - Fee Related CN101767061B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009101553256A CN101767061B (zh) 2009-12-21 2009-12-21 一种静电除尘用新型高频高压电源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009101553256A CN101767061B (zh) 2009-12-21 2009-12-21 一种静电除尘用新型高频高压电源

Publications (2)

Publication Number Publication Date
CN101767061A true CN101767061A (zh) 2010-07-07
CN101767061B CN101767061B (zh) 2011-12-07

Family

ID=42500251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009101553256A Expired - Fee Related CN101767061B (zh) 2009-12-21 2009-12-21 一种静电除尘用新型高频高压电源

Country Status (1)

Country Link
CN (1) CN101767061B (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954313A (zh) * 2010-09-08 2011-01-26 上海理工大学 一种用于电除尘的高频高压开关电源
CN102857109A (zh) * 2012-08-28 2013-01-02 华南理工大学 一种基于dsp的大功率llc谐振全桥变换器
CN103248260A (zh) * 2013-05-20 2013-08-14 镇江天力变压器有限公司 大功率高频高压电源
CN103394412A (zh) * 2013-08-06 2013-11-20 金华大维电子科技有限公司 一种电除尘用高频脉冲功率电源
CN103558783A (zh) * 2013-10-21 2014-02-05 大连德维电子科技有限公司 电除尘用高频高压电源及控制方法
CN103595264A (zh) * 2013-10-21 2014-02-19 大连德维电子科技有限公司 具有现场手操系统的高频电源
CN103736592A (zh) * 2014-01-24 2014-04-23 镇江天力变压器有限公司 电除尘高频电源自动控制系统
CN104190548A (zh) * 2014-09-29 2014-12-10 长沙天瑞能源科技有限公司 静电除尘器高压脉冲供电系统
CN104991146A (zh) * 2015-07-20 2015-10-21 国电环境保护研究院 湿式静电除尘器极配伏安特性实验台
CN105042877A (zh) * 2015-08-17 2015-11-11 沈阳宇涛能源装备有限公司 一种电磁管道加热方法及加热装置
CN105797856A (zh) * 2016-04-01 2016-07-27 长兴友邦电器有限公司 一种带通讯及监测功能的高压静电除尘装置
CN107017791A (zh) * 2017-06-14 2017-08-04 山东阅芯电子科技有限公司 高压大电流测试电源
CN107166548A (zh) * 2017-05-12 2017-09-15 华南理工大学 基于无线的智能化复合式空气净化器系统及其控制方法
CN108499739A (zh) * 2017-09-30 2018-09-07 江森自控空调冷冻设备(无锡)有限公司 高压电源电路、高压电源板以及控制高压电压输出的方法
CN108722673A (zh) * 2018-07-18 2018-11-02 浙江佳环电子有限公司 负载可调的高频电源调试模拟电场
CN108927288A (zh) * 2018-06-14 2018-12-04 杭州电子科技大学 一种高压除尘电源
CN110932552A (zh) * 2018-09-20 2020-03-27 株洲中车时代电气股份有限公司 一种llc谐振电路的延时保护方法
CN112138872A (zh) * 2020-09-16 2020-12-29 北京瀚悦达科技股份有限公司 一种应用于净化工程的智能化高压静电场电源
CN112156893A (zh) * 2020-09-23 2021-01-01 珠海格力电器股份有限公司 一种电净化组件升压异常判定装置及方法
CN112582908A (zh) * 2020-12-16 2021-03-30 厦门锐传科技有限公司 一种模块化电源柜

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2713675C2 (de) * 1977-03-28 1984-08-23 Siemens AG, 1000 Berlin und 8000 München Stromversorgung für einen Elektroabscheider
JP2561453B2 (ja) * 1983-02-07 1996-12-11 住友重機械工業株式会社 電気集塵機用パルス電源
CN2167784Y (zh) * 1993-03-11 1994-06-08 刘坤明 高频变换静电电源装置
CN2852523Y (zh) * 2005-11-22 2006-12-27 福建龙净环保股份有限公司 电除尘用高频高压电源
CN201200931Y (zh) * 2008-05-26 2009-03-04 马崇伟 高频高压静电除尘器的电源装置
CN201625583U (zh) * 2009-12-21 2010-11-10 浙江师范大学 一种静电除尘用新型高频高压电源

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101954313B (zh) * 2010-09-08 2013-01-23 上海理工大学 一种用于电除尘的高频高压开关电源
CN101954313A (zh) * 2010-09-08 2011-01-26 上海理工大学 一种用于电除尘的高频高压开关电源
CN102857109A (zh) * 2012-08-28 2013-01-02 华南理工大学 一种基于dsp的大功率llc谐振全桥变换器
CN102857109B (zh) * 2012-08-28 2016-04-13 华南理工大学 一种基于dsp的大功率llc谐振全桥变换器
CN103248260A (zh) * 2013-05-20 2013-08-14 镇江天力变压器有限公司 大功率高频高压电源
CN103394412B (zh) * 2013-08-06 2015-12-09 金华大维电子科技有限公司 一种电除尘用高频脉冲功率电源
CN103394412A (zh) * 2013-08-06 2013-11-20 金华大维电子科技有限公司 一种电除尘用高频脉冲功率电源
CN103595264B (zh) * 2013-10-21 2016-03-16 金华大维电子科技(大连)有限公司 具有现场手操系统的高频电源
CN103595264A (zh) * 2013-10-21 2014-02-19 大连德维电子科技有限公司 具有现场手操系统的高频电源
CN103558783A (zh) * 2013-10-21 2014-02-05 大连德维电子科技有限公司 电除尘用高频高压电源及控制方法
CN103558783B (zh) * 2013-10-21 2017-02-15 金华大维电子科技(大连)有限公司 电除尘用高频高压电源及控制方法
CN103736592A (zh) * 2014-01-24 2014-04-23 镇江天力变压器有限公司 电除尘高频电源自动控制系统
CN104190548A (zh) * 2014-09-29 2014-12-10 长沙天瑞能源科技有限公司 静电除尘器高压脉冲供电系统
CN104991146A (zh) * 2015-07-20 2015-10-21 国电环境保护研究院 湿式静电除尘器极配伏安特性实验台
CN105042877A (zh) * 2015-08-17 2015-11-11 沈阳宇涛能源装备有限公司 一种电磁管道加热方法及加热装置
CN105042877B (zh) * 2015-08-17 2018-08-28 沈阳宇涛能源装备有限公司 一种电磁管道加热方法及加热装置
CN105797856A (zh) * 2016-04-01 2016-07-27 长兴友邦电器有限公司 一种带通讯及监测功能的高压静电除尘装置
CN107166548A (zh) * 2017-05-12 2017-09-15 华南理工大学 基于无线的智能化复合式空气净化器系统及其控制方法
CN107166548B (zh) * 2017-05-12 2022-11-18 华南理工大学 基于无线的智能化复合式空气净化器系统及其控制方法
CN107017791A (zh) * 2017-06-14 2017-08-04 山东阅芯电子科技有限公司 高压大电流测试电源
CN108499739A (zh) * 2017-09-30 2018-09-07 江森自控空调冷冻设备(无锡)有限公司 高压电源电路、高压电源板以及控制高压电压输出的方法
CN108927288A (zh) * 2018-06-14 2018-12-04 杭州电子科技大学 一种高压除尘电源
CN108722673A (zh) * 2018-07-18 2018-11-02 浙江佳环电子有限公司 负载可调的高频电源调试模拟电场
CN110932552A (zh) * 2018-09-20 2020-03-27 株洲中车时代电气股份有限公司 一种llc谐振电路的延时保护方法
CN110932552B (zh) * 2018-09-20 2021-09-28 株洲中车时代电气股份有限公司 一种llc谐振电路的延时保护方法
CN112138872A (zh) * 2020-09-16 2020-12-29 北京瀚悦达科技股份有限公司 一种应用于净化工程的智能化高压静电场电源
CN112156893A (zh) * 2020-09-23 2021-01-01 珠海格力电器股份有限公司 一种电净化组件升压异常判定装置及方法
CN112156893B (zh) * 2020-09-23 2021-07-30 珠海格力电器股份有限公司 一种电净化组件升压异常判定装置及方法
CN112582908A (zh) * 2020-12-16 2021-03-30 厦门锐传科技有限公司 一种模块化电源柜

Also Published As

Publication number Publication date
CN101767061B (zh) 2011-12-07

Similar Documents

Publication Publication Date Title
CN101767061B (zh) 一种静电除尘用新型高频高压电源
CN201625583U (zh) 一种静电除尘用新型高频高压电源
CN204733095U (zh) 一种两级变匝比高频隔离光伏逆变器
CN205666668U (zh) 一种交错模式的模块化并联均流高效充电模块
He et al. Design and implementation of an energy feedback digital device used in elevator
CN204967652U (zh) 一种地铁能量回馈装置
CN101980437A (zh) 一种五电平并网逆变器
CN202410836U (zh) 一种静电除尘用可变频中频电源
CN101127491A (zh) 基于大功率igbt的特高压调频谐振试验电源
CN104377982B (zh) 一种零电压开关Heric型非隔离光伏并网逆变器
CN206992982U (zh) 一种t型变换电路和相应的三相变换电路
CN102755931A (zh) 静电除尘用可变频中频电源
CN201699602U (zh) 一种大功率单回路逆变软开关弧焊电源
CN102097970B (zh) 一种软开关逆变电路及其控制方法
CN102684522A (zh) 一种非隔离光伏并网逆变器及其控制方法
CN102281010A (zh) 一种大功率单回路逆变软开关弧焊电源
CN201699603U (zh) 用于单晶硅炉的高频电源
Zhao et al. Summary and prospect of technology development of MVDC and LVDC distribution technology
CN103337975A (zh) 电流源换流器及其控制方法
CN105991009A (zh) 一种基于串联压接型igbt的主动均压控制方法
CN104242666A (zh) 一种新型逆变焊接电源
CN204928612U (zh) 一种带有辅助谐振电路的光伏发电装置
CN206415752U (zh) 高功率密度高效率wbg弧焊逆变器
CN201904737U (zh) 一种谐振直流环节逆变器
CN213959968U (zh) 一种关于能量路由器拓扑结构的delta整流器

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20141221

EXPY Termination of patent right or utility model