CN101752391A - Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof - Google Patents

Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof Download PDF

Info

Publication number
CN101752391A
CN101752391A CN200810180461A CN200810180461A CN101752391A CN 101752391 A CN101752391 A CN 101752391A CN 200810180461 A CN200810180461 A CN 200810180461A CN 200810180461 A CN200810180461 A CN 200810180461A CN 101752391 A CN101752391 A CN 101752391A
Authority
CN
China
Prior art keywords
mos
detector
area
add
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN200810180461A
Other languages
Chinese (zh)
Other versions
CN101752391B (en
Inventor
袁俊
韩德俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Normal University
Original Assignee
Beijing Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Normal University filed Critical Beijing Normal University
Priority to CN2008101804616A priority Critical patent/CN101752391B/en
Publication of CN101752391A publication Critical patent/CN101752391A/en
Application granted granted Critical
Publication of CN101752391B publication Critical patent/CN101752391B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Light Receiving Elements (AREA)

Abstract

本发明新型MOS-ADD探测器采用硅单晶片来制作。应用于SiPM多单元集成时,采用MOS-ADD结构可以方便的解决SiPM单元面积与输出电容要求之间的矛盾,可以在保持低的输出电容的同时提供很高的填充因子(大于70%)和探测效率。同时,由于采用很小面积的“点状”雪崩区,高场区面积大大减小,可以有效减小漏电流和暗记数(相比于相同有效探测面积的SiPM器件)。MOS-ADD采用正面入射方式,入射面所有电极可采用透明导电膜,能够有效减小电极的阻挡和对光的吸收。全耗尽的有源区可深达几微米或几十微米,对蓝光到近红外光波段都敏感。MOS-ADD结构用于制作单元大面积单光子探测器时,因输出电容小且不依赖于探测器的面积,其电子学噪声一般远小于具有同样通光窗口面积和光吸收区厚度的常规雪崩光电二极管,适合于对穿透深度较浅的软X射线及可见光的探测。如果结合闪烁体还可以用来探测高能量的X或γ射线。The novel MOS-ADD detector of the present invention is made by silicon single wafer. When applied to SiPM multi-unit integration, the MOS-ADD structure can easily solve the contradiction between the SiPM unit area and the output capacitance requirement, and can provide a high fill factor (greater than 70%) and detection efficiency. At the same time, due to the use of a small area of "point-like" avalanche area, the area of the high field area is greatly reduced, which can effectively reduce the leakage current and the number of dark marks (compared to SiPM devices with the same effective detection area). MOS-ADD adopts the front incident method, and all electrodes on the incident surface can use transparent conductive films, which can effectively reduce the blocking of electrodes and the absorption of light. The fully depleted active region can be as deep as a few microns or tens of microns, and is sensitive to blue to near-infrared light. When the MOS-ADD structure is used to make a unit large-area single-photon detector, because the output capacitance is small and does not depend on the area of the detector, its electronic noise is generally much smaller than that of a conventional avalanche photoelectric with the same light-passing window area and light-absorbing region thickness. Diodes are suitable for the detection of soft X-rays and visible light with shallow penetration depth. If combined with a scintillator, it can also be used to detect high-energy X or gamma rays.

Description

具有MOS全耗尽漂移通道的雪崩漂移探测器及其探测方法 Avalanche drift detector with MOS fully depleted drift channel and its detection method

本发明涉及一种新型半导体光电探测器MOS-ADD的器件结构及其工作原理,属于HO1L 27/00类半导体器件技术领域。The invention relates to a device structure and working principle of a novel semiconductor photodetector MOS-ADD, belonging to the technical field of HO1L 27/00 semiconductor devices.

多元盖革雪崩光电二极管(M-GAPD),也称为硅光电倍增管SiPM(SiliconPhotomultiplier),应用于弱光探测。其工作原理和发展历史参阅文献D.Renker.Geiger-mode avalanche photodiodes,history,properties andproblems.Nuclear Instruments and Methods in Physics Research A 567(2006)48-56。相比于传统的光电倍增管PMT,SiPM具有单光子响应、增益较大、对磁场不敏感、制作工艺简单、成本低、体积小、易于CMOS工艺集成、工作电压低、比较安全等优点,近年来得到了迅速发展,被认为在不久的将来能成为部分光电倍增管的替代品。SiPM在高能物理研究、射线探测、生物医学、量子通信以及其他弱光探测领域的应用都是当今研究的热点。例如,SiPM可以用于大型天文望远镜(参阅M.R.Squillante,R.A.Myers,F.Robertson,R.Farrell,J.F.Christian,G.Entine.Avalanche photodiode arrays for a high-angular resolution X-rayand gamma-ray imaging telescopes.Nuclear Instruments and Methods inPhysics Research Section A:,Volume 580,Issue 2,1 October 2007,Pages848-852),粒子物理探测(参阅D.Renker.New developments on photo-sensorsfor particle physics.Nuclear Instruments and Methods in Physics ResearchSection A:In Press,Corrected Proof,Available online 15 August 2008),医学研究中的基因诊断(参阅I.Rech,A.Restelli,S.Cova,M.Ghioni,M.Chiari,M.Cretich.Microelectronic photosensors for genetic diagnosticMicrosystems.Sensors and Actuators B 100,pp.158-162,2004)以及生物科技(参阅Schwartz,David Eric;Gong,Ping;Shepard,Kenneth L.Time-resolvedForster-resonance-energy-transfer DNA assay on an active CMOS microarray.Biosens Bioelectron,2008,24(3):383-390)等。但是,由于目前SiPM技术还不成熟,还有很多缺点,如探测效率较低(一般<30%,稍好于PMT)、动态范围窄(102-103/mm2)、暗计数率较高、光学串扰较严重、面积较小等(参阅YuriMusienko,“Advances in multipixel Geiger-mode avalanche photodiodes(silicon photomultipliers)”,Nuclear Instruments and Methods in PhysicsResearch A:,Corrected Proof,Available online 19 August 2008),限制了SiPM的实际应用。新的器件单元结构设计和工艺改进正在积极地探索中。Multivariate Geiger avalanche photodiode (M-GAPD), also known as silicon photomultiplier tube SiPM (Silicon Photomultiplier), is used for weak light detection. Its working principle and development history refer to the literature D. Renker. Geiger-mode avalanche photodiodes, history, properties and problems. Nuclear Instruments and Methods in Physics Research A 567 (2006) 48-56. Compared with the traditional photomultiplier tube PMT, SiPM has the advantages of single photon response, large gain, insensitivity to magnetic field, simple manufacturing process, low cost, small size, easy CMOS process integration, low working voltage, and relatively safe. It has been developed rapidly and is considered to be a substitute for some photomultiplier tubes in the near future. The application of SiPM in high-energy physics research, ray detection, biomedicine, quantum communication and other weak light detection fields is a hot research topic today. For example, SiPM can be used for large astronomical telescopes (see MRSquillante, RAMyers, F.Robertson, R.Farrell, JFChristian, G.Entine. Avalanche photodiode arrays for a high-angular resolution X-ray and gamma-ray imaging telescopes. Nuclear Instruments and Methods inPhysics Research Section A:, Volume 580, Issue 2, 1 October 2007, Pages848-852), particle physics detection (see D. Renker. New developments on photo-sensors for particle physics. Nuclear Instruments and Methods in Physics Research Section A: In Press, Corrected Proof, Available online 15 August 2008), Genetic diagnosis in medical research (see I. Rech, A. Restelli, S. Cova, M. Ghioni, M. Chiari, M. Cretich. Microelectronic photosensors for genetic diagnostic Microsystems. Sensors and Actuators B 100, pp.158-162, 2004) and biotechnology (see Schwartz, David Eric; Gong, Ping; Shepard, Kenneth L. Time-resolved Forster-resonance-energy-transfer DNA assay on an active CMOS microarray. Biosens Bioelectron, 2008, 24(3): 383-390) etc. However, due to the current immaturity of SiPM technology, there are still many disadvantages, such as low detection efficiency (generally <30%, slightly better than PMT), narrow dynamic range (10 2 -10 3 /mm 2 ), low dark count rate High, serious optical crosstalk, small area, etc. (see Yuri Musienko, "Advances in multipixel Geiger-mode avalanche photodiodes (silicon photomultipliers)", Nuclear Instruments and Methods in Physics Research A:, Corrected Proof, Available online 19 August 2008), limited The practical application of SiPM. New device unit structure design and process improvement are being actively explored.

SiPM由大量的小面积雪崩二极管单元组成。现有的SiPM探测效率较低主要是由于其几何效率(或填充因子)较低。由于时间相关性测量以及探测器工作性能的要求,单元输出电容不能太大,暗计数和漏电流越低越好,即要求雪崩光电二极管探测单元的面积不能太大。高单元数(103以上)的SiPM由于单元之间的“死区”(非敏感区)以及单元引线和电极制备占据,填充因子往往较低(一般低于50%),这就导致了探测效率较低。同时,SiPM的吸收区深度有限,为了减小材料对光的吸收和探测短波长光的需要,单元的结深一般都很浅,对波长较长的光的探测探测效率较低(参阅S.Gomi,H.Hano,T.Iijima,S.Itoh,K.Kawagoe,et al.“Developmentand study of the multi pixel photon counter”Nuclear Instruments andMethods in Physics Research Section A:,Volume 581,Issues 1-2,21October 2007,Pages 427-432)。SiPM consists of a large number of small-area avalanche diode cells. The low detection efficiency of existing SiPMs is mainly due to their low geometric efficiency (or fill factor). Due to the requirements of time-correlation measurement and detector performance, the output capacitance of the unit should not be too large, and the lower the dark count and leakage current, the better, that is, the area of the avalanche photodiode detection unit should not be too large. SiPMs with high cell counts (above 10 3 ) tend to have low fill factors (typically less than 50%) due to the "dead space" (non-sensitive area) between cells and the cell lead and electrode preparation occupied, which leads to probing less efficient. At the same time, the depth of the absorption region of SiPM is limited. In order to reduce the absorption of light by the material and the need to detect short-wavelength light, the junction depth of the unit is generally very shallow, and the detection efficiency of light with longer wavelengths is low (see S. Gomi, H. Hano, T. Iijima, S. Itoh, K. Kawagoe, et al. "Development and study of the multi pixel photon counter" Nuclear Instruments and Methods in Physics Research Section A:, Volume 581, Issues 1-2, 21 October 2007, Pages 427-432).

针对上述问题,本发明的目的是提出一种新型的雪崩探测器单元结构---具有MOS全耗尽漂移通道的雪崩漂移探测器,以下简称为MOS-ADD(MOS depletion drift channelAvalanche Drift Detector)。它既可以作为SiPM的基本探测单元而大规模集成,也可以制作成大面积的单元探测器。MOS-ADD的基本结构是以大面积的MOS结构和掩埋反偏PN结共同形成的全耗尽区作为探测器的耗尽有源区并在其中形成一条光生载流子(电子或空穴)能谷作为漂移通道,以内外漂移环在通道中产生侧向漂移电场,而以位于单元中心的“点状”盖革雪崩二极管(GAPD)作为光生载流子的收集区。至今还没有文献报道或实际应用这种结构。In view of the above problems, the object of the present invention is to propose a novel avalanche detector unit structure---an avalanche drift detector with a MOS fully depleted drift channel, hereinafter referred to as MOS-ADD (MOS depletion drift channel Avalanche Drift Detector). It can be used as the basic detection unit of SiPM for large-scale integration, and can also be made into a large-area unit detector. The basic structure of MOS-ADD is a fully depleted region formed by a large-area MOS structure and a buried reverse-biased PN junction as the depleted active region of the detector and a line of photogenerated carriers (electrons or holes) is formed in it. The energy valley is used as a drift channel, and the inner and outer drift rings generate a lateral drift electric field in the channel, and the "point-like" Geiger avalanche diode (GAPD) located in the center of the unit serves as a collection area for photogenerated carriers. So far there is no literature report or practical application of this structure.

应用于SiPM多单元集成时,采用MOS-ADD结构可以方便的解决SiPM单元面积与输出电容要求之间的矛盾,可以在保持低的输出电容的同时提供很高的填充因子(大于70%)和探测效率。同时,由于采用很小面积的点状雪崩区,高场区面积大大减小,可以有效减小漏电流和暗记数率(相比于相同有效探测面积的APD器件)。MOS-ADD采用正面入射方式,入射面所有电极均可以采用透明导电膜,例如氧化铟锡(ITO)膜或很薄的金属膜作为电极材料,有效减小电极对光的遮挡和吸收。When applied to SiPM multi-unit integration, the MOS-ADD structure can easily solve the contradiction between the SiPM unit area and the output capacitance requirement, and can provide a high fill factor (greater than 70%) and detection efficiency. At the same time, due to the use of a small area of point-shaped avalanche area, the area of the high field area is greatly reduced, which can effectively reduce the leakage current and the dark count rate (compared to the APD device with the same effective detection area). MOS-ADD adopts the front-incidence method, and all electrodes on the incident surface can use transparent conductive films, such as indium tin oxide (ITO) films or very thin metal films as electrode materials, which can effectively reduce the shielding and absorption of light by the electrodes.

MOS-ADD结构用于制作单元大面积单光子探测器时,因输出电容小且不依赖于探测器的面积,其电子学噪声一般远小于具有同样通光窗口面积和光吸收区厚度的常规雪崩光电二极管(参阅S.Tanaka,J.Kataoka,Y.Kanai,Y.Yatsu,M.Arimoto,M.Koizumi,N.Kawai,Y.Ishikawa,S.Kawai,N.Kawabata,“Development ofwideband X-ray and gamma-ray spectrometer using transmission-type,large-areaAPD”,Nuclear Instruments and Methods in Physics Research Section A,Volume582,Issue 2,21 November 2007,Pages 562-568),适合于对穿透深度较浅的软X射线、紫外光、可见光及近红外光的探测。如果结合闪烁体还可以用来探测高能量的X或γ射线,在弱光检测、核医学成像、高能物理研究等领域具有广泛的应用前景。When the MOS-ADD structure is used to make a unit large-area single-photon detector, because the output capacitance is small and does not depend on the area of the detector, its electronic noise is generally much smaller than that of a conventional avalanche photoelectric with the same light-passing window area and light-absorbing region thickness. Diodes (see S. Tanaka, J. Kataoka, Y. Kanai, Y. Yatsu, M. Arimoto, M. Koizumi, N. Kawai, Y. Ishikawa, S. Kawai, N. Kawabata, "Development of wideband X-ray and gamma-ray spectrometer using transmission-type, large-areaAPD", Nuclear Instruments and Methods in Physics Research Section A, Volume582, Issue 2, 21 November 2007, Pages 562-568), suitable for soft X with shallow penetration depth Rays, ultraviolet light, visible light and near-infrared light detection. If combined with scintillators, it can also be used to detect high-energy X or γ-rays, and has broad application prospects in low-light detection, nuclear medical imaging, high-energy physics research and other fields.

为实现上述目的,本发明采取以下技术方案:To achieve the above object, the present invention takes the following technical solutions:

一种新型具有MOS全耗尽漂移通道的雪崩漂移探测器,英文简称为MOS ADD(MOSdepletion drift channel Avalanche Drift Detector),其特征在于制作该探测器的半导体材料为硅单晶片,每个探测器单元由“点状”雪崩二极管收集区、耗尽有源区、大面积透明栅极MOS结构、掩埋pn结、内漂移电极、外漂移电极以及接地构成。A new type of avalanche drift detector with MOS full depletion drift channel, referred to as MOS ADD (MOS depletion drift channel Avalanche Drift Detector) in English, is characterized in that the semiconductor material for making the detector is a silicon single wafer, and each detector unit It is composed of "point-like" avalanche diode collection area, depleted active area, large-area transparent gate MOS structure, buried pn junction, inner drift electrode, outer drift electrode and grounding.

所述硅单晶片掺杂类型为N型或P型,掺杂浓度低于1×1017cm-3,厚度为100微米-0.5毫米,晶向<100>、<110>或<111>,单面或双面抛光片;The doping type of the silicon single wafer is N-type or P-type, the doping concentration is lower than 1×10 17 cm -3 , the thickness is 100 μm-0.5 mm, and the crystal orientation is <100>, <110> or <111>, Single-sided or double-sided polishing sheet;

所述“点状”雪崩二极管收集区位于探测器单元的中心,其面积小于1000μm2The "point-shaped" avalanche diode collection area is located in the center of the detector unit, and its area is less than 1000 μm 2 ;

所述耗尽有源区的掺杂类型与硅单晶片掺杂类型相反,深度0.1微米-10微米;The doping type of the depleted active region is opposite to the doping type of the silicon single wafer, and the depth is 0.1 μm-10 μm;

所述大面积透明栅极MOS结构由透明导电膜-SiO2-Si构成,透明导电膜兼做电极和减反射膜,可以是ITO或很薄的金属(例如银、金、铝、钛等),其厚度为1nm-10μm,SiO2层厚1nm-1μm;The large-area transparent gate MOS structure is composed of a transparent conductive film-SiO 2 -Si, and the transparent conductive film is also used as an electrode and an anti-reflection film, which can be ITO or a very thin metal (such as silver, gold, aluminum, titanium, etc.) , its thickness is 1nm-10μm, the thickness of SiO 2 layer is 1nm-1μm;

所述掩埋pn结由耗尽有源区与硅单晶片衬底构成;The buried pn junction is composed of a depleted active region and a silicon single wafer substrate;

所述内、外漂移电极掺杂类型与耗尽有源区相反,接地电极掺杂类型与耗尽有源区相同,采用透明导体或铝膜做电极引出;The doping type of the inner and outer drift electrodes is opposite to that of the depleted active region, the doping type of the ground electrode is the same as that of the depleted active region, and transparent conductors or aluminum films are used as electrode leads;

所述新型MOS-ADD探测器具有圆饼和圆环形状,获具有方形或条形形状;The novel MOS-ADD detector has a circular pie and a ring shape, and has a square or bar shape;

所述新型MOS-ADD探测器具有单元或多元阵列结构,所述多元阵列结构的输出端可以是各自独立输出,也可以是全部并联,共用1个负载;The novel MOS-ADD detector has a unit or multi-element array structure, and the output ends of the multi-array structure can be independent outputs, or all can be connected in parallel, sharing one load;

本发明还涉及所述新型MOS-ADD探测器探测光信号的方法。其特征是:The present invention also relates to a method for detecting light signals of the novel MOS-ADD detector. Its characteristics are:

被测光信号从所述MOS-ADD探测器的正面入射进入探测器(透过透明电极);The measured light signal enters the detector from the front of the MOS-ADD detector (through the transparent electrode);

探测器工作时,所述掩埋pn结加反向偏压,所述MOS结构工作在耗尽状态,所述内、外漂移电极与耗尽有源区形成反偏pn结,外电极偏压的绝对值大于内电极偏压的绝对值;When the detector is working, the buried pn junction is reverse-biased, the MOS structure works in a depleted state, the inner and outer drift electrodes form a reverse-biased pn junction with the depleted active region, and the outer electrodes are biased The absolute value is greater than the absolute value of the internal electrode bias;

所述光信号指近红外光、可见光、紫外光(波长范围是0.2-1.1微米)及软X光(能量范围是1-20keV)。The optical signal refers to near-infrared light, visible light, ultraviolet light (wavelength range of 0.2-1.1 microns) and soft X-ray (energy range of 1-20keV).

以下结合实例具体说明本发明。The present invention is specifically described below in conjunction with examples.

图1所示为基于N型硅单晶片,空穴漂移的新型MOS-ADD单元的结构示意图。探测器由“点状”雪崩二极管收集区Collecting electrode、耗尽有源区P井(p-well,掺杂受主区)、ITO透明栅极MOS结构、掩埋pn结、内漂移环电极R1、外漂移环电极R2,接地环电极GND。Figure 1 shows a schematic diagram of the structure of a new MOS-ADD unit based on an N-type silicon single wafer with hole drift. The detector consists of "point-like" avalanche diode collection area Collecting electrode, depleted active area P well (p-well, doped acceptor area), ITO transparent gate MOS structure, buried pn junction, inner drift ring electrode R1, The outer drift ring electrode R2, the ground ring electrode GND.

使用本发明新型MOS-ADD探测器探测光信号的方法是:光信号从探测器正面入射进入探测器。GND接地,Collecting electrode电极加负偏压到雪崩击穿电压以上,当一个光生空穴漂移到雪崩区后引发雪崩倍增并输出一个放大的脉冲电流信号;ITO透明栅极Gate和背面电极Back electrode各加一合适正偏压(相对于GND),使P井(pwell)全耗尽并在P井中形成一条空穴电势能谷,使光生空穴集中于能谷中以减小表面复合损失;内漂移环电极R1加小的正电压(约1-4V),外漂移环电极R2加比R1稍高几伏特的正电压,在P井耗尽区中形成一指向探测器单元中心的侧向漂移电场(如图2所示的由软件模拟得到的漂移区电势分布)。MOS结构处于弱反型或耗尽状态,弱反型层作为分压电阻可使侧向漂移电场更均匀。被测光信号从所述MOS-ADD探测器的正面入射进入器件(透过ITO电极),在耗尽区中产生电子-空穴对,电子被排斥进入MOS沟道下的反型层或衬底,而空穴将汇聚于漂移通道(即空穴电势能谷)中并在漂移环所产生的侧向电场下漂移至探测器中心的雪崩区(如图3所示的由软件模拟得到的空穴电流的分布和流向),在雪崩区发生碰撞电离倍增而被放大并输出一个脉冲电流信号。The method of using the novel MOS-ADD detector of the present invention to detect the optical signal is: the optical signal enters the detector from the front of the detector. GND is grounded, and the electrode of Collecting electrode is negatively biased to above the avalanche breakdown voltage. When a photogenerated hole drifts to the avalanche area, it will cause avalanche multiplication and output an amplified pulse current signal; the ITO transparent grid Gate and the back electrode Back electrode respectively Apply an appropriate positive bias (relative to GND) to completely deplete the P well (pwell) and form a hole potential energy valley in the P well, so that the photogenerated holes are concentrated in the energy valley to reduce the surface recombination loss; internal drift Apply a small positive voltage (about 1-4V) to the ring electrode R1, apply a positive voltage a few volts higher than R1 to the outer drift ring electrode R2, and form a lateral drift electric field pointing to the center of the detector unit in the P well depletion region (The potential distribution in the drift region obtained by software simulation as shown in FIG. 2 ). The MOS structure is in a weak inversion or depletion state, and the weak inversion layer acts as a voltage divider resistor to make the lateral drift electric field more uniform. The light signal to be measured enters the device from the front of the MOS-ADD detector (through the ITO electrode), and electron-hole pairs are generated in the depletion region, and the electrons are repelled into the inversion layer or substrate under the MOS channel. bottom, and the holes will gather in the drift channel (that is, the hole potential energy valley) and drift to the avalanche region in the center of the detector under the lateral electric field generated by the drift ring (as shown in Figure 3 obtained by software simulation The distribution and flow direction of the hole current), the impact ionization multiplies in the avalanche area and is amplified and outputs a pulse current signal.

在本发明的其它实施例中:In other embodiments of the invention:

新型MOS-ADD探测器采用P型硅单晶片制作,其晶向为<100>、<111>或<110>,掺杂浓度低于1×1017cm-3,厚度100微米-0.5毫米;The new MOS-ADD detector is made of P-type silicon single wafer, its crystal orientation is <100>, <111> or <110>, the doping concentration is lower than 1×10 17 cm -3 , and the thickness is 100 microns-0.5 mm;

“点状”雪崩二极管的面积小于1000μm2"Spot-shaped" avalanche diodes with an area of less than 1000 μm 2 ;

N井(N-well)耗尽有源区的深度为0.1微米-10微米,由离子注入、扩散或外延等技术实现;N-well (N-well) depletes the active region to a depth of 0.1 microns to 10 microns, which is achieved by ion implantation, diffusion or epitaxy;

透明栅极MOS结构由透明导电膜-SiO2-Si构成,透明导电膜兼做电极和减反射膜,可以是ITO或很薄的金属,例如铝、钛、银、金等,其厚度为1nm-10μm,SiO2层厚1nm-1μm;The transparent gate MOS structure is composed of a transparent conductive film-SiO 2 -Si. The transparent conductive film is also used as an electrode and an anti-reflection film. It can be ITO or a very thin metal, such as aluminum, titanium, silver, gold, etc., and its thickness is 1nm. -10μm, SiO 2 layer thickness 1nm-1μm;

内、外漂移电极R1、R2和接地电极GND可以采用和透明栅极MOS结构一样的ITO膜或很薄的金属,其厚度为1nm-10μm;The inner and outer drift electrodes R1, R2 and the ground electrode GND can use the same ITO film or very thin metal as the transparent gate MOS structure, and its thickness is 1nm-10μm;

MOS-ADD探测器除了圆饼和圆环形状外,还可以具有方形或条形形状;MOS-ADD detectors can have a square or bar shape in addition to the pie and donut shape;

MOS-ADD探测器除了单元结构外,还可以具有多元阵列或其它变种形式的结构。所述多元阵列结构的输出端可以是各自独立输出,或全部并联,共用1个负载。In addition to the unit structure, the MOS-ADD detector can also have a multi-element array or other variant structures. The output terminals of the multi-element array structure can be output independently, or all connected in parallel, sharing one load.

需要说明的是,上述实施例仅为说明本发明而非限制本发明的专利范围,任何基于本发明的等同变换技术,均应在本发明的专利保护范围内。It should be noted that the above-mentioned embodiments are only for illustrating the present invention but not limiting the patent scope of the present invention, and any equivalent transformation technology based on the present invention shall be within the scope of the patent protection of the present invention.

Claims (11)

1.一种新型MOS-ADD探测器,其特征在于:1. A novel MOS-ADD detector, characterized in that: 制作该探测器的半导体材料为单晶硅片,每个探测器单元由“点状”雪崩二极管收集区、耗尽有源区、大面积透明栅极MOS结构、掩埋pn结、内漂移电极、外漂移电极以及接地构成;The semiconductor material used to make the detector is a single crystal silicon wafer. Each detector unit consists of a "point-like" avalanche diode collection area, a depletion active area, a large-area transparent gate MOS structure, a buried pn junction, an inner drift electrode, External drift electrode and grounding structure; 2.如权利要求1所述的新型MOS-ADD探测器,其特征在于:所述硅单晶片掺杂类型为N型或P型,掺杂浓度低于1×1017cm-3,厚度为100微米-0.5毫米,晶向<100>、<110>或<111>,单面或双面抛光片;2. The novel MOS-ADD detector according to claim 1, characterized in that: the doping type of the silicon single wafer is N-type or P-type, the doping concentration is lower than 1×10 17 cm -3 , and the thickness is 100μm-0.5mm, crystal orientation <100>, <110> or <111>, single-sided or double-sided polished sheet; 3.如权利要求1所述的新型MOS-ADD探测器,其特征在于:所述“点状”雪崩二极管收集区位于探测器单元的中心,其面积小于1000μm23. The novel MOS-ADD detector according to claim 1, characterized in that: the "point-like" avalanche diode collection area is located at the center of the detector unit, and its area is less than 1000 μm 2 ; 4.如权利要求1所述的新型MOS-ADD探测器,其特征在于:耗尽有源区的掺杂类型与权利要求2所述硅单晶片掺杂类型相反,深度0.1微米-10微米;4. The novel MOS-ADD detector according to claim 1, characterized in that: the doping type of the depleted active region is opposite to the doping type of the silicon single wafer described in claim 2, and the depth is 0.1 μm-10 μm; 5.如权利要求1所述的新型MOS-ADD探测器,其特征在于:所述大面积透明栅极MOS结构由透明导电膜-SiO2-Si(即权利要求4所述耗尽有源区)构成,透明导电膜兼做电极和减反射膜,厚度为1nm-10μm,SiO2层厚1nm-1μm;5. novel MOS-ADD detector as claimed in claim 1, is characterized in that: described large-area transparent gate MOS structure is made of transparent conductive film-SiO 2 -Si (that is, depletion active region described in claim 4 ), the transparent conductive film doubles as an electrode and an anti-reflection film, the thickness is 1nm-10μm, and the thickness of the SiO 2 layer is 1nm-1μm; 6.如权利要求1所述的新型MOS-ADD探测器,其特征在于:所述掩埋pn结由权利要求4所述耗尽有源区与权利要求2所述硅单晶片衬底构成;6. The novel MOS-ADD detector according to claim 1, wherein the buried pn junction is composed of the depleted active region as claimed in claim 4 and the silicon single wafer substrate as claimed in claim 2; 7.如权利要求1所述的新型MOS-ADD探测器,其特征在于:所述内、外漂移电极掺杂类型与权利要求4所述耗尽有源区相反,接地掺杂类型与权利要求4所述耗尽有源区相同,采用厚度为1nm-10μm的透明导体或铝、钛膜做电极引出;7. The novel MOS-ADD detector according to claim 1, characterized in that: the doping type of the inner and outer drift electrodes is opposite to that of the depleted active region as claimed in claim 4, and the doping type of the grounding is the same as that of the claim 4. The depletion active region is the same, and a transparent conductor or an aluminum or titanium film with a thickness of 1nm-10μm is used as the electrode lead; 8.如权利要求1所述的新型MOS-ADD探测器,其特征在于:具有圆饼和圆环形状,获具有方形或条形形状;8. novel MOS-ADD detector as claimed in claim 1, is characterized in that: have circular pie and ring shape, obtain square or strip shape; 9.如权利要求1所述的新型MOS-ADD探测器,其特征在于:具有单元或多元阵列结构,所述多元阵列结构的输出端可以是各自独立输出,或全部并联,共用1个负载;9. The novel MOS-ADD detector according to claim 1, characterized in that: it has a unit or multi-element array structure, and the output ends of the multi-element array structure can be independently output, or all connected in parallel, sharing one load; 10.一种使用权利要求1所述的新型MOS-ADD探测器探测光信号的方法,其特征在于:10. A method of using the novel MOS-ADD detector as claimed in claim 1 to detect optical signals, characterized in that: 被测光信号从所述MOS-ADD探测器的正面入射进入探测器(透过透明电极),探测器工作时,权利要求6所述掩埋pn结加反向偏压,权利要求5所述MOS结构工作在弱反型或耗尽状态,权利要求7所述的内、外漂移电极与权利要求4所述耗尽有源区形成反偏pn结,外电极偏压的绝对值大于内电极偏压的绝对值;The light signal to be measured enters the detector from the front of the MOS-ADD detector (through the transparent electrode). When the detector is working, the buried pn junction in claim 6 is reverse biased, and the MOS described in claim 5 The structure works in a weak inversion or depletion state, the inner and outer drift electrodes described in claim 7 and the depleted active region described in claim 4 form a reverse-biased pn junction, and the absolute value of the bias voltage of the outer electrodes is greater than the bias voltage of the inner electrodes. absolute value of pressure; 11.如权利要求10所述的光信号指近红外光、可见光、紫外光(波长范围是0.21.1微米)或X光(能量范围是1-20keV)。11. The optical signal according to claim 10 refers to near-infrared light, visible light, ultraviolet light (wavelength range is 0.21.1 micron) or X-ray (energy range is 1-20keV).
CN2008101804616A 2008-11-28 2008-11-28 Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof Expired - Fee Related CN101752391B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2008101804616A CN101752391B (en) 2008-11-28 2008-11-28 Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2008101804616A CN101752391B (en) 2008-11-28 2008-11-28 Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof

Publications (2)

Publication Number Publication Date
CN101752391A true CN101752391A (en) 2010-06-23
CN101752391B CN101752391B (en) 2011-11-09

Family

ID=42479082

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2008101804616A Expired - Fee Related CN101752391B (en) 2008-11-28 2008-11-28 Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof

Country Status (1)

Country Link
CN (1) CN101752391B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445711A (en) * 2010-09-30 2012-05-09 中国科学院苏州纳米技术与纳米仿生研究所 THz-wave detector
CN103135120A (en) * 2011-11-30 2013-06-05 中国辐射防护研究院 Measuring method and measuring device of regional gamma radiation based on silicon photomultiplier
CN104377269A (en) * 2013-08-13 2015-02-25 哈尔滨工大华生电子有限公司 High-gain infinitesimal avalanche photodiode array preparing method
CN105590985A (en) * 2015-12-31 2016-05-18 南京大学 Optoelectronic device based on two-dimensional layered material p-i-n heterojunction
CN106353666A (en) * 2016-09-07 2017-01-25 成都天诚慧芯科技有限公司 Deducting and deduction testing methods for <60>Co Gamma-ray radiation response of SOI (silicon on insulator) NMOSFET (N-channel metal oxide semiconductor field-effect transistor)
CN106784054A (en) * 2017-03-06 2017-05-31 北京世纪金光半导体有限公司 A kind of ultraviolet avalanche photodiode detector and its detection method
CN106960852A (en) * 2017-03-06 2017-07-18 北京世纪金光半导体有限公司 Ultraviolet avalanche photodiode detector and its detection method with drift channel
CN107342338A (en) * 2017-08-22 2017-11-10 北京世纪金光半导体有限公司 A kind of ultraviolet the snowslide drifting detector and detection method of more drift ring structures
US11177882B2 (en) 2018-07-25 2021-11-16 Universidad Antonio Nariño Receiver for low-power optical signals with operation in conditions of high incidence of background light and application in visible light communication
CN113921646A (en) * 2021-09-30 2022-01-11 厦门市三安集成电路有限公司 Single-photon detector, manufacturing method thereof and single-photon detector array
CN116130541A (en) * 2023-01-14 2023-05-16 中国科学院长春光学精密机械与物理研究所 A kind of multi-color detector and preparation method
CN117059693A (en) * 2023-09-12 2023-11-14 Nano科技(北京)有限公司 Avalanche photodiode array

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6359293B1 (en) * 1999-08-17 2002-03-19 Agere Systems Guardian Corp. Integrated optoelectronic device with an avalanche photodetector and method of making the same using commercial CMOS processes

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445711B (en) * 2010-09-30 2013-10-30 中国科学院苏州纳米技术与纳米仿生研究所 THz-wave detector
CN102445711A (en) * 2010-09-30 2012-05-09 中国科学院苏州纳米技术与纳米仿生研究所 THz-wave detector
CN103135120A (en) * 2011-11-30 2013-06-05 中国辐射防护研究院 Measuring method and measuring device of regional gamma radiation based on silicon photomultiplier
CN104377269A (en) * 2013-08-13 2015-02-25 哈尔滨工大华生电子有限公司 High-gain infinitesimal avalanche photodiode array preparing method
CN105590985A (en) * 2015-12-31 2016-05-18 南京大学 Optoelectronic device based on two-dimensional layered material p-i-n heterojunction
CN105590985B (en) * 2015-12-31 2017-11-10 南京大学 Based on the sub- device of two-dimentional layer material p i n heterojunction photovoltaics
CN106353666A (en) * 2016-09-07 2017-01-25 成都天诚慧芯科技有限公司 Deducting and deduction testing methods for <60>Co Gamma-ray radiation response of SOI (silicon on insulator) NMOSFET (N-channel metal oxide semiconductor field-effect transistor)
CN106353666B (en) * 2016-09-07 2018-12-25 成都天诚慧芯科技有限公司 SOI NMOSFET's60The response of Co gamma Rays derives and derives test method
CN106960852B (en) * 2017-03-06 2021-01-29 北京世纪金光半导体有限公司 Ultraviolet avalanche photodiode detector with drift channel and detection method thereof
CN106784054A (en) * 2017-03-06 2017-05-31 北京世纪金光半导体有限公司 A kind of ultraviolet avalanche photodiode detector and its detection method
CN106960852A (en) * 2017-03-06 2017-07-18 北京世纪金光半导体有限公司 Ultraviolet avalanche photodiode detector and its detection method with drift channel
CN107342338A (en) * 2017-08-22 2017-11-10 北京世纪金光半导体有限公司 A kind of ultraviolet the snowslide drifting detector and detection method of more drift ring structures
US11177882B2 (en) 2018-07-25 2021-11-16 Universidad Antonio Nariño Receiver for low-power optical signals with operation in conditions of high incidence of background light and application in visible light communication
CN113921646A (en) * 2021-09-30 2022-01-11 厦门市三安集成电路有限公司 Single-photon detector, manufacturing method thereof and single-photon detector array
CN116130541A (en) * 2023-01-14 2023-05-16 中国科学院长春光学精密机械与物理研究所 A kind of multi-color detector and preparation method
CN117059693A (en) * 2023-09-12 2023-11-14 Nano科技(北京)有限公司 Avalanche photodiode array
CN117059693B (en) * 2023-09-12 2024-11-29 Nano科技(北京)有限公司 Avalanche photodiode array

Also Published As

Publication number Publication date
CN101752391B (en) 2011-11-09

Similar Documents

Publication Publication Date Title
CN101752391B (en) Snow slide drifting detector with MOS fully-depleted drifting channel and detecting method thereof
US9728667B1 (en) Solid state photomultiplier using buried P-N junction
US11101315B2 (en) Detector, PET system and X-ray CT system
RU2416840C2 (en) Avalanche photodiode in geiger counter mode
US6713768B2 (en) Junction-side illuminated silicon detector arrays
US8729654B2 (en) Back-side readout semiconductor photomultiplier
JP2014241543A (en) Photo-detection device and ct device
CN113270507B (en) Avalanche photodiode and photomultiplier detector
US9941428B2 (en) Nano-electrode multi-well high-gain avalanche rushing photoconductor
CN106784054A (en) A kind of ultraviolet avalanche photodiode detector and its detection method
CN115084295A (en) Silicon photomultiplier structure applied to radiation and weak light detection and preparation method thereof
CN103904152B (en) Photoelectric detector and manufacturing method thereof and radiation detector
JP2011071455A (en) Silicon photomultiplier
CN113270508A (en) Avalanche photodiode and photomultiplier detector
CN106960852B (en) Ultraviolet avalanche photodiode detector with drift channel and detection method thereof
CN211907450U (en) Bulk resistance quenching avalanche photodiode array detector
US20160018535A1 (en) Radiation detector
US7825384B1 (en) Quantum detector array
Entine et al. Scintillation detectors using large area silicon avalanche photodiodes
CN117308773A (en) Three-dimensional position sensitive scintillation detector and scintillation imaging detector
CN107978655A (en) A kind of manufacture method of radiation detector
AU2017205654A1 (en) Selenium photomultiplier and method for fabrication thereof
Yuan et al. A theoretical study of two novel SiC and GaN ultraviolet avalanche drift detectors with front-illumination
RU2528107C1 (en) Semiconductor avalanche detector
Isayev et al. MAPD type avalanche photodetectors

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111109

Termination date: 20131128