CN101752455B - Method of manufacturing a solar cell - Google Patents

Method of manufacturing a solar cell Download PDF

Info

Publication number
CN101752455B
CN101752455B CN 200810204622 CN200810204622A CN101752455B CN 101752455 B CN101752455 B CN 101752455B CN 200810204622 CN200810204622 CN 200810204622 CN 200810204622 A CN200810204622 A CN 200810204622A CN 101752455 B CN101752455 B CN 101752455B
Authority
CN
Grant status
Grant
Patent type
Prior art keywords
single crystal
polysilicon layer
crystal substrate
solar cell
manufacturing
Prior art date
Application number
CN 200810204622
Other languages
Chinese (zh)
Other versions
CN101752455A (en )
Inventor
肖德元
Original Assignee
中芯国际集成电路制造(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • Y02P70/52Manufacturing of products or systems for producing renewable energy
    • Y02P70/521Photovoltaic generators

Abstract

本发明提供太阳能电池的制造方法,包括步骤:在单晶衬底上沉积多晶硅层;从多晶硅层一侧向单晶衬底上注入氢离子,在所述单晶衬底内形成空洞;通过离子注入在所述多晶硅层内形成相互接触的P型多晶硅层和N型多晶硅层;在所述多晶硅层远离所述单晶衬底的一侧上形成第一电极;对所述单晶衬底和多晶硅层进行热退火;剥离所述单晶衬底;在剥离了单晶衬底的多晶硅层远离所述第一电极的一侧上形成第二电极结构。 The present invention provides a method for manufacturing a solar cell, comprising the steps of: depositing a polysilicon layer on a single crystal substrate; implanting hydrogen ions from the polysilicon layer side onto a single crystal substrate, forming a cavity in said monocrystalline substrate; by ion injected in the polysilicon layer forming the inner contact with each other P-type polycrystalline silicon layer and the N-type polysilicon layer; in the polysilicon layer away from the single crystal substrate on a side forming a first electrode; the single crystal substrate and polysilicon layer is thermally annealed; detaching the single crystal substrate; peeling polysilicon layer single crystal substrate away from the second electrode structure is formed on the side of the first electrode. 与现有技术相比,本发明将形成太阳能电池PN结的多晶硅层生长在单晶衬底上,由于晶格常数匹配更佳,因而生长出的多晶硅层中晶粒尺寸较大,可以提高太阳能电池的性能。 Compared with the prior art, the present invention is to form a polycrystalline silicon layer of the solar cell a PN junction polysilicon layer is grown on a single crystal substrate, since the lattice constant matched better, thus grown in larger crystal size, can be improved solar battery performance. 并且,单晶衬底可以剥离,因而可以降低制造成本。 Further, the single crystal substrate can be peeled off, it is possible to reduce the manufacturing cost.

Description

太阳能电池的制造方法 Method of manufacturing a solar cell

技术领域 FIELD

[0001] 本申请涉及半导体制造领域,尤其涉及太阳能电池的制造方法。 [0001] The present application relates to semiconductor manufacturing, and more particularly relates to a method of manufacturing a solar cell. 背景技术 Background technique

[0002] 鉴于常规能源供给的有限性和环保压力的增加,世界上许多国家掀起了开发和利用新能源的热潮。 [0002] In view of the limited increase and environmental pressures of conventional energy supply, many of the world countries set off a wave of development and utilization of new energy sources. 在新能源中,太阳能是一种清洁、无污染、取之不尽用之不竭的绿色能源, 世界各国对此都很重视并作了大量的研究,在能源日益紧缺的当今世界,太阳能具有非常广阔的发展前景。 In the new energy, the solar energy is a clean, non-polluting, inexhaustible supply of green energy, all over the world to this very seriously and done a lot of research, in today's world of growing energy shortage, solar energy has very broad prospects for development.

[0003] 现有的太阳能电池单元的结构如图1所示。 Structure [0003] The conventional solar cell is shown in FIG. 半导体衬底100上具有轻掺杂的浅扩散区102,以及大小不同的重掺杂深扩散的沟槽106和110。 Having a lightly-doped shallow diffusion region 102, and different sizes of the heavily doped deep diffusion trenches 106 and 110 on the semiconductor substrate 100. 沟槽106和110中分别形成有金属材料104和108,用作发射极电极或者母线(Bus-Bar)。 Grooves 106 and 110 are formed with a metallic material 104 and 108 serving as the emitter electrode or a bus (Bus-Bar). 细的金属材料108作为发射极电极,收集PN结处由光生载流子所产生的电流;而粗的金属材料104不仅作为发射极电极, 收集PN结处由光生载流子所产生的电流,还作为太阳能电池单元对外输出电流的母线。 Thin metallic material 108 as the emitter electrode, a collector current at the PN junction by the photogenerated carriers generated; and thick metal material 104 only as an emitter electrode, a collector current at the PN junction by the photogenerated carriers generated, also as the bus outside the output current of the solar cell.

[0004] 现有技术中,生产太阳能电池模块主要采用硅材料作为衬底,包括单晶硅和多晶硅,可以用来吸收太阳光的光能并转化为电能。 [0004] the prior art, the production of the solar cell module is mainly employed silicon as the substrate, comprising a single crystal silicon and polysilicon, can be used to absorb light energy of sunlight into electricity. 但是,近些年随着半导体制造业的不断扩张,市场上的硅衬底材料供不应求,价格节节攀升。 However, in recent years, with the continuous expansion of semiconductor manufacturing, silicon substrate material on the market in short supply, prices continue to rise. 因此,太阳能电池的制造方法又由完全硅衬底转变为在玻璃上沉积多晶硅衬底的薄膜太阳能电池制造方法。 Therefore, the manufacturing method of the solar cell and converted by a fully silicon substrate is a thin-film solar cell manufacturing method of depositing a polycrystalline silicon substrate on the glass. 例如,中国发明专利第2006101544M. 9号公开了一种在玻璃基板上沉积氢化非晶硅碳合金薄膜来制造太阳能电池的方法。 For example, Chinese patent of 2006101544M. 9 discloses a process for depositing a hydrogenated amorphous silicon carbon alloy thin film on a glass substrate to manufacture a solar cell.

[0005] 但是,玻璃是非晶体,研究发现,由于晶格常数匹配(lattice constant match)的原因,在非硅衬底上很难形成较大的多晶硅晶粒,并且容易在晶粒间形成空隙。 [0005] However, the glass is amorphous, it found that, due to lattice constant matching (lattice constant match), it is difficult to form a larger polysilicon grains on a non-silicon substrate, and a void is easily formed in the grain. 这不利于提高太阳能电池的性能,例如太阳能转换效率的提高。 This does not help to improve the performance of solar cells, for example, to improve solar energy conversion efficiency. 通常先用LPCVD在衬底上沉积一层较薄的非晶硅层,再将这层非晶硅层退火,得到较大的晶粒,然后再在这层籽晶上沉积厚的多晶硅薄膜。 Usually first with LPCVD deposited on the substrate the amorphous silicon layer a thin layer, then this layer of the amorphous silicon layer is annealed, to give larger grains, and then depositing a thick polysilicon thin film on this layer of the seed. 其效果当然比不上在单晶硅衬底上直接沉积多晶硅来得好。 Its effect is not as directly deposited polysilicon well on a single crystal silicon substrate. 而如果又转回到利用单晶硅衬底,成本又太高。 And if they turn back to the use of single-crystal silicon substrate, costs are too high. 因此,如何既能通过增加多晶硅晶格尺寸来提高太阳能电池的性能,又能降低制造成本成为业界的一个难题。 Therefore, how not only to improve the performance of the solar cell by increasing the polycrystalline silicon lattice size, and can reduce manufacturing cost becomes a problem in the industry.

发明内容 SUMMARY

[0006] 本发明所要解决的技术问题是如何既能通过增加多晶硅晶格尺寸来提高太阳能电池的性能,又能降低制造成本。 Invention Technical Problem to be Solved [0006] This is how not only to improve the performance of the solar cell by increasing the polycrystalline silicon lattice size, and can reduce the manufacturing cost.

[0007] 为解决上述技术问题,本发明提供一种太阳能电池的制造方法,包括步骤:在单晶衬底上沉积多晶硅层;从多晶硅层一侧向单晶衬底上进行离子注入,在所述单晶衬底内形成空洞;通过离子注入在所述多晶硅层内形成相互接触的P型多晶硅层和N型多晶硅层; 在所述多晶硅层远离所述单晶衬底的一侧上形成第一电极;对所述单晶衬底和多晶硅层进行热退火;剥离所述单晶衬底;在剥离了单晶衬底的多晶硅层远离所述第一电极的一侧上形成第二电极结构。 [0007] To solve the above problems, the present invention provides a method for manufacturing a solar cell, comprising the steps of: depositing a polysilicon layer on a single crystal substrate; ion implantation from one side of the polysilicon layer into the single crystal substrate, in the forming a hole within said monocrystalline substrate; P-type polycrystalline silicon layer and an N-type polysilicon layer forming contact with each other within the polycrystalline silicon layer by ion implantation; forming a first on a side of said polysilicon layer remote from said single crystal substrate an electrode; the single crystal substrate and the polysilicon layer thermal annealing; detaching the single crystal substrate; a second electrode structure formed on one side of the release polysilicon layer single crystal substrate away from the first electrode .

4[0008] 可选地,所述从多晶硅层一侧向单晶衬底上进行离子注入的离子为氢离子和/或 4 [0008] Alternatively, the from the ion side ion implantation into the single crystal substrate a polysilicon layer, hydrogen ions and / or

気1¾子。 Genki 1¾ child.

[0009] 可选地,所述热退火在氢气的氛围中进行。 [0009] Alternatively, the thermal annealing in an atmosphere of hydrogen.

[0010] 可选地,所述热退火的温度为300°C至900°C,热退火时间为10秒至60分钟。 [0010] Alternatively, the thermal annealing temperature of 300 ° C to 900 ° C, the thermal annealing time is 10 seconds to 60 minutes.

[0011] 可选地,所述热退火的温度为300°C至400°C,热退火时间为30秒至2分钟。 [0011] Alternatively, the thermal annealing temperature of 300 ° C to 400 ° C, thermal annealing for 30 seconds to 2 minutes.

[0012] 可选地,所述单晶衬底为单晶硅衬底。 [0012] Alternatively, the single crystal substrate is a single crystal silicon substrate.

[0013] 可选地,所述P型多晶硅层与单晶衬底接触。 [0013] Alternatively, the P type polysilicon layer in contact with the single crystal substrate.

[0014] 可选地,在单晶衬底上沉积多晶硅层的方法为物理气相沉积法。 [0014] Alternatively, a method of depositing a polysilicon layer on a single crystal substrate to a physical vapor deposition method.

[0015] 可选地,所述多晶硅层的厚度为Ιμπι至ΙΟμπι。 [0015] Alternatively, the polysilicon layer has a thickness of Ιμπι to ΙΟμπι.

[0016] 可选地,所述空洞距离单晶衬底与多晶硅层界面为Inm至lOOnm。 [0016] Alternatively, the cavity from the single crystal substrate and the polysilicon layer interface Inm to lOOnm.

[0017] 可选地,注入氢离子的能量为800KeV至8MeV,剂量为lE15/cm2至lE17/cm2。 [0017] Alternatively, the implantation energy of the hydrogen ions is 800KeV to 8 MeV, dosage of lE15 / cm2 to lE17 / cm2.

[0018] 可选地,形成P型多晶硅层所注入的离子为硼离子或二氟化硼离子。 [0018] Alternatively, a P-type polycrystalline silicon layer implanted ions are boron ions or boron difluoride ions.

[0019] 可选地,注入硼离子或二氟化硼离子的能量为IOOKeV至IMeV,剂量为lE15/cm2至lE16/cm2。 [0019] Alternatively, the implantation energy of the boron ion or boron difluoride ions are IOOKeV to IMeV, dose lE15 / cm2 to lE16 / cm2.

[0020] 可选地,形成η型多晶硅层所注入的离子为砷离子或磷离子。 [0020] Alternatively, the formation of η-type polysilicon layer implanted ions as arsenic or phosphorus ions.

[0021] 可选地,注入砷离子或磷离子的能量为400KeV至2MeV,剂量为lE15/cm2至1E16/ cm2。 [0021] Alternatively, the implanted arsenic ions or energy of phosphorus ions is 400KeV to 2 MeV, dosage of lE15 / cm2 to 1E16 / cm2.

[0022] 可选地,所述第一电极为铝电极。 [0022] Alternatively, the first electrode is an aluminum electrode.

[0023] 可选地,所述第一电极的厚度为20 μ m至50 μ m。 [0023] Alternatively, the first electrode has a thickness of 20 μ m to 50 μ m.

[0024] 可选地,还包括步骤:去除多晶硅层上残留的单晶硅。 [0024] Optionally, further comprising the step of: removing the remaining polysilicon layer monocrystalline silicon.

[0025] 可选地,形成第二电极结构具体包括步骤:在所述多晶硅层远离所述第一电极的一侧上沉积钝化层;图形化所述钝化层,形成沟槽;在钝化层表面以及所述沟槽内形成电镀种子层;形成暴露所述沟槽的光刻胶层;在所述沟槽内电镀第二电极材料至至少填满所述沟槽;去除光刻胶层和所述钝化层表面的电镀种子层。 [0025] Alternatively, the second electrode structure comprises the steps of: in said polysilicon layer away from the passivation layer is deposited on a side of the first electrode; patterning the passivation layer, forming a trench; blunt plating seed layer of the surface layer and the trench formed therein; forming a photoresist layer is exposed to the trench; within the trench plated second electrode material to at least fill said trenches; removing the photoresist layer and the plating seed layer on the surface of the passivation layer.

[0026] 可选地,所述第二电极材料为银。 [0026] Alternatively, the second electrode material is silver.

[0027] 与现有技术相比,本发明将形成太阳能电池PN结的多晶硅层通过物理气相沉积(PVD)的方法生长在单晶衬底上,由于晶格常数匹配更佳,因而生长出的多晶硅层中晶粒尺寸较大,可以提高太阳能电池的性能,并且,单晶衬底可以剥离,因而可以降低制造成本。 [0027] Compared with the prior art, the present invention is to form a solar cell a PN junction polysilicon layer is grown by physical vapor deposition (PVD) on a single crystal substrate, since the lattice constant matched better, and thus the grown polysilicon layer grain size is large, can improve the performance of the solar cell, and the single crystal substrate can be peeled off, it is possible to reduce the manufacturing cost.

附图说明 BRIEF DESCRIPTION

[0028] 图1为现有技术制造的太阳能电池结构示意图; [0028] FIG 1 The solar cell structure of the prior art manufactured schematic;

[0029] 图2为本发明一个实施例制造太阳能电池的流程图; [0029] FIG 2 is a flowchart of fabricating a solar cell according to one embodiment of the present invention;

[0030] 图3至图13为根据图2所示流程制造太阳能电池的示意图。 [0030] FIG. 3 to FIG. 13 is a schematic view for manufacturing a solar cell according to the flow shown in Fig.

具体实施方式 Detailed ways

[0031] 在具体实施方式中,提供一种基于单晶衬底制造多晶硅太阳能电池的方法。 [0031] In a particular embodiment, a method based on single-crystal substrate manufacturing polycrystalline silicon solar cells approach. 在该方法中,形成太阳能电池PN结的多晶硅层通过物理气相沉积(PVD)的方法生长在单晶衬底上,由于晶格常数匹配更佳,因而生长出的多晶硅层中晶粒尺寸较大,可以提高太阳能电池的性能。 Polysilicon layer polycrystalline silicon layer grown by physical vapor deposition (PVD) on a single crystal substrate, since the lattice constant matched better, thus grown in this method, a solar cell a PN junction grain size larger , can improve the performance of the solar cell. 以下将对本发明的具体内容进行详细说明。 Specific contents of the following the present invention will be described in detail. [0032] 如图2所示,根据本发明的一个实施例,提供一种太阳能电池的制造方法,包括步骤: [0032] 2, according to the manufacturing method of an embodiment, there is provided a solar cell of the present invention, comprising the steps of:

[0033] S101,在单晶衬底上沉积多晶硅层; [0033] S101, depositing a polysilicon layer on a single crystal substrate;

[0034] S102,从多晶硅层一侧向单晶衬底上注入氢离子; [0034] S102, implanting hydrogen ions into the single crystal substrate from the polysilicon layer side;

[0035] S103,在多晶硅层内形成P型和N型多晶硅层; [0035] S103, a P-type and N-type polysilicon layer over the polysilicon layer;

[0036] S104,在多晶硅层上形成第一电极; [0036] S104, a first electrode formed on the polysilicon layer;

[0037] S105,对单晶衬底和多晶硅层进行热退火; [0037] S105, a single crystal substrate and the polysilicon layer thermal annealing;

[0038] S106,剥离单晶衬底; [0038] S106, peeling the single crystal substrate;

[0039] S107,在多晶硅层上沉积钝化层; [0039] S107, passivation layer is deposited on the polysilicon layer;

[0040] S108,图形化钝化层,形成沟槽; [0040] S108, patterned passivation layer, forming a trench;

[0041] S109,在钝化层表面以及沟槽的内壁上形成电镀种子层; [0041] S109, a plating seed layer on the inner wall of the passivation layer surface and a trench;

[0042] S110,形成暴露沟槽的光刻胶层; [0042] S110, a photoresist layer is exposed trench;

[0043] S111,在沟槽内电镀第二电极材料; [0043] S111, plating the second electrode material in the trench;

[0044] S112,去除光刻胶层和所述钝化层表面的电镀种子层,形成第二电极结构。 [0044] S112, removing the photoresist layer and the plating seed layer on the surface of the passivation layer, forming a second electrode structure.

[0045] 首先执行步骤S101,如图3所示,在单晶衬底201上沉积多晶硅层202。 [0045] The first executes step S101, and 3, the polysilicon layer is deposited 202 on a single crystal substrate 201. 这里的单晶衬底201的材料可以为硅、III-V族或者II-VI族化合物半导体,由于单晶硅衬底的应用广泛,产量大,价格较低,并且单晶硅与多晶硅的晶格常数匹配更佳,因而在本发明的一个实施例中,优选采用单晶硅形成单晶硅衬底201。 Single crystal substrate where 201 material may be silicon, III-V or Group II-VI compound semiconductor, due to extensive single crystal silicon substrate applications, large output, low price, and a silicon single crystal and polycrystalline silicon lattice constant match better, and thus in the present embodiment of the invention is preferably employed single-crystal silicon single crystal silicon substrate 201.

[0046] 沉积多晶硅层202的方法可以是PVD的方法。 [0046] deposition 202, polysilicon layer may be a PVD method. 因为相比利用硅烷形成多晶硅层的方法而言,利用PVD沉积多晶硅层202的成本更低。 Lower as for the method compared to polysilicon layer is formed using a silane, a PVD deposition of the polysilicon layer 202 cost.

[0047] 沉积多晶硅层202的压力小于IOOmTorr,形成多晶硅层202厚度优选在1 μ m至10 μ m,这样的厚度可以保证后续能够形成足够厚的P型和N型多晶硅层,用以形成满足太阳能电池需要的PN结。 [0047] The deposition pressure polysilicon layer 202 is less than IOOmTorr, a polysilicon layer 202 thickness is preferably 1 μ m to 10 μ m, such a thickness can guarantee a subsequent capable of forming a sufficiently thick P-type and N-type polysilicon layer, to form satisfies the solar cell requires a PN junction. 在这种沉积条件下,由于晶格常数匹配更加,形成的多晶硅层202 的晶粒尺寸比根据现有技术形成多晶硅层的晶粒尺寸更大,进而可以提高太阳能电池的性能。 In this deposition conditions, since the lattice constant matched more, the grain size is formed in the polysilicon layer 202 is larger grain size of the polycrystalline silicon layer, and thus can improve the performance of the solar cell is formed than according to the prior art.

[0048] 然后执行步骤S102,从多晶硅层202 —侧向单晶衬底201上注入氢离子,在多晶硅层202靠近多晶硅层202与单晶衬底201界面的位置上形成空洞203,即形成如图4所示的结构。 [0048] then perform step S102, the polysilicon layer 202-- hydrogen ion implantation on the side of the single crystal substrate 201 is formed a cavity 203 at a position 202 and the single crystal substrate 201 interface polysilicon layer 202 near a polysilicon layer, i.e., it is formed as the structure shown in Fig.

[0049] 注入氢离子的能量为800KeV至8MeV,注入的剂量为lE15/cm2至lE17/cm2。 Energy [0049] The hydrogen ion implantation is 800KeV to 8MeV, the injected dose of lE15 / cm2 to lE17 / cm2. 这样的氢离子注入工艺能够保证经过后续热退火的工艺之后,在单晶衬底201内距离单晶衬底201与多晶硅层202的界面Inm至IOOnm的位置上形成空洞203。 After this hydrogen ion implantation process can be guaranteed through a subsequent thermal annealing process, in the single-crystal substrate 201, 201 to position IOOnm is formed a cavity 203 from the single crystal substrate interface Inm polysilicon layer 202.

[0050] 形成空洞203的目的是方便在后续工艺过程中将单晶衬底201与多晶硅层202剥离开。 [0050] The purpose of forming the cavity 203 is to facilitate the opening and 202 release the polysilicon layer in the single crystal in the substrate 201 during subsequent processing. 本领域技术人员知道,单晶衬底201是非常易碎的,步骤S102在单晶衬底201中形成大量空洞203,破坏了单晶衬底201的内部结构,使得形成空洞203处的结构强度大幅降低,从而可以保证单晶衬底201不破碎的情况下,将单晶衬底201与多晶硅层202剥离。 Those skilled in the art know, the monocrystalline substrate 201 is very fragile, the step S102 is formed structural strength of the large voids 203, destruction of the internal structure of a single crystal substrate 201, so as to form a cavity 203 in the single crystal substrate 201 significantly reduced, which can ensure the case of the single crystal substrate 201 is not broken, the single crystal substrate 201 and the polysilicon layer 202 peeled off.

[0051] 在本具体实施方式中,步骤S102的离子注入仅以注入氢离子为例,但本发明不限于此。 [0051] In the present embodiment, step S102 is ion-implanted only hydrogen ions are implanted as an example, but the present invention is not limited thereto. 因为在步骤S102中进行离子注入的目的是为了破坏单晶衬底201的内部晶格结构, 形成空洞,利于后续剥离单晶衬底201。 Because the purpose of ion implantation in step S102 in order to destroy the monocrystalline substrate internal lattice structure 201 to form a cavity, facilitates subsequent release monocrystalline substrate 201. 所以,在步骤S102中进行注入的离子也可以是其他半径较小的离子,例如氦离子。 Therefore, ion implantation in step S102 may be other smaller radius of ions such as helium ions. 并且,注入的方式也不限于单独注入氢离子或氦离子等,可以采用混合注入的方式,例如混合注入氢离子和氦离子。 Further, the injection manner is not limited to hydrogen ions or helium ions alone implantation, hybrid injection methods can be used, such as mixing implantation of hydrogen ions and helium ions.

[0052] 接着执行步骤S103,如图5所示,在多晶硅层202内靠近单晶衬底201的一侧形成P型多晶硅层204,以及在多晶硅层202内远离单晶衬底201的一侧形成N型多晶硅层205。 [0052] Then, step S103, shown in Figure 5, the polysilicon layer 202 in the near single-crystal substrate 201 side of the P-type polysilicon layer 204, and the polysilicon layer 202 inside away from the single crystal substrate 201 side form an N type polysilicon layer 205.

[0053] 形成P型多晶硅层204的工艺为:从多晶硅层202远离单晶衬底201的一侧注入硼离子或二氟化硼离子,注入能量为IOOKeV至IMeV,注入剂量为lE15/cm2至lE16/cm2。 Process [0053] forming a P-type polysilicon layer 204 is: implanting boron ions or boron difluoride ions from one side of the polysilicon layer 202 remote from the monocrystalline substrate 201, an implantation energy of IOOKeV to IMeV, implantation dose is lE15 / cm2 to lE16 / cm2. 形成N型多晶硅层205的工艺为:从多晶硅层202远离单晶衬底201的一侧注入砷离子或磷离子,注入能量为400KeV至2MeV,注入剂量为lE15/cm2至lE16/cm2。 Process of forming the N-type polysilicon layer 205 is: implanting arsenic or phosphorus ions from one side of the polysilicon layer 202 remote from the monocrystalline substrate 201, an implantation energy of 400KeV to 2 MeV, implantation dose is lE15 / cm2 to lE16 / cm2. 根据上述注入工艺, 可以在多晶硅层202内形成相互接触的P型多晶硅层204和N型多晶硅层205,即形成太阳能电池所需要的PN结。 According to the implantation process may be formed of P-type polysilicon layer 204 and the N-type polysilicon layer 205 contact each other in the polysilicon layer 202, i.e. a PN junction solar cells require.

[0054] 然后执行步骤S104,如图6所示,在多晶硅层202内远离单晶衬底201的表面上形成第一电极206。 [0054] and then performs step S104, as shown in FIG. 6, remote from the polysilicon layer 202 of the first electrode 206 is formed on a single crystal substrate 201 surface. 第一电极206的厚度可以为20μπι至50μπι。 Thickness of the first electrode 206 may be 20μπι to 50μπι. 形成第一电极206的材料优选是金属,而金属中更优的选择是铝,因为铝的机械强度较好且成本低廉。 Forming a first electrode 206 material is preferably a metal, and the metal in the better choice is aluminum, since the mechanical strength of the aluminum is better and inexpensive.

[0055] 将形成第一电极206的步骤放在后续剥离单晶衬底201的步骤之前是有原因的。 Before [0055] The step of forming the first electrode 206 is placed subsequent release single crystal substrate 201 steps for a reason. 第一电极206在这里除了起到电极的作用以外,还有另一个作用,即形成对多晶硅层202的支撑。 The first electrode 206 here except serves as an electrode, there is another effect that support the formation of the polysilicon layer 202. 如前所述,多晶硅层202的厚度仅有1 μ m至10 μ m,而后续步骤将会剥离单晶衬底201,在剥离过程中,第一电极206就起到对多晶硅层202的支撑。 As described above, the thickness of the polysilicon layer 202 only 1 μ m to 10 μ m, and the subsequent steps will release the single crystal substrate 201, in the stripping process, the first electrode 206 functions as a support for the polysilicon layer 202 .

[0056] 然后执行步骤S105,对单晶衬底201和多晶硅层202进行热退火10秒至60分钟, 优选退火时间为30秒至2分钟。 [0056] then perform step S105, the single crystal substrate 201 and the polysilicon layer 202 is thermally annealed 10-60 seconds, preferably an annealing time of 30 seconds to 2 minutes. 热退火的温度为300°C至900°C,优选的退火温度为300°C 至400°C。 Thermal annealing temperature of 300 ° C to 900 ° C, the preferred annealing temperature of 300 ° C to 400 ° C. 热退火可以在氢气的氛围下进行。 Thermal annealing may be performed in an atmosphere of hydrogen.

[0057] 这里进行热退火有两个目的,其一是为了强化前述氢离子注入的效果,在单晶衬底201内形成氢致片状缺陷,从而可以单晶衬底201内形成微空腔(microcavity)层,这样的微空腔层有利于后续剥离单晶衬底201的进行;目的二是为了进一步增大多晶硅层202 的晶粒尺寸,而在氢的氛围下进行热退火,可以实现增大晶粒尺寸的目的,从而提高所制成的太阳能电池的光电转换效率。 [0057] Here is thermally annealed for two purposes, one is to strengthen the hydrogen ion implantation effect, hydrogen induced sheet-like defects are formed in the monocrystalline substrate 201, can be formed micro cavities within the monocrystalline substrate 201 (microcavity) layer, such micro cavities layer facilitates the subsequent peeling the single crystal substrate 201 is performed; object Second, in order to further increase the grain size of the polycrystalline silicon layer 202, the thermal annealing in an atmosphere of hydrogen, can be achieved purpose of increasing the grain size, thereby improving the photoelectric conversion efficiency of solar cells made of.

[0058] 接着执行步骤S106,剥离单晶衬底201。 [0058] then perform step S106, peeling the single crystal substrate 201. 剥离单晶衬底201的过程即对单晶衬底201施加拉力或剪切力的过程。 Peeling the single crystal substrate 201 is the process during the single crystal substrate 201, a pulling force or shearing force. 如前所述,氢离子注入使得单晶衬底201中形成大量空洞203,从而破坏了单晶衬底201的内部结构,使得形成空洞203处的结构强度大幅降低,因而可以保证单晶衬底201不破碎的情况下,将单晶衬底201与多晶硅层202剥离。 As described above, hydrogen ion implantation so that the single crystal substrate 201 is formed in a plurality of voids 203, thereby destroying the internal structure of a single crystal substrate 201, so that a greatly reduced structural strength of the cavity 203, and thereby ensuring single crystal substrate case 201 without collapse of the crystal substrate 201 and the polysilicon layer 202 peeled off.

[0059] 如图7所示,单晶衬底201被剥离后,在多晶硅层202上的残留单晶硅207表面会非常粗糙,这对于提高太阳能电池的性能有好处,具体将在后续工艺步骤进行说明。 [0059] 7, the single crystal substrate 201 after being peeled off, the residue on the polysilicon layer 202 of a silicon single crystal 207 surface can be very rough, which is to improve the solar cell performance is good, specific step in a subsequent process Be explained.

[0060] 被剥离的单晶衬底201可以重复使用。 [0060] The single crystal substrate 201 to be peeled can be reused. 每次重复应用,单晶衬底201仅损失数百纳米至数微米的厚度,因而可以多次的重复使用,大幅降低了太阳能电池的制造成本。 Each repeated application of the single crystal substrate 201 loses only a thickness of several hundred nanometers to several micrometers, and thus can be reused many times, significantly reducing the manufacturing cost of the solar cell. 并且,由于多晶硅层202与单晶衬底201接触的表面粗糙,对于提高太阳能电池的性能有好处。 Further, the surface since the polysilicon layer 202 and the monocrystalline substrate 201 in contact with rough, for improving the performance of solar cells is good. 因此,在此可以省去对单晶衬底201被剥离的一面进行平滑处理的步骤,在下一次再次在单晶衬底201表面形成多晶硅层时,由于单晶衬底201的表面粗糙,沉积的多晶硅层与单晶衬底201接触的表面也会相应变得粗糙,这也是本发明的一个优点。 Thus, when the omitted step side smoothing single crystal substrate 201 is peeled off, the next re-forming a polysilicon layer on the single crystal substrate 201 surface in this case, since the surface of the monocrystalline substrate 201 is roughened, the deposited surface of the polysilicon layer 201 in contact with the monocrystalline substrate will accordingly become rough, which is the present invention is an advantage.

[0061] 在剥离单晶衬底201之后,还可以有清除残留单晶硅207的步骤。 [0061] After peeling the single crystal substrate 201, you may also have the step of removing remaining single-crystal silicon 207. 残留单晶硅207 可以用等离子刻蚀的方法来清除。 The residue silicon single crystal 207 method may be plasma etched to remove. 由于残留单晶硅207表面非常粗糙,因此在用等离子将残留单晶硅207完全清除的过程中,必然会将多晶硅层202的表面刻蚀得非常粗糙。 Since the residual monocrystalline silicon 207 surface is very rough, so the plasma remaining monocrystalline silicon process 207 complete removal of bound the surface of the polysilicon layer 202 is etched very rough. 如前 As previously

7所述,这对于提高太阳能电池的性能有好处,因而省去了专门将多晶硅层202的表面粗糙化的步骤。 7, which for improving the performance benefits of the solar cell, thereby eliminating the step of specifically the 202 surface of the polysilicon layer is roughened. 因此,这也是本发明的一个优点。 Accordingly, it is an advantage of the present invention.

[0062] 然后执行步骤S107,如图8所示,通过热氧化在多晶硅层202上沉积钝化层208。 [0062] and then performs step S107, as shown in FIG. 8, by thermal oxidation passivation layer is deposited 208 on the polysilicon layer 202. 沉积形成的钝化层208的厚度可以是IOOnm至300nm。 Thickness of the passivation layer 208 is formed by deposition may be IOOnm to 300nm. 形成钝化层的材料可以是氮化硅。 Material forming the passivation layer may be silicon nitride. 通过热氧化使硅悬挂键饱和,可使Si-Si02界面的复合速度大大下降,其钝化效果取决于发射区的表面浓度、界面态密度和电子、空穴的浮获截面。 By thermal oxidation of the silicon dangling bonds saturated, allows recombination velocity Si-Si02 interface is greatly reduced, which passivation effect depends on the surface concentration of the emitter region, the interface state density and the electrons and holes floating capture cross section. 而在氢气氛中退火可使钝化效果更加明显。 And in a hydrogen atmosphere annealing can passivation effect more apparent. 采用PECVD淀积氮化硅效果更佳,因为在成膜的过程中具有加氢的效果。 By PECVD silicon nitride is deposited better, because an effect of the hydrogenation in the process of forming the. 此外用氮化硅形成的钝化层208还起抗反射膜的作用。 In addition the passivation layer is formed of silicon nitride 208 also functions as an antireflection film.

[0063] 接着执行步骤S108,如图9所示,图形化钝化层208,形成沟槽209。 [0063] Next to step S108, as shown in FIG. 9, patterned passivation layer 208, forming trenches 209. 这里形成的沟槽将在后续步骤成为填充第二电极212(参考图12)的基础。 Grooves formed here will be a second base filler electrode 212 (refer to FIG. 12) in a subsequent step. 沟槽209的深度需要至少完全暴露P型多晶硅层204。 Groove depth requires 209 at least completely exposed P-type polycrystalline silicon layer 204. 也就是说,沟槽209的底部要完全“嵌入”P型多晶硅层204内, 以实现第二电极与P型多晶硅层204的有效连接。 That is, the bottom of the trench 209 to completely "embedded" within the P-type polysilicon layer 204, in order to achieve the second electrode and the P-type polysilicon layer operably linked to 204.

[0064] 接着执行步骤S109,如图10所示,在钝化层208表面以及沟槽209内形成电镀种子层210。 [0064] then perform step S109, as shown, forming a plating seed layer 210 in the 208 surface and the trench 209 a passivation layer 10. 电镀种子层201在沟槽209内覆盖沟槽209的内壁和底部。 Plating seed layer 201 covering the inner wall and bottom of the trench 209 in the trench 209. 形成电镀种子层210 的方法可以是溅射钛钨合金和/或银。 The method 210 of forming a plating seed layer may be sputtered titanium tungsten alloy and / or silver. 形成电镀种子层210的具体工艺参数已为本领域技术人员所熟知,在此不再赘述。 Specific process parameters form a plating seed layer 210 is known to those skilled in the art and are not repeated here.

[0065] 然后执行步骤S110,如图11所示,形成暴露沟槽209的光刻胶层211。 [0065] then perform step S110, a 11, a photoresist layer 211 expose the trenches 209. 形成暴露沟槽209的光刻胶层211的方法可以是先旋涂光刻胶再通过光刻的方法在光刻胶层211上在沟槽209对应的位置上开出通孔,因而暴露沟槽209。 Which exposes a trench photoresist layer 209 211 may be first spin coating a photoresist and then by photolithography in photoresist layer 211 to open the through-hole at a position groove 209 corresponding to the thus exposed groove grooves 209. 形成暴露沟槽209的光刻胶层211 的原因是阻挡钝化层208表面的电镀种子层210与电镀液的接触,防止在钝化层208表面的电镀种子层210形成第二电极212。 Causes of the exposed trench resist layer 209 211 is to block the contact plating seed layer surface of the passivation layer 208 210 and the plating solution, to prevent the second electrodes 212,210 are formed in the plating seed layer on the surface of the passivation layer 208.

[0066] 接着执行步骤S111,如图12所示,在沟槽209内电镀形成第二电极212。 [0066] Then, step S111, shown in Figure 12, the groove 209 within the plating forming a second electrode 212. 电镀第二电极212需要至少填满沟槽209,因此在后续去除光刻胶层211之后,第二电极212的一端会高于钝化层208,这样才能形成和外部电路互联的节点。 Plating the second electrode 212 needs to at least fill trenches 209, so subsequent removal after 211, one end of the second electrode 212 is higher than the passivation layer 208 is a photoresist layer, so as to form an external circuit interconnected nodes. 由于有光刻胶层211覆盖在钝化层208表面的电镀种子层210上,因此电镀形成的第二电极212只会形成在沟槽209内。 Since the photoresist layer 211 is coated on the plating seed layer 210 208 the surface of the passivation layer, a second electrode thus formed by plating 212 only formed in the trenches 209. 形成第二电极212的材料优选是银,其原因在于银的接触电阻小。 Material forming the second electrode 212 is preferably silver, is because the smaller the contact resistance of silver.

[0067] 最后执行步骤S112,如图13所示,去除光刻胶层211和钝化层208表面的电镀种子层210。 [0067] The final implementation step S112, as shown in Figure 13, removing the plating seed layer 210 surface 211 of the photoresist layer and the passivation layer 208. 这样,就在P型多晶硅层204上形成了由钝化层208、电镀种子层210和第二电极212所组成的第二电极结构。 Thus, the formation of the second electrode structure by a passivation layer 208, the plating seed layer 210 and the second electrode 212 is formed on the P-type polysilicon layer 204.

[0068] 本发明虽然以较佳实施例公开如上,但其并不是用来限定权利要求,任何本领域技术人员在不脱离本发明的精神和范围内,都可以做出可能的变动和修改,因此本发明的保护范围应当以本发明权利要求所界定的范围为准。 [0068] Although the present invention to the preferred embodiments disclosed above, but are not intended to limit the claims, anyone skilled in the art without departing from the spirit and scope of the invention, can be made possible variations and modifications, Therefore, the scope of the invention should be of the claimed invention as defined by the scope of equivalents.

8 8

Claims (19)

  1. 1. 一种太阳能电池的制造方法,其特征在于,包括步骤:在单晶衬底上沉积多晶硅层;从多晶硅层一侧向单晶衬底上进行离子注入,在所述单晶衬底内形成空洞;通过离子注入在所述多晶硅层内形成相互接触的P型多晶硅层和N型多晶硅层;在所述多晶硅层远离所述单晶衬底的一侧上形成第一电极;对所述单晶衬底和多晶硅层进行热退火;剥离所述单晶衬底;通过等离子刻蚀去除多晶硅层上残留的单晶衬底材料,使多晶硅层表面粗糙化;在剥离了单晶衬底的多晶硅层远离所述第一电极的一侧上形成第二电极结构。 1. A method of manufacturing a solar cell, comprising the steps of: depositing a polysilicon layer on a single crystal substrate; ion implantation from one side of the polysilicon layer into the single crystal substrate, said single crystal substrate forming a cavity; P-type polycrystalline silicon layer and an N-type polysilicon layer forming contact with each other within the polycrystalline silicon layer by ion implantation; forming a first electrode on one side of said polysilicon layer away from the single crystal substrate; the single crystal substrate and the polysilicon layer is subjected to thermal annealing; detaching the single crystal substrate; by plasma etching removal of the single crystal substrate material remaining on the polysilicon layer, the surface of the polycrystalline silicon layer is roughened; peeling the single crystal substrate polysilicon layer remote from said second electrode structure on a side of the first electrode.
  2. 2.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述从多晶硅层一侧向单晶衬底上进行离子注入的离子为氢离子和/或氦离子。 2. The method of manufacturing a solar cell as claimed in claim, characterized in that: the ion implantation of ions into the single crystal substrate from the polysilicon layer side into hydrogen ions and / or helium ions.
  3. 3.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述热退火在氢气的氛围中进行。 The method of manufacturing a solar cell as claimed in claim, wherein: said thermal annealing in an atmosphere of hydrogen.
  4. 4.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述热退火的温度为300°C至900°C,热退火时间为10秒至60分钟。 4. The method of manufacturing a solar cell as claimed in claim, wherein: said thermal annealing temperature of 300 ° C to 900 ° C, the thermal annealing time is 10 seconds to 60 minutes.
  5. 5.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述热退火的温度为300°C至400°C,热退火时间为30秒至2分钟。 5. The method of manufacturing a solar cell as claimed in claim, wherein: said thermal annealing temperature of 300 ° C to 400 ° C, thermal annealing for 30 seconds to 2 minutes.
  6. 6.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述单晶衬底为单晶硅衬底。 6. The method of manufacturing a solar cell as claimed in claim, wherein: said single crystal substrate is a single crystal silicon substrate.
  7. 7.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述P型多晶硅层与单晶衬底接触。 7. The method of manufacturing a solar cell as claimed in claim, characterized in that: said P-type polysilicon layer in contact with the single crystal substrate.
  8. 8.如权利要求1所述的太阳能电池的制造方法,其特征在于:在单晶衬底上沉积多晶硅层的方法为物理气相沉积法。 8. The method of manufacturing a solar cell as claimed in claim, characterized in that: a method of depositing a polysilicon layer on a single crystal substrate to a physical vapor deposition method.
  9. 9.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述多晶硅层的厚度为IymM 10 μ m。 9. The method of manufacturing a solar cell as claimed in claim, wherein: said polysilicon layer has a thickness IymM 10 μ m.
  10. 10.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述空洞距离单晶衬底与多晶硅层界面为Inm至lOOnm。 10. The method of manufacturing a solar cell according to claim 1, wherein: said cavity from the single crystal substrate and the polysilicon layer interface Inm to lOOnm.
  11. 11.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述从多晶硅层一侧向单晶衬底上进行离子注入的离子为氢离子,注入氢离子的能量为SOOKeV至8MeV,剂量为lE15/cm2 至lE17/cm2。 11. The method of manufacturing a solar cell as claimed in claim, wherein: the slave ion side of ion implantation into the single crystal substrate a polysilicon layer as a hydrogen ion implantation energy of the hydrogen ions is SOOKeV to 8MeV a dose of lE15 / cm2 to lE17 / cm2.
  12. 12.如权利要求1所述的太阳能电池的制造方法,其特征在于:形成P型多晶硅层所注入的离子为硼离子或二氟化硼离子。 12. The method of manufacturing a solar cell as claimed in claim, wherein: forming a P-type polysilicon layer implanted ions are boron ions or boron difluoride ions.
  13. 13.如权利要求12所述的太阳能电池的制造方法,其特征在于:注入硼离子或二氟化硼离子的能量为IOOKeV至IMeV,剂量为lE15/cm2至lE16/cm2。 13. The method of manufacturing a solar cell of claim 12, characterized in that: the implantation energy of boron ions or boron difluoride ions are IOOKeV to IMeV, dose lE15 / cm2 to lE16 / cm2.
  14. 14.如权利要求1所述的太阳能电池的制造方法,其特征在于:形成η型多晶硅层所注入的离子为砷离子或磷离子。 14. The method of manufacturing a solar cell as claimed in claim, wherein: forming η-type polysilicon layer implanted ions are arsenic or phosphorus ions.
  15. 15.如权利要求14所述的太阳能电池的制造方法,其特征在于:注入砷离子或磷离子的能量为400KeV 至2MeV,剂量为lE15/cm2 至lE16/cm2。 15. The method of manufacturing a solar cell according to claim 14, wherein: the implantation energy of arsenic or phosphorus ions is 400KeV to 2 MeV, dosage of lE15 / cm2 to lE16 / cm2.
  16. 16.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述第一电极为铝电极。 16. The method of manufacturing a solar cell as claimed in claim, wherein: the first electrode is an aluminum electrode.
  17. 17.如权利要求1所述的太阳能电池的制造方法,其特征在于:所述第一电极的厚度为20 μ m M 50 μ m。 17. Claim 1 of the solar cell manufacturing method, comprising: a first electrode having a thickness of 20 μ m M 50 μ m.
  18. 18.如权利要求1所述的太阳能电池的制造方法,其特征在于,形成第二电极结构具体包括步骤:在所述多晶硅层远离所述第一电极的一侧上沉积钝化层;图形化所述钝化层,形成沟槽;在钝化层表面以及所述沟槽内形成电镀种子层;形成暴露所述沟槽的光刻胶层;在所述沟槽内电镀第二电极材料至至少填满所述沟槽;去除光刻胶层和所述钝化层表面的电镀种子层。 18. The method of manufacturing a solar cell as claimed in claim, wherein forming the second electrode structure comprises the steps of: in said polysilicon layer away from the passivation layer is deposited on a side of the first electrode; patterning the passivation layer, forming a trench; forming a plating seed layer on the inner surface of the passivation layer and the trench; forming a photoresist layer is exposed to the trench; a second electrode material is electroplated within the trench to at least filling said trench; removing the plating seed layer, a photoresist layer and a surface of the passivation layer.
  19. 19.如权利要求18所述的太阳能电池的制造方法,其特征在于:所述第二电极材料为银。 Method of manufacturing a solar cell as claimed in claim 18, wherein: said second electrode material is silver.
CN 200810204622 2008-12-15 2008-12-15 Method of manufacturing a solar cell CN101752455B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200810204622 CN101752455B (en) 2008-12-15 2008-12-15 Method of manufacturing a solar cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200810204622 CN101752455B (en) 2008-12-15 2008-12-15 Method of manufacturing a solar cell

Publications (2)

Publication Number Publication Date
CN101752455A true CN101752455A (en) 2010-06-23
CN101752455B true CN101752455B (en) 2011-12-07

Family

ID=42479119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200810204622 CN101752455B (en) 2008-12-15 2008-12-15 Method of manufacturing a solar cell

Country Status (1)

Country Link
CN (1) CN101752455B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102376819A (en) * 2010-08-24 2012-03-14 中芯国际集成电路制造(上海)有限公司 Forming method of solar battery
CN102339898A (en) * 2010-12-29 2012-02-01 宜兴市昱元能源装备技术开发有限公司 Process for manufacturing p-n junction of large-area silicon-based solar cell by ion implantation method
KR101396444B1 (en) * 2013-05-06 2014-05-22 한화케미칼 주식회사 Method of preparing front electrode of solar cell and solar cell using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190248A (en) 1996-12-18 1998-08-12 佳能株式会社 Process for producing semiconductor article
CN1198020A (en) 1997-03-27 1998-11-04 佳能株式会社 Process for producing semiconductor substrate
CN1269599A (en) 1999-03-26 2000-10-11 佳能株式会社 Method for producing semiconductor device
CN1369919A (en) 2001-02-07 2002-09-18 株式会社荏原制作所 Solar cell and mfg. method thereof
WO2005104192A2 (en) 2004-04-21 2005-11-03 California Institute Of Technology A METHOD FOR THE FABRICATION OF GaAs/Si AND RELATED WAFER BONDED VIRTUAL SUBSTRATES
CN101188258A (en) 2006-11-24 2008-05-28 信越化学工业株式会社 Method of manufacturing single crystal silicon solar cell and single crystal silicon solar cell
CN101308782A (en) 2007-05-18 2008-11-19 株式会社半导体能源研究所 Manufacturing method of soi substrate and manufacturing method of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1190248A (en) 1996-12-18 1998-08-12 佳能株式会社 Process for producing semiconductor article
CN1198020A (en) 1997-03-27 1998-11-04 佳能株式会社 Process for producing semiconductor substrate
CN1269599A (en) 1999-03-26 2000-10-11 佳能株式会社 Method for producing semiconductor device
CN1369919A (en) 2001-02-07 2002-09-18 株式会社荏原制作所 Solar cell and mfg. method thereof
WO2005104192A2 (en) 2004-04-21 2005-11-03 California Institute Of Technology A METHOD FOR THE FABRICATION OF GaAs/Si AND RELATED WAFER BONDED VIRTUAL SUBSTRATES
CN101188258A (en) 2006-11-24 2008-05-28 信越化学工业株式会社 Method of manufacturing single crystal silicon solar cell and single crystal silicon solar cell
CN101308782A (en) 2007-05-18 2008-11-19 株式会社半导体能源研究所 Manufacturing method of soi substrate and manufacturing method of semiconductor device

Also Published As

Publication number Publication date Type
CN101752455A (en) 2010-06-23 application

Similar Documents

Publication Publication Date Title
US20090293948A1 (en) Method of manufacturing an amorphous/crystalline silicon heterojunction solar cell
US20100240169A1 (en) Method to make electrical contact to a bonded face of a photovoltaic cell
US20090211627A1 (en) Solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US20100304522A1 (en) Ion implantation fabrication process for thin-film crystalline silicon solar cells
JP2005310830A (en) Solar cell and manufacturing method thereof
US20110143480A1 (en) Microwave anneal of a thin lamina for use in a photovoltaic cell
US20130171767A1 (en) Ion implantation and annealing for high efficiency back-contact back-junction solar cells
JP2008053730A (en) Single conformal junction nano-wire photovoltaic device
JP2008010746A (en) Solar battery and method for manufacture thereof
JP2009164544A (en) Passivation layer structure of solar cell, and fabricating method thereof
JP2008519438A (en) Back-contact solar cells
US20090194153A1 (en) Photovoltaic cell comprising a thin lamina having low base resistivity and method of making
CN103456804A (en) Method for forming inverted-pyramid porous surface nanometer texture on polycrystalline silicon and method for manufacturing short-wave reinforcing solar cell
CN101937940A (en) Technology for manufacturing selective emitter junction solar cell by printed phosphorous source one-step diffusion method
CN102222726A (en) Technology for manufacturing interlaced back contact (IBC) crystalline silicon solar battery with ion implantation
US20110073175A1 (en) Photovoltaic cell comprising a thin lamina having emitter formed at light-facing and back surfaces
US20090211623A1 (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
CN101937944A (en) Preparation method of double-sided passivated crystalline silicon solar cell
CN102064237A (en) Double-layer passivating method for crystalline silicon solar battery
Varlamov et al. Polycrystalline silicon on glass thin-film solar cells: A transition from solid-phase to liquid-phase crystallised silicon
CN102110743A (en) Method for manufacturing selective emitter solar cell from local laser melting phosphorosilicate glass
US20090215218A1 (en) Method for making solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
CN101438420A (en) Solar cell having doped semiconductor heterojunction contacts
CN101882650A (en) Preparation method of solar cell with buried charge layer
CN101604711A (en) Method of preparing solar cell and solar cell prepared thereby

Legal Events

Date Code Title Description
C06 Publication
C10 Request of examination as to substance
C14 Granted