CN101749119A - 涡轮机入口空气热泵型系统 - Google Patents

涡轮机入口空气热泵型系统 Download PDF

Info

Publication number
CN101749119A
CN101749119A CN200910262604A CN200910262604A CN101749119A CN 101749119 A CN101749119 A CN 101749119A CN 200910262604 A CN200910262604 A CN 200910262604A CN 200910262604 A CN200910262604 A CN 200910262604A CN 101749119 A CN101749119 A CN 101749119A
Authority
CN
China
Prior art keywords
heating
cooling
intake air
cooling system
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN200910262604A
Other languages
English (en)
Inventor
A·莫塔科夫
P·费赫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN101749119A publication Critical patent/CN101749119A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/12Cooling of plants
    • F02C7/14Cooling of plants of fluids in the plant, e.g. lubricant or fuel
    • F02C7/141Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid
    • F02C7/143Cooling of plants of fluids in the plant, e.g. lubricant or fuel of working fluid before or between the compressor stages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • F01K27/02Plants modified to use their waste heat, other than that of exhaust, e.g. engine-friction heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/04Air intakes for gas-turbine plants or jet-propulsion plants
    • F02C7/047Heating to prevent icing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

本发明涉及一种用于涡轮压缩机(20)的入口空气的加热和冷却系统(100)。加热和冷却系统(100)可包括热能存储罐充填回路(190)、与热能存储罐充填回路(190)连通的冷却回路(200),以及与冷却回路(200)和涡轮压缩机(20)的入口空气连通的加热回路(210)。

Description

涡轮机入口空气热泵型系统
技术领域
本发明大体涉及燃气轮机发动机,且更具体地涉及同时对涡轮机入口空气提供加热且供应冷却水以充填热能存储罐的涡轮机入口空气热泵型系统。
背景技术
空气冷却系统通常与燃气轮机一起使用,以冷却入口空气温度。取决于环境温度,与燃气轮机发动机一起使用冷却系统可使总功率输出提高较大的百分比。特别地,在一个宽的温度范围上,燃气轮机的功率输出几乎与入口空气温度成反比。例如,已知的燃气轮机在约83华氏度(约28.3摄氏度)的环境温度下仅可产生154兆瓦的功率,但是在约50华氏度(约10摄氏度)的环境温度下可产生171.2兆瓦的功率,提高了超过约百分之十一。同样,可以运行冷却系统,以在更冷的环境温度中用废热来调和冷的入口空气,以便为燃气轮机提供有效率的部分负载操作。
在一年中具有较大的昼夜温度变动的地点或时间,入口空气加热可用于在夜间的部分负载操作或防冻控制,同时冷却可用于白天的有效率操作。但是,加热和冷却操作两者通常涉及外部能源。因此,此附加的功率消耗可能会在某种程度上影响总的涡轮机输出和效率。
因此需要改进的燃气轮机入口空气加热和冷却系统。这种加热和冷却系统应该提供燃气轮机入口空气温度的提前加热和冷却,同时提高总的系统输出和效率。
发明内容
本申请描述了一种用于涡轮压缩机的入口空气的加热和冷却系统。该加热和冷却系统可包括热能存储罐充填回路、与热能存储罐充填回路连通的冷却回路,以及与冷却回路和涡轮压缩机的入口空气连通的加热回路。
本申请进一步描述了一种将用于压缩机入口的入口空气加热和冷却系统作为热泵来操作的方法。该方法可包括步骤:操作冷却器,以充填热能存储罐;将来自冷却器的废热引导到热交换器;在热交换器中加热与压缩机入口和冷却器的废热连通的流体;以及用冷却器的废热来加热压缩机周围的入口空气。
本申请进一步描述了一种用于燃气轮机压缩机的入口空气的加热和冷却系统。该加热和冷却系统可包括具有热能存储罐和冷却蒸发器的热能存储罐充填回路。冷却回路可与热能存储罐充填回路连通。冷却回路可包括冷却冷凝器和热回收型热交换器。加热回路可与冷却回路和燃气轮机压缩机的入口空气连通。加热回路可包括设置在涡轮压缩机周围且与热回收型热交换器连通的流体螺旋管(coil)。
在结合多个附图和权利要求书阅读以下详细说明之后,对于本领域的技术人员,本申请的这些和其它特征将变得清楚。
附图说明
图1是具有空气冷却系统的燃气轮机发动机的示意图。
图2是构造成作为如本文所述的入口空气热泵型系统操作的燃气轮机入口空气加热和冷却系统的示意图。部件列表10  燃气轮机发动机20  压缩机30  燃烧器40  涡轮机50  外部负载60  入口空气加热和冷却系统70  冷/热水螺旋管100 涡轮机入口空气加热和冷却系统110 冷/热水螺旋管120 水冷却器125 初级水泵130 蒸发器140 冷凝器150 冷却塔160 冷凝器水泵170 热回收型热交换器175 次级水泵180 热能存储罐181 顶部182 底部190 热能存储罐充填回路200 冷却回路210 加热回路
具体实施方式
现在参看附图,其中在多个附图中,相同的数字始终指示相同的元件,图1显示了燃气轮机发动机10的示意图。如所知道的,燃气轮机发动机10可包括压缩机20,用以压缩进入气流。压缩机20将压缩气流输送到燃烧器30。燃烧器30使压缩气流与燃料流混合,且点燃混合物。(尽管只显示了单个燃烧器30,但是燃气轮机发动机10可包括任何数量的燃烧器30)。然后热的燃烧气体被输送到涡轮机40。涡轮机40驱动压缩机20和外部负载50,例如发电机等。燃气轮机发动机10可使用天然气、各种类型的合成气和其它燃料。在本文中,燃气轮机发动机10可使用其它构造和构件。
在此实例中,燃气轮机发动机10进一步包括入口空气加热和冷却系统60。入口空气加热和冷却系统60可设置在压缩机20周围,且将进入气流加热或冷却到期望的温度。入口空气加热和冷却系统60包括冷/热水螺旋管70。热或冷水流过螺旋管70,且与进入气流交换热。在那里,入口空气加热和冷却系统60可使用任何类型的热交换装置。如上所述,冷水大体可由制冷设备提供,而热水可通过系统废热提供或从另外的源提供。
重要的是注意,术语“热”、“温”、“冷”和“凉”是以相对意义来使用的。在本文中,不意图限制可应用的温度范围。
图2示出了如本文所描述的完整的燃气轮机入口空气加热和冷却系统100。燃气轮机入口空气加热和冷却系统100可与任何数量的燃气轮机发动机10一起使用。如上所述,冷/热水螺旋管110可设置在各燃气轮机发动机10的压缩机20周围。冷/热水螺旋管110通过流过其中的水流来加热或冷却入口空气,如上所述。本文可使用其它类型的热交换装置。
在冷却模式中,冷/热水螺旋管110可与水冷却器120连通。水冷却器120可为机械式冷却器、吸收式冷却器或任何传统类型的冷却装置。如所知道的,水冷却器120将冷水提供给冷/热水螺旋管110,在冷/热水螺旋管110中,与进入气流交换热。在交换热之后,现在较温的水一般回到水冷却器120。冷/热水螺旋管110可通过初级水泵125与水冷却器120连通。可使用任何数量的水冷却器120和初级水泵125。
各个水冷却器120大体包括蒸发器130和冷凝器140。用于冷却冷凝器140的冷却水可由冷却塔150通过一个或多个冷凝器水泵160来提供。本文可使用其它类型的水源。如所知道的,冷却塔150可起散热器或热源的作用,这取决于总的系统热平衡。本文可使用其它类型的热交换装置。
还可将温水提供给冷/热水螺旋管110。温水可通过废热或外部源来提供。在此实例中,可使用热回收型热交换器170。本文可使用任何类型的热交换装置。来自冷却器120的冷凝器140的温水在回到冷却塔150的途中可通过热回收型热交换器170,且与处于与冷/热水螺旋管110连通的回路交换热,这将在下面更加详细地描述。其它废热源也可与热回收型热交换器170一起使用,即从底循环、发电机排出的热、润滑油废热或任何其它热源。热回收型热交换器170可通过次级水泵175与冷/热水螺旋管110连通。可使用任何数量的次级水泵175。
入口空气加热和冷却系统100还可包括热能存储罐180。热能存储罐180可为传统的分层水热存储系统。本文还可使用其它类型的液体。温水上升到罐180的顶部部分,同时冷却水沉到罐180的底部部分182。本文可使用其它类型的热存储系统。本文可使用任何数量的热能存储罐180。
在热泵模式中,入口空气加热和冷却系统100可包括一定量的热回路。第一回路可为热能存储罐充填回路190。热能存储罐充填回路190可通过初级水泵125使热能存储罐180的顶部181与水冷却器120的蒸发器130连接。然后冷却水可直接流回到热能存储罐180的底部182。因此冷却水可存储在热能存储罐180中以供后面使用。例如,可在冷/热水螺旋管110中使用冷却水,以在白天提供入口空气冷却。
入口空气加热和冷却系统100还可包括热源回路或冷却回路200。冷却回路200可通过冷凝器水泵160来包括水冷却器120的冷凝器140、热回收型热交换器170和冷却塔150。冷水可从冷却塔150泵送到水冷却器120的冷凝器140,以在那里进行热交换。然后添加到来自冷凝器140的水流的废热可在回到冷却塔150之前在热回收型热交换器170中进行交换,这将在下面进行更详细的描述。
入口空气加热和冷却系统100可进一步包括加热回路210。加热回路210可通过次级水泵175使冷/热水螺旋管110与热回收型热交换器170连接。因此来自水冷却器120的冷凝器140的废热可在热回收型热交换器170中进行交换,且提供给冷/热水螺旋管110,以便加热压缩机20周围的进入气流。
因此入口空气加热和冷却系统100可对压缩机130的入口提供加热,且同时对热能存储罐180供应冷却水以供后面使用。可将来自水冷却器120的冷凝器140的废热提供给冷/热水螺旋管110,以便:提供总的燃气轮机发动机10的部分负载控制;对压缩机20提供防冻,而不是使用入口排热;提供冷/热水螺旋管110的防冻,而不使用防冻剂;以及代替传统的入口壳体除冰技术提供入口过滤器的防冻。因此,当入口热对部分负载或防冻控制有用时,可在寒冷的夜间使用在此热泵型模式中的入口空气加热和冷却系统100,同时产生供白天使用的冷却水。因此入口空气加热和冷却系统100提供入口空气加热,而不需要消耗额外能量用于获得有效率的部分负载。这样,可降低附加的功率消耗,同时可提高总的能量产生。
显而易见的是,前述仅涉及本申请的某些实施例,且在不脱离由权利要求书及其等效物限定的本发明的总体精神和范围的情况下,可由本领域的技术人员进行许多改变和修改。

Claims (10)

1.一种用于燃气涡轮压缩机(20)的入口空气的加热和冷却系统(100),包括:
热能存储罐充填回路(190);
与所述热能存储罐充填回路(190)连通的冷却回路(200);以及
与所述冷却回路(200)和所述涡轮压缩机(20)的入口空气连通的加热回路(210)。
2.根据权利要求1所述的用于入口空气的加热和冷却系统(100),其特征在于,所述加热回路(210)包括设置在所述燃气涡轮压缩机(20)周围且与所述入口空气连通的流体螺旋管(110)。
3.根据权利要求1所述的用于入口空气的加热和冷却系统(100),其特征在于,所述加热和冷却系统(100)还包括一个或多个冷却器(120)。
4.根据权利要求3所述的用于入口空气的加热和冷却系统(100),其特征在于,所述热能存储罐充填回路(200)包括一个或多个冷却蒸发器(130)。
5.根据权利要求3所述的用于入口空气的加热和冷却系统(100),其特征在于,所述冷却回路(200)包括一个或多个冷却冷凝器(140)。
6.根据权利要求1所述的用于入口空气的加热和冷却系统(100),其特征在于,所述冷却回路(200)包括冷却塔(150)。
7.根据权利要求1所述的用于入口空气的加热和冷却系统(100),其特征在于,所述加热和冷却系统(100)还包括热回收型热交换器(170)。
8.根据权利要求7所述的用于入口空气的加热和冷却系统(100),其特征在于,所述冷却回路(200)与所述热回收型热交换器(170)连通。
9.根据权利要求7所述的用于入口空气的加热和冷却系统(100),其特征在于,所述加热回路(210)与所述热回收型热交换器(170)连通。
10.一种将用于压缩机入口(20)的入口空气加热和冷却系统(100)作为热泵来操作的方法,包括:
操作冷却器(120),以充填热能存储罐(180);
将来自所述冷却器(120)的废热引导到热交换器(170);
在所述热交换器(170)中加热与所述压缩机入口(20)和所述冷却器(120)的所述废热连通的流体;以及
用所述冷却器(120)的所述废热来加热所述压缩机(20)周围的入口空气。
CN200910262604A 2008-12-11 2009-12-11 涡轮机入口空气热泵型系统 Pending CN101749119A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/332,383 US9470149B2 (en) 2008-12-11 2008-12-11 Turbine inlet air heat pump-type system
US12/332383 2008-12-11

Publications (1)

Publication Number Publication Date
CN101749119A true CN101749119A (zh) 2010-06-23

Family

ID=42238335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN200910262604A Pending CN101749119A (zh) 2008-12-11 2009-12-11 涡轮机入口空气热泵型系统

Country Status (5)

Country Link
US (1) US9470149B2 (zh)
EP (1) EP2343437A1 (zh)
CN (1) CN101749119A (zh)
AU (1) AU2009245881A1 (zh)
CA (1) CA2686360A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032175A (zh) * 2011-10-05 2013-04-10 通用电气公司 加热燃气涡轮入口的方法
CN103089447A (zh) * 2011-11-08 2013-05-08 通用电气公司 进气加热系统
CN108798902A (zh) * 2017-04-27 2018-11-13 通用电气公司 具有蓄热系统的中间冷却的涡轮机
CN112319799A (zh) * 2020-11-03 2021-02-05 谭成刚 无翼飞行器

Families Citing this family (47)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8505309B2 (en) 2011-06-14 2013-08-13 General Electric Company Systems and methods for improving the efficiency of a combined cycle power plant
US9719423B2 (en) 2012-09-04 2017-08-01 General Electric Company Inlet air chilling system with humidity control and energy recovery
US11476781B2 (en) 2012-11-16 2022-10-18 U.S. Well Services, LLC Wireline power supply during electric powered fracturing operations
US10407990B2 (en) 2012-11-16 2019-09-10 U.S. Well Services, LLC Slide out pump stand for hydraulic fracturing equipment
US9745840B2 (en) 2012-11-16 2017-08-29 Us Well Services Llc Electric powered pump down
US9995218B2 (en) * 2012-11-16 2018-06-12 U.S. Well Services, LLC Turbine chilling for oil field power generation
US9650879B2 (en) 2012-11-16 2017-05-16 Us Well Services Llc Torsional coupling for electric hydraulic fracturing fluid pumps
US10232332B2 (en) 2012-11-16 2019-03-19 U.S. Well Services, Inc. Independent control of auger and hopper assembly in electric blender system
US9970278B2 (en) 2012-11-16 2018-05-15 U.S. Well Services, LLC System for centralized monitoring and control of electric powered hydraulic fracturing fleet
US10020711B2 (en) 2012-11-16 2018-07-10 U.S. Well Services, LLC System for fueling electric powered hydraulic fracturing equipment with multiple fuel sources
US11449018B2 (en) 2012-11-16 2022-09-20 U.S. Well Services, LLC System and method for parallel power and blackout protection for electric powered hydraulic fracturing
US10254732B2 (en) 2012-11-16 2019-04-09 U.S. Well Services, Inc. Monitoring and control of proppant storage from a datavan
US9840901B2 (en) 2012-11-16 2017-12-12 U.S. Well Services, LLC Remote monitoring for hydraulic fracturing equipment
US10119381B2 (en) 2012-11-16 2018-11-06 U.S. Well Services, LLC System for reducing vibrations in a pressure pumping fleet
US9410410B2 (en) 2012-11-16 2016-08-09 Us Well Services Llc System for pumping hydraulic fracturing fluid using electric pumps
US10526882B2 (en) 2012-11-16 2020-01-07 U.S. Well Services, LLC Modular remote power generation and transmission for hydraulic fracturing system
US11959371B2 (en) 2012-11-16 2024-04-16 Us Well Services, Llc Suction and discharge lines for a dual hydraulic fracturing unit
US10036238B2 (en) 2012-11-16 2018-07-31 U.S. Well Services, LLC Cable management of electric powered hydraulic fracturing pump unit
US9893500B2 (en) 2012-11-16 2018-02-13 U.S. Well Services, LLC Switchgear load sharing for oil field equipment
US9410451B2 (en) * 2012-12-04 2016-08-09 General Electric Company Gas turbine engine with integrated bottoming cycle system
RU2015126797A (ru) 2012-12-06 2017-01-12 Сименс Акциенгезелльшафт Система и способ введения тепла в геологическую формацию при помощи электромагнитной индукции
ES2480915B1 (es) * 2012-12-28 2015-04-16 Abengoa Solar New Technologies S.A. Planta híbrida de ciclo combiando solar-gas y método de funcionamiento
DE102013210431A1 (de) 2013-06-05 2014-12-24 Siemens Aktiengesellschaft Gasturbinen gekoppeltes Speichersystem zur Ansaugfluidvorwärmung
GB201410083D0 (en) * 2014-06-06 2014-07-23 Isentropic Ltd Hybrid power generation system
DE102013219166A1 (de) * 2013-09-24 2015-03-26 Siemens Aktiengesellschaft Ansaugluftvorwärmsystem
EP3023614A1 (en) * 2014-11-20 2016-05-25 Siemens Aktiengesellschaft Apparatus and method for cooling or heating the air inlet of a gas turbine
GB2534914A (en) * 2015-02-05 2016-08-10 Isentropic Ltd Adiabatic liquid air energy storage system
CN106322593B (zh) * 2015-07-03 2022-11-15 广州市华德工业有限公司 一种蒸发冷却式冷水机组
CA2987665C (en) 2016-12-02 2021-10-19 U.S. Well Services, LLC Constant voltage power distribution system for use with an electric hydraulic fracturing system
US10280724B2 (en) 2017-07-07 2019-05-07 U.S. Well Services, Inc. Hydraulic fracturing equipment with non-hydraulic power
US11067481B2 (en) 2017-10-05 2021-07-20 U.S. Well Services, LLC Instrumented fracturing slurry flow system and method
WO2019075475A1 (en) 2017-10-13 2019-04-18 U.S. Well Services, LLC AUTOMATIC FRACTURING SYSTEM AND METHOD
CA3080317A1 (en) 2017-10-25 2019-05-02 U.S. Well Services, LLC Smart fracturing system and method
WO2019113153A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, Inc. High horsepower pumping configuration for an electric hydraulic fracturing system
CA3084596A1 (en) 2017-12-05 2019-06-13 U.S. Well Services, LLC Multi-plunger pumps and associated drive systems
AR114091A1 (es) 2018-02-05 2020-07-22 Us Well Services Inc Administración de carga eléctrica en microrred
WO2019204242A1 (en) 2018-04-16 2019-10-24 U.S. Well Services, Inc. Hybrid hydraulic fracturing fleet
CA3103490A1 (en) 2018-06-15 2019-12-19 U.S. Well Services, LLC Integrated mobile power unit for hydraulic fracturing
WO2020056258A1 (en) 2018-09-14 2020-03-19 U.S. Well Services, LLC Riser assist for wellsites
WO2020076902A1 (en) 2018-10-09 2020-04-16 U.S. Well Services, LLC Modular switchgear system and power distribution for electric oilfield equipment
US11578577B2 (en) 2019-03-20 2023-02-14 U.S. Well Services, LLC Oversized switchgear trailer for electric hydraulic fracturing
CA3139970A1 (en) 2019-05-13 2020-11-19 U.S. Well Services, LLC Encoderless vector control for vfd in hydraulic fracturing applications
WO2021022048A1 (en) 2019-08-01 2021-02-04 U.S. Well Services, LLC High capacity power storage system for electric hydraulic fracturing
US11009162B1 (en) 2019-12-27 2021-05-18 U.S. Well Services, LLC System and method for integrated flow supply line
CN112031884A (zh) * 2020-08-21 2020-12-04 上海交通大学 基于布雷顿循环的热泵式储电系统
FR3117168B1 (fr) * 2020-12-03 2023-08-25 Total Se Procédé de production d’énergie électrique et/ou mécanique à destination d’un système consommateur et système de production associé
CN113266471B (zh) * 2021-05-27 2022-04-08 国电环境保护研究院有限公司 一种基于地源热泵的燃气轮机进气温控系统及其控制方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315404A (en) * 1979-05-25 1982-02-16 Chicago Bridge & Iron Company Cooling system, for power generating plant, using split or partitioned heat exchanger
US4792091A (en) * 1988-03-04 1988-12-20 Martinez Jr George Method and apparatus for heating a large building
EP0378003A1 (en) * 1989-01-11 1990-07-18 STEWART & STEVENSON SERVICES, INC. Apparatus and method for optimizing the air inlet temperature of gas turbines
US5444971A (en) * 1993-04-28 1995-08-29 Holenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
CN1198197A (zh) * 1995-08-24 1998-11-04 查里斯·R·科伦伯格 冷却燃气透平和内燃机等原动机进气空气的方法及装置
US6408609B1 (en) * 2000-06-09 2002-06-25 Chicago Bridge & Iron Company Method and apparatus for enhancing power output and efficiency of combustion turbines
US20050056023A1 (en) * 1999-08-06 2005-03-17 Pierson Tom L. Method of chilling inlet air for gas turbines
US6941759B2 (en) * 1997-06-18 2005-09-13 Jasper Energy Development Llc Solar power enhanced combustion turbine power plants and methods
CN101059101A (zh) * 2006-04-18 2007-10-24 通用电气公司 燃气轮机进口调节系统和方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3788066A (en) 1970-05-05 1974-01-29 Brayton Cycle Improvement Ass Refrigerated intake brayton cycle system
US3796045A (en) * 1971-07-15 1974-03-12 Turbo Dev Inc Method and apparatus for increasing power output and/or thermal efficiency of a gas turbine power plant
US4300623A (en) * 1978-10-10 1981-11-17 Milton Meckler Integrated multi-duct dual-stage dual-cooling media air conditioning system
JPS58117306A (ja) 1981-12-29 1983-07-12 Hitachi Ltd コンバインドプラント
US5203161A (en) 1990-10-30 1993-04-20 Lehto John M Method and arrangement for cooling air to gas turbine inlet
US5351487A (en) * 1992-05-26 1994-10-04 Abdelmalek Fawzy T High efficiency natural gas engine driven cooling system
US6848267B2 (en) 2002-07-26 2005-02-01 Tas, Ltd. Packaged chilling systems for building air conditioning and process cooling
US6318065B1 (en) 1999-08-06 2001-11-20 Tom L. Pierson System for chilling inlet air for gas turbines
EP1136012B1 (fr) * 2000-03-17 2004-02-25 Patek Philippe S.A. Bracelet à maillons allégés
US20020053196A1 (en) * 2000-11-06 2002-05-09 Yakov Lerner Gas pipeline compressor stations with kalina cycles
US6532754B2 (en) 2001-04-25 2003-03-18 American Standard International Inc. Method of optimizing and rating a variable speed chiller for operation at part load
DE10214183C1 (de) * 2002-03-28 2003-05-08 Siemens Ag Kraftwerk zur Kälteerzeugung
US6964168B1 (en) 2003-07-09 2005-11-15 Tas Ltd. Advanced heat recovery and energy conversion systems for power generation and pollution emissions reduction, and methods of using same
WO2005119029A1 (en) 2004-05-19 2005-12-15 Fluor Technologies Corporation Triple cycle power plant
EP1781950B1 (en) 2004-07-13 2012-11-14 Carrier Corporation Improving centrifugal compressor performance by optimizing diffuser surge control and flow control device settings
US20070051126A1 (en) * 2004-11-29 2007-03-08 Seiichi Okuda Air refrigerant type freezing and heating apparatus
US7648564B2 (en) 2006-06-21 2010-01-19 General Electric Company Air bypass system for gas turbine inlet
US7998249B2 (en) 2006-10-25 2011-08-16 General Electric Company Inlet air chilling and filtration systems and methods for a gas turbine
US20080098891A1 (en) 2006-10-25 2008-05-01 General Electric Company Turbine inlet air treatment apparatus
US8601825B2 (en) * 2007-05-15 2013-12-10 Ingersoll-Rand Company Integrated absorption refrigeration and dehumidification system
US8776517B2 (en) * 2008-03-31 2014-07-15 Cummins Intellectual Properties, Inc. Emissions-critical charge cooling using an organic rankine cycle
US8991202B2 (en) * 2008-03-31 2015-03-31 Mitsubishi Electric Corporation Air-conditioning hot-water supply complex system
US8973379B2 (en) * 2008-07-25 2015-03-10 Hill Phoenix, Inc. Refrigeration control systems and methods for modular compact chiller units
US8356466B2 (en) * 2008-12-11 2013-01-22 General Electric Company Low grade heat recovery system for turbine air inlet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315404A (en) * 1979-05-25 1982-02-16 Chicago Bridge & Iron Company Cooling system, for power generating plant, using split or partitioned heat exchanger
US4792091A (en) * 1988-03-04 1988-12-20 Martinez Jr George Method and apparatus for heating a large building
EP0378003A1 (en) * 1989-01-11 1990-07-18 STEWART & STEVENSON SERVICES, INC. Apparatus and method for optimizing the air inlet temperature of gas turbines
US5444971A (en) * 1993-04-28 1995-08-29 Holenberger; Charles R. Method and apparatus for cooling the inlet air of gas turbine and internal combustion engine prime movers
CN1198197A (zh) * 1995-08-24 1998-11-04 查里斯·R·科伦伯格 冷却燃气透平和内燃机等原动机进气空气的方法及装置
US6941759B2 (en) * 1997-06-18 2005-09-13 Jasper Energy Development Llc Solar power enhanced combustion turbine power plants and methods
US20050056023A1 (en) * 1999-08-06 2005-03-17 Pierson Tom L. Method of chilling inlet air for gas turbines
US6408609B1 (en) * 2000-06-09 2002-06-25 Chicago Bridge & Iron Company Method and apparatus for enhancing power output and efficiency of combustion turbines
CN101059101A (zh) * 2006-04-18 2007-10-24 通用电气公司 燃气轮机进口调节系统和方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103032175A (zh) * 2011-10-05 2013-04-10 通用电气公司 加热燃气涡轮入口的方法
CN103089447A (zh) * 2011-11-08 2013-05-08 通用电气公司 进气加热系统
CN103089447B (zh) * 2011-11-08 2016-12-21 通用电气公司 进气加热系统
CN108798902A (zh) * 2017-04-27 2018-11-13 通用电气公司 具有蓄热系统的中间冷却的涡轮机
CN112319799A (zh) * 2020-11-03 2021-02-05 谭成刚 无翼飞行器

Also Published As

Publication number Publication date
US20100146981A1 (en) 2010-06-17
AU2009245881A1 (en) 2010-07-01
CA2686360A1 (en) 2010-06-11
US9470149B2 (en) 2016-10-18
EP2343437A1 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
CN101749119A (zh) 涡轮机入口空气热泵型系统
CN101846101B (zh) 进口空气加热和冷却系统
US8356466B2 (en) Low grade heat recovery system for turbine air inlet
US7398642B2 (en) Gas turbine system including vaporization of liquefied natural gas
CN102652239B (zh) 混合泵送机
CN102449288B (zh) 进气调温装置及其运行方法
US10054085B2 (en) Power system having fuel-based cooling
JP7134688B2 (ja) 蓄熱システムを備えた中間冷却式タービン
CN206250358U (zh) 电池温度控制系统
US20180163570A1 (en) System and Method for Improving Output and Heat Rate for a Liquid Natural Gas Combined Cycle Power Plant
CN202403438U (zh) 一种高原型风冷工业机组
CA2412160C (en) Method and apparatus for cooling the inlet air of combustion turbines
AU2001275254A1 (en) Method and apparatus for cooling the inlet air of combustion turbines
US20190292986A1 (en) Gas turbine system
JP2019163761A (ja) ガスタービンシステム
US10760490B2 (en) Gas turbine efficiency and power augmentation system's modular air cooling system and methods of using the same
CN200986344Y (zh) 冷热两用热泵系统
AU2019359614A1 (en) Floating power generation vessel with simultaneous inlet air cooling and regasification technology

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
ASS Succession or assignment of patent right

Owner name: BHA AERTAIER CO., LTD.

Free format text: FORMER OWNER: GENERAL ELECTRIC CO.

Effective date: 20140408

C41 Transfer of patent application or patent right or utility model
TA01 Transfer of patent application right

Effective date of registration: 20140408

Address after: Tennessee

Applicant after: GEN ELECTRIC

Address before: American New York

Applicant before: General Electric Company

C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20100623