CN101747055B - 一种低温烧结的磁电复合介质厚膜材料及其制备方法 - Google Patents

一种低温烧结的磁电复合介质厚膜材料及其制备方法 Download PDF

Info

Publication number
CN101747055B
CN101747055B CN2009102545238A CN200910254523A CN101747055B CN 101747055 B CN101747055 B CN 101747055B CN 2009102545238 A CN2009102545238 A CN 2009102545238A CN 200910254523 A CN200910254523 A CN 200910254523A CN 101747055 B CN101747055 B CN 101747055B
Authority
CN
China
Prior art keywords
thick film
powder
preparation
tio
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2009102545238A
Other languages
English (en)
Other versions
CN101747055A (zh
Inventor
杨海波
林营
王芬
朱建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi University of Science and Technology
Original Assignee
Shaanxi University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi University of Science and Technology filed Critical Shaanxi University of Science and Technology
Priority to CN2009102545238A priority Critical patent/CN101747055B/zh
Publication of CN101747055A publication Critical patent/CN101747055A/zh
Application granted granted Critical
Publication of CN101747055B publication Critical patent/CN101747055B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Inorganic Insulating Materials (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

一种低温烧结的磁电复合介质厚膜材料及其制备方法,按xNi0.37Cu0.20Zn0.43Fe1.92O3.88/(1-x)Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀,其中0.2≤x≤0.8;再加入BaCu(B2O5)和有机载体得到厚膜浆料;将厚膜浆料通过丝网印刷的方式转印到基片上烧结成瓷,即得磁电复合介质厚膜。该磁电复合介质厚膜材料在1MHz下介电常数为50~283,介电损耗为0.1%~0.4%,介电可调率为0.2%~5%,饱和磁化强度为8~46emμ/g,矫顽场为27.1~30.4G。

Description

一种低温烧结的磁电复合介质厚膜材料及其制备方法
技术领域
本发明属于材料科学领域,具体涉及一种低温烧结的磁电复合介质厚膜材料及其制备方法。
背景技术
现代战争和信息产业的迅猛发展要求通信、雷达、导航、电子对抗等电子装备具有多功能小型化、高机动性能。宽带和超宽带应用,特别是应用于低频段时,微波器件和天线的宽带和小型化一直是困扰无线电工程技术人员的难题。为了解决这一难题,人们提出了很多新的理论和方法,大致可以分为两类:一类是改变器件的设计,如几何形状和结构;另一类是采用高介电常数或者磁性材料,在介质材料中传输的电磁波的波长与介质的介电常数和磁导率的乘积之平方根成反比,因此采用具有高介电常数和高磁导率的介质作为基片可以在不改变微波器件和天线设计的情况下,极大地减小器件和天线的尺寸,除天线外此类材料还能广泛地应用在容-感复合元件、军工和民用的振荡器、混频器、变频器、功率分配器、功率合成器、功率放大器、滤波器等微波器件。目前的磁电复合材料均采用铁电材料和铁磁材料进行复合,追求其高的磁电耦合系数,所得复合材料的损耗较大,限制了它们的高频应用。
发明内容
本发明的目的在于提供一种制备工艺简单的低温烧结的磁电复合介质厚膜材料及其制备方法。
为达到上述目的,本发明采用的技术方案是:
1)制备Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体:按化学通式Ni0.37Cu0.20Zn0.43Fe1.92O3.88,称取分析纯的NiO,CuO,ZnO和Fe2O3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体;
2)制备Ba0.6Sr0.4TiO3粉体:按化学通式Ba0.6Sr0.4TiO3,称取分析纯的BaCO3,SrCO3和TiO2配制后球磨4小时,然后烘干,过筛,压块,经1150℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ba0.6Sr0.4TiO3粉体;
3)制备BaCu(B2O5)粉体:按化学通式BaCu(B2O5),称取分析纯的Ba(OH)2,CuO和H3BO3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到BaCu(B2O5)粉体;
4)按xNi0.37Cu0.20Zn0.43Fe1.92O3.88/(1-x)Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀,其中0.2≤x≤0.8;
5)加入混合粉体中质量分数2%-5%的BaCu(B2O5)和30%-40%的有机载体,所述的有机载体采用质量浓度为5%的乙基纤维素松油醇溶液,经混合均匀得到厚膜浆料;
6)将厚膜浆料通过丝网印刷的方式转印到基片上,于550℃保温2小时排除有机载体,在860~880℃下烧结0.5~2个小时成瓷,即得磁电复合介质厚膜。
本发明的低温烧结的磁电复合介质厚膜材料的组成表达式为:xNi0.37Cu0.20Zn0.43Fe1.92O3.88/(1-x)Ba0.6Sr0.4TiO3,其中x为Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积百分数,且0.2≤x≤0.8,该磁电复合介质厚膜材料在1MHz下介电常数为50~283,介电损耗为0.1%~0.4%,介电可调率为0.2%~5%,饱和磁化强度为8~46emμ/g,矫顽场为27.1~30.4G。
附图说明
图1为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为80%,Ba0.6Sr0.4TiO3的体积比为20%时复合介质厚膜的介电性能;
图2为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为60%,Ba0.6Sr0.4TiO3的体积比为40%时复合介质厚膜的介电性能;
图3为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为40%,Ba0.6Sr0.4TiO3的体积比为60%时复合厚膜的介电性能;
图4为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为20%,Ba0.6Sr0.4TiO3的体积比为80%时复合介质厚膜的介电性能
图5为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为20%,Ba0.6Sr0.4TiO3的体积比为80%时复合介质厚膜的磁滞回线。磁化强度的单位为emu/g。
图6为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为40%,Ba0.6Sr0.4TiO3的体积比为60%时复合介质厚膜的磁滞回线。磁化强度的单位为emu/g。
图7为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为60%,Ba0.6Sr0.4TiO3的体积比为40%时复合介质厚膜的磁滞回线。磁化强度的单位为emu/g。
图8为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为80%,Ba0.6Sr0.4TiO3的体积比为20%时复合介质厚膜的磁滞回线。磁化强度的单位为emu/ g。
图9为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为20%,Ba0.6Sr0.4TiO3的体积比为80%时复合介质厚膜的介电可调性曲线。
图10为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为40%,Ba0.6Sr0.4TiO3的体积比为60%时复合介质厚膜的介电可调性曲线。
图11为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为60%,Ba0.6Sr0.4TiO3的体积比为40%时复合介质厚膜的介电可调性曲线。
图12为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为80%,Ba0.6Sr0.4TiO3的体积比为20%时复合介质厚膜的介电可调性曲线。
图13为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为80%,Ba0.6Sr0.4TiO3的体积比为20%时复合介质厚膜断面的显微结构照片。
图14为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为60%,Ba0.6Sr0.4TiO3的体积比为40%时复合介质厚膜断面的显微结构照片。
图15为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为40%,Ba0.6Sr0.4TiO3的体积比为60%时复合介质厚膜断面的显微结构照片。
图16为当Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积比为20%,Ba0.6Sr0.4TiO3的体积比为80%时复合介质厚膜断面的显微结构照片。
具体实施方式
下面结合附图及实施例对本发明做进一步详细说明。
实施例1:
1)制备Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体:按化学通式Ni0.37Cu0.20Zn0.43Fe1.92O3.88,称取分析纯的NiO,CuO,ZnO和Fe2O3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体;
2)制备Ba0.6Sr0.4TiO3粉体:按化学通式Ba0.6Sr0.4TiO3,称取分析纯的BaCO3,SrCO3和TiO2配制后球磨4小时,然后烘干,过筛,压块,经1150℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ba0.6Sr0.4TiO3粉体;
3)制备BaCu(B2O5)粉体:按化学通式BaCu(B2O5),称取分析纯的Ba(OH)2,CuO和H3BO3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到BaCu(B2O5)粉体;
4)按0.8Ni0.37Cu0.20Zn0.43Fe1.92O3.88/0.2Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀;
5)加入混合粉体中质量分数5%的BaCu(B2O5)和40%的有机载体,所述的有机载体采用质量浓度为5%的乙基纤维素松油醇溶液,经混合均匀得到厚膜浆料;
6)将厚膜浆料通过丝网印刷的方式转印到基片上,于550℃保温2小时排除有机载体,在860℃下烧结2小时成瓷,即得磁电复合介质厚膜。即得到低温烧结的磁电复合介质厚膜材料。该材料的介电性能见图1,磁性能见图8,介电可调性见图12,微观结构见图13。
实施例2:
1)制备Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体:按化学通式Ni0.37Cu0.20Zn0.43Fe1.92O3.88,称取分析纯的NiO,CuO,ZnO和Fe2O3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体;
2)制备Ba0.6Sr0.4TiO3粉体:按化学通式Ba0.6Sr0.4TiO3,称取分析纯的BaCO3,SrCO3和TiO2配制后球磨4小时,然后烘干,过筛,压块,经1150℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ba0.6Sr0.4TiO3粉体;
3)制备BaCu(B2O5)粉体:按化学通式BaCu(B2O5),称取分析纯的Ba(OH)2,CuO和H3BO3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到BaCu(B2O5)粉体;
4)按0.6Ni0.37Cu0.20Zn0.43Fe1.92O3.88/0.4Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀;
5)加入混合粉体中质量分数3%的BaCu(B2O5)和33%的有机载体,所述的有机载体采用质量浓度为5%的乙基纤维素松油醇溶液,经混合均匀得到厚膜浆料;
6)将厚膜浆料通过丝网印刷的方式转印到基片上,于550℃保温2小时排除有机载体,在880℃下烧结0.5小时成瓷,即得磁电复合介质厚膜。即得到低温烧结的磁电复合介质厚膜材料。该材料的介电性能见图2,磁性能见图7,介电可调性见图11,微观结构见图14。
实施例3:
1)制备Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体:按化学通式Ni0.37Cu0.20Zn0.43Fe1.92O3.88,称取分析纯的NiO,CuO,ZnO和Fe2O3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体;
2)制备Ba0.6Sr0.4TiO3粉体:按化学通式Ba0.6Sr0.4TiO3,称取分析纯的BaCO3,SrCO3和TiO2配制后球磨4小时,然后烘干,过筛,压块,经1150℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ba0.6Sr0.4TiO3粉体;
3)制备BaCu(B2O5)粉体:按化学通式BaCu(B2O5),称取分析纯的Ba(OH)2,CuO和H3BO3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到BaCu(B2O5)粉体;
4)按0.4Ni0.37Cu0.20Zn0.43Fe1.92O3.88/0.6Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀;
5)加入混合粉体中质量分数4%的BaCu(B2O5)和38%的有机载体,所述的有机载体采用质量浓度为5%的乙基纤维素松油醇溶液,经混合均匀得到厚膜浆料;
6)将厚膜浆料通过丝网印刷的方式转印到基片上,于550℃保温2小时排除有机载体,在865℃下烧结1.5小时成瓷,即得磁电复合介质厚膜。即得到低温烧结的磁电复合介质厚膜材料。该材料的介电性能见图3,磁性能见图6,介电可调性见图10,微观结构见图15。
实施例4:
1)制备Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体:按化学通式Ni0.37Cu0.20Zn0.43Fe1.92O3.88,称取分析纯的NiO,CuO,ZnO和Fe2O3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体;
2)制备Ba0.6Sr0.4TiO3粉体:按化学通式Ba0.6Sr0.4TiO3,称取分析纯的BaCO3,SrCO3和TiO2配制后球磨4小时,然后烘干,过筛,压块,经1150℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ba0.6Sr0.4TiO3粉体;
3)制备BaCu(B2O5)粉体:按化学通式BaCu(B2O5),称取分析纯的Ba(OH)2,CuO和H3BO3配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到BaCu(B2O5)粉体;
4)按0.2Ni0.37Cu0.20Zn0.43Fe1.92O3.88/0.8Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀;
5)加入混合粉体中质量分数2%的BaCu(B2O5)和30%的有机载体,所述的有机载体采用质量浓度为5%的乙基纤维素松油醇溶液,经混合均匀得到厚膜浆料;
6)将厚膜浆料通过丝网印刷的方式转印到基片上,于550℃保温2小时排除有机载体,在870℃下烧结1小时成瓷,即得磁电复合介质厚膜。即得到低温烧结的磁电复合介质厚膜材料。该材料的介电性能见图4,磁性能见图5,介电可调性见图9,微观结构见图16。

Claims (2)

1.一种低温烧结的磁电复合介质厚膜材料的制备方法,其特征在于:
1)制备Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体:按化学通式Ni0.37Cu0.20Zn0.43Fe1.92O3.88,称取分析纯的NiO,CuO,ZnO和Fe2O3,配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ni0.37Cu0.20Zn0.43Fe1.92O3.88粉体;
2)制备Ba0.6Sr0.4TiO3粉体:按化学通式Ba0.6Sr0.4TiO3,称取分析纯的BaCO3,SrCO3和TiO2,配制后球磨4小时,然后烘干,过筛,压块,经1150℃预烧3小时,将所得块状样品粉碎后过120目筛得到Ba0.6Sr0.4TiO3粉体;
3)制备BaCu(B2O5)粉体:按化学通式BaCu(B2O5),称取分析纯的Ba(OH)2,CuO和H3BO3,配制后球磨4小时,然后烘干,过筛,压块,经800℃预烧3小时,将所得块状样品粉碎后过120目筛得到BaCu(B2O5)粉体;
4)按xNi0.37Cu0.20Zn0.43Fe1.92O3.88/(1-x)Ba0.6Sr0.4TiO3的体积比将Ni0.37Cu0.20Zn0.43Fe1.92O3.88和Ba0.6Sr0.4TiO3粉体混合均匀,其中0.2≤x≤0.8;
5)加入混合粉体中质量分数2%-5%的BaCu(B2O5)和30%-40%的有机载体,所述的有机载体采用质量浓度为5%的乙基纤维素松油醇溶液,经混合均匀得到厚膜浆料;
6)将厚膜浆料通过丝网印刷的方式转印到基片上,于550℃保温2小时排除有机载体,在860~880℃下烧结0.5~2个小时成瓷,即得磁电复合介质厚膜。
2.一种按照权利要求1所述的低温烧结的磁电复合介质厚膜材料的制备方法制成的低温烧结的磁电复合介质厚膜材料,其特征在于:所述的低温烧结的磁电复合介质厚膜材料的组成表达式为:xNi0.37Cu0.20Zn0.43Fe1.92O3.88/(1-x)Ba0.6Sr0.4TiO3,其中x为Ni0.37Cu0.20Zn0.43Fe1.92O3.88的体积百分数,且0.2≤x≤0.8,该磁电复合介质厚膜材料在1MHz下介电常数为50~283,介电损耗为0.1%~0.4%,介电可调率为0.2%~5%,饱和磁化强度为8~46emu/g,矫顽场为27.1~30.4G。
CN2009102545238A 2009-12-25 2009-12-25 一种低温烧结的磁电复合介质厚膜材料及其制备方法 Expired - Fee Related CN101747055B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2009102545238A CN101747055B (zh) 2009-12-25 2009-12-25 一种低温烧结的磁电复合介质厚膜材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2009102545238A CN101747055B (zh) 2009-12-25 2009-12-25 一种低温烧结的磁电复合介质厚膜材料及其制备方法

Publications (2)

Publication Number Publication Date
CN101747055A CN101747055A (zh) 2010-06-23
CN101747055B true CN101747055B (zh) 2012-05-09

Family

ID=42474750

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2009102545238A Expired - Fee Related CN101747055B (zh) 2009-12-25 2009-12-25 一种低温烧结的磁电复合介质厚膜材料及其制备方法

Country Status (1)

Country Link
CN (1) CN101747055B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102633501A (zh) * 2012-04-25 2012-08-15 陕西科技大学 一种六方钛酸钡基磁电复合材料及其制备方法
CN106278262A (zh) * 2016-08-09 2017-01-04 陕西科技大学 一种knn基层状磁电复合材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410337A2 (de) * 1989-07-28 1991-01-30 BASF Aktiengesellschaft Schutzschichten aus Keramiken des Germaniums
CN1544391A (zh) * 2003-11-20 2004-11-10 西安中天科技有限责任公司 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
CN101516795A (zh) * 2006-09-14 2009-08-26 独立行政法人宇宙航空研究开发机构 钛系氧化物玻璃及其制造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0410337A2 (de) * 1989-07-28 1991-01-30 BASF Aktiengesellschaft Schutzschichten aus Keramiken des Germaniums
CN1544391A (zh) * 2003-11-20 2004-11-10 西安中天科技有限责任公司 低温叠层共烧的介电陶瓷和铁氧体及其制备方法
CN101516795A (zh) * 2006-09-14 2009-08-26 独立行政法人宇宙航空研究开发机构 钛系氧化物玻璃及其制造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JP特开2003-190792A 2003.07.08

Also Published As

Publication number Publication date
CN101747055A (zh) 2010-06-23

Similar Documents

Publication Publication Date Title
Yang et al. Effects of Bi2O3-Nb2O5 additives on microstructure and magnetic properties of low-temperature-fired NiCuZn ferrite ceramics
Yue et al. Synthesis of nanocrystilline ferrites by sol–gel combustion process: the influence of pH value of solution
CN111620682B (zh) 梯度饱和磁化强度微波铁氧体材料、制成的铁氧体基板及其制备方法
Bifa et al. Magnetic properties of samarium and gadolinium co-doping Mn-Zn ferrites obtained by sol-gel auto-combustion method
Xu et al. Investigation of grain growth and magnetic properties of low-sintered LiZnTi ferrite-ceramic
Ye et al. Development of (Zr, Mn) doped X-type hexaferrites for high frequency EMI shielding applications
Peng et al. Microwave sintered Sr1− xLaxFe12− xCoxO19 (x= 0–0.5) ferrites for use in low temperature co-fired ceramics technology
Jia et al. Composition, microstructures and ferrimagnetic properties of Bi-modified LiZnTiMn ferrites for LTCC application
CN105884342A (zh) Bi代LiZnTiMn旋磁铁氧体基板材料的制备方法
Ji et al. Enhanced electromagnetic properties of low-temperature sintered NiCuZn ferrites by doping with Bi2O3
CN102850045B (zh) 兼具巨介电常数和高磁化强度的铁氧体复合材料及其制备方法
Yang et al. Effects of Bi 2 O 3–MnO 2 additives on tunable microstructure and magnetic properties of low temperature co-fired NiCuZn ferrite ceramics
Xu et al. Influence of LZN nanoparticles on microstructure and magnetic properties of bi-substituted LiZnTi low-sintering temperature ferrites
Yang et al. Nb5+ ion substitution assisted the magnetic and gyromagnetic properties of NiCuZn ferrite for high frequency LTCC devices
CN102850051B (zh) 一种YFeO3 基双相磁电复合材料及其制备方法
Li et al. Bi2O3 adjusting equivalent permeability and permittivity of M-type barium ferrite for antenna substrate application
CN101747055B (zh) 一种低温烧结的磁电复合介质厚膜材料及其制备方法
Vinnik et al. Ferrite-based solid solutions: Structure types, preparation, properties, and potential applications
Wu et al. Sm-doped enhanced magnetic-dielectric properties of low-temperature fired Co2Z ferrite materials for high-frequency device applications
Bhuvaneshwari et al. Influence of gadolinium doped in nickel nanoferrites on structural, optical, electrical, and magnetic properties
CN103242037B (zh) 在l波段内具有高磁损耗的六角铁氧体材料及制备方法
CN101792319B (zh) 一种低温烧结的磁电复合陶瓷材料的制备方法
CN102875129B (zh) 一种尖晶石型固溶体磁介电功能介质陶瓷材料及其制备方法
Zhao et al. High cut-off frequency and low magnetic loss of Bi3+-Cr3+ co-substitution NiCuZn ferrite for chip inductors applications
CN102211928A (zh) 一种具有巨介电常数和高剩余磁化强度的磁电复合材料及其制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20120509

Termination date: 20141225

EXPY Termination of patent right or utility model